A PyTorch Implementation for Sketch Triplet Networks.
Model branch |
pretrained |
Loss Function |
lr |
clip_grad_norm(max_norm) |
learning rate decay |
weight_decay |
Margin |
SketchANet |
TU-Berlin |
Triplet Loss |
2e-5 |
-- |
20 |
0.0005(shoes) 0.0005-0.001(chairs) |
0.3 |
AlexNet |
T(ImageNet) |
|
2e-4 |
1.0 |
100 |
0.0003 |
0.3 |
ResNet18 |
T |
MarginRankingLoss |
2e-6 |
10.0 |
20 |
0.05 |
0.3 |
ResNet18 |
T(TU-Berlin) |
TripletMarginLoss |
2e-6 |
10.0 |
20 |
0.01 |
0.3 |
Model branch |
pretrained |
Loss Function |
prec |
mprec |
AlexNet |
T |
TripletMarginLoss |
|
|
ResNet18 |
T |
MarginRankingLoss |
|
|
ResNet18 |
T(ImageNet) |
TripletMarginLoss |
|
|
ResNet18 |
T(TU-Berlin) |
TripletMarginLoss |
|
|
Model branch |
pretrained |
Loss Function |
prec |
mprec |
SketchANet |
TU-Berlin |
Triplet Loss |
|
|
AlexNet |
T |
TripletMarginLoss |
61.76 |
15.34 |
ResNet18 |
T |
MarginRankingLoss |
|
|
ResNet18 |
T(ImageNet) |
TripletMarginLoss |
|
|
ResNet18 |
T(TU-Berlin) |
TripletMarginLoss |
|
|
Model branch |
pretrained |
Loss Function |
Rank@1 |
Rank@5 |
Rank@10 |
corr |
Origini |
|
Triplet Loss |
39.13 |
-- |
87.83 |
69.49 |
Originii |
ImageNet(edge)+TU-Berlin |
Triplet Loss(square_distance) |
52.174 |
-- |
92.174 |
-- |
SketchANet |
TU-Berlin |
Triplet Loss |
45.217 |
77.391 |
82.609 |
72.15 |
AlexNet |
ImageNet+TU-Berlin |
Triplet Loss |
45.217 |
74.783 |
86.087 |
73.70 |
AlexNet |
T |
TripletMarginLoss |
|
|
|
|
ResNet18 |
TU-Berlin |
TripletLoss |
26.957 |
51.304 |
64.348 |
64.54 |
ResNet18 |
T |
MarginRankingLoss |
|
|
|
|
ResNet18 |
TU-Berlin |
MarginRankingLoss |
29.565 |
50.435 |
69.565 |
64.21 |
ResNet18 |
ImageNet |
TripletMarginLoss |
|
|
|
|
ResNet18 |
TU-Berlin |
TripletMarginLoss |
25.217 |
53.043 |
65.217 |
64.79 |
ResNet18 |
TU-Berlin |
TripletMarginLoss + embedded_norm |
|
|
|
|
Model branch |
pretrained |
Loss Function |
prec |
mprec |
SketchANet |
TU-Berlin |
Triplet Loss |
74.46 |
51.09 |
Model branch |
pretrained |
Loss Function |
Rank@1 |
Rank@5 |
Rank@10 |
corr |
Origini |
|
Triplet Loss |
69.07 |
-- |
97.94 |
72.30 |
Originii |
ImageNet(edge)+TU-Berlin |
Triplet Loss(square_distance) |
72.16 |
-- |
98.96 |
-- |
SketchANet |
TU-Berlin |
Triplet Loss |
76.289 |
91.753 |
92.784 |
73.45 |
AlexNet |
ImageNet+TU-Berlin |
Triplet Loss |
63.918 |
87.629 |
92.784 |
73.13 |
ResNet18 |
ImageNet+TU-Berlin |
Triplet Loss |
61.856 |
87.629 |
93.814 |
76.01 |
[Reference]
-
- Sketch Me That Shoe
- Deep Spatial-Semantic Attention for Fine-Grained Sketch-Based Image Retrieval