-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
198 lines (166 loc) · 8.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import torch.utils.data.distributed
from torchvision import datasets, transforms
import torchvision.models as models
from models.resnet_attn import ResNet50_Attn, ResNet50_Self_Attn
from dataset_input import SkinDataset, train_df, validation_df, test_df
import os
import shutil
import numpy as np
import tqdm
import argparse
parser = argparse.ArgumentParser(description='PyTorch Sketch Me That Shoe Example')
parser.add_argument('--net', type=str, default='resnet50', help='The model to be used (vgg16, resnet34, resnet50, resnet101, resnet152)')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=20, metavar='N',
help='input batch size for testing (default: 10)')
parser.add_argument('--epochs', type=int, default=2000, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>,<save_latest_freq>+<epoch_count>...')
parser.add_argument('--niter', type=int, default=50, help='# of iter at starting learning rate')
parser.add_argument('--niter_decay', type=int, default=50, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--weight_decay', type=float, default=0.0005, help='Adm weight decay')
parser.add_argument('--lr', type=float, default=1e-5, metavar='LR', help='learning rate (default: 0.01)')
parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--print-freq', '-p', default=100, type=int, metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--classes', type=int, default=419,
help='number of classes')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--name', default='NetModel', type=str,
help='name of experiment')
parser.add_argument('--normalize_feature', default=False, type=bool,
help='normalize_feature')
best_acc = 0
def get_scheduler(optimizer, opt):
if opt.lr_policy == 'lambda':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def train(train_loader, model, id_criterion, optimizer, epoch):
model.train()
for data_sample, y in train_loader:
data_gpu = data_sample.cuda()
y_gpu = y.cuda()
output = model(data_gpu)
err = id_criterion(output, y_gpu)
err.backward()
optimizer.step()
def test(train_loader,validation_set, model, id_criterion, epoch):
model.eval()
result_array = []
gt_array = []
for i in train_loader:
data_sample, y = validation_set.__getitem__(i)
data_gpu = data_sample.unsqueeze(0).cuda()
output = model(data_gpu)
result = torch.argmax(output)
result_array.append(result.item())
gt_array.append(y.item())
correct_results = np.array(result_array) == np.array(gt_array)
sum_correct = np.sum(correct_results)
accuracy = sum_correct / train_loader.__len__()
print('Epoch: {:d} Prec@1: {:.10f}'.format(epoch, accuracy))
return accuracy
def main():
global args, best_acc
args = parser.parse_args()
opt = args
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 10, 'pin_memory': True} if args.cuda else {}
###### DataSet ######
composed = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.CenterCrop(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
training_set = SkinDataset(train_df, transform=composed)
training_generator = torch.utils.data.DataLoader(training_set, batch_size=args.batch_size, shuffle=True, **kwargs)
validation_set = SkinDataset(validation_df, transform=composed)
validation_generator = torch.utils.data.DataLoader(validation_set, batch_size=args.batch_size, shuffle=True, **kwargs)
test_set = SkinDataset(validation_df, transform=composed)
test_generator = torch.utils.data.SequentialSampler(test_set)
###### Model ######
if opt.net == 'resnet50':
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(in_features=2048, out_features=7)
elif opt.net == 'resnet50_self_attn':
model = ResNet50_Self_Attn(pretrained=True, out_features=7)
elif opt.net == 'resnet50_attn':
model = ResNet50_Attn(pretrained=True, out_features=7)
if args.cuda:
model.cuda()
cudnn.benchmark = True
###### Criteria ######
weights = [0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2]
class_weights = torch.FloatTensor(weights).cuda()
id_criterion = nn.CrossEntropyLoss(weight=class_weights)
schedulers = []
optimizers = []
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
optimizers.append(optimizer)
for optimizer in optimizers:
schedulers.append(get_scheduler(optimizer, args))
n_parameters = sum([p.data.nelement() for p in model.parameters()])
print(' + Number of params: {}'.format(n_parameters))
for epoch in tqdm.tqdm(range(opt.epoch_count, opt.niter + opt.niter_decay + 1)):
update_learning_rate(schedulers)
# scheduler.step()
# train for one epoch
train(training_generator, model, id_criterion, optimizer, epoch)
# evaluate on validation set
if epoch % 5 == 0:
prec1 = test(test_generator, validation_set, model, id_criterion, epoch)
# remember best Accuracy and save checkpoint
is_best = prec1 > best_acc
best_acc = max(prec1, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec': best_acc,
}, is_best)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 100))
for param_group in optimizer.state_dict()['param_groups']:
param_group['lr'] = lr
def update_learning_rate(schedulers):
for scheduler in schedulers:
scheduler.step()
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = "runs/%s/" % (args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'runs/%s/' % (args.name) + 'model_best.pth.tar')
if __name__ == '__main__':
main()