-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
234 lines (194 loc) · 8.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from typing import List
import json
import chainlit as cl
from autogen_agentchat.messages import (
ModelClientStreamingChunkEvent,
TextMessage,
ToolCallRequestEvent,
ToolCallExecutionEvent,
TextMessage,
)
from autogen_core import CancellationToken
from rag import Rag
from rat import Rat
import re
from chainlit.input_widget import Select
from figure_processing import get_figures_from_chunk
def remove_markdown_formatting(text: str) -> str:
"""Remove Markdown formatting from text.
Args:
text (str): Text to remove formatting from.
Returns:
str: Text with formatting removed."""
# Remove bold and italic markers while keeping the text inside
text = re.sub(r"(\*\*|__)(.*?)\1", r"\2", text) # **bold** or __bold__
text = re.sub(r"(\*|_)(.*?)\1", r"\2", text) # *italic* or _italic_
# Remove inline code formatting
text = re.sub(r"`(.+?)`", r"\1", text)
# Remove other Markdown characters while keeping content
text = re.sub(r"!\[.*?\]\(.*?\)", "", text) # Remove images
text = re.sub(r"\[([^\]]+)\]\(.*?\)", r"\1", text) # Convert links to plain text
text = re.sub(r"^\#{1,6}\s*", "", text, flags=re.MULTILINE) # Remove headers
text = re.sub(r"^\>\s?", "", text, flags=re.MULTILINE) # Remove blockquotes
text = re.sub(
r"^\s*[-+*]\s+", "", text, flags=re.MULTILINE
) # Remove unordered list markers
text = re.sub(
r"^\s*\d+\.\s+", "", text, flags=re.MULTILINE
) # Remove ordered list markers
# Replace all new lines with a space
text = re.sub(r"\n", " ", text)
return text
@cl.on_chat_start # type: ignore
async def start_chat() -> None:
"""Start the chat and set the assistant agent in the user session."""
# Set the assistant agent in the user session.
settings = await cl.ChatSettings(
[
Select(
id="Agent",
label="Agent Choice:",
values=["RAG Agent", "RAT Agent"],
initial_index=0,
)
]
).send()
cl.user_session.set("agent", settings["Agent"]) # Store selection in session state
@cl.on_settings_update
async def handle_agent_update(settings: dict):
"""Handle the agent update in settings."""
cl.user_session.set("agent", settings["Agent"]) # Store selection in session state
@cl.set_starters # type: ignore
async def set_starts() -> List[cl.Starter]:
"""Set the starters for the chat.
Returns:
List[cl.Starter]: List of starters."""
return [
cl.Starter(
label="What is the approach for sustainability?",
message="What is the approach for sustainability?",
),
cl.Starter(
label="What priority areas will have the most impact on the business and it's stakeholders?",
message="What priority areas will have the most impact on the business and it's stakeholders?",
),
cl.Starter(
label="How is Shein innovating?",
message="How is Shein innovating?",
),
cl.Starter(
label="How does Shein enforce compliance throughput the supply chain?",
message="How does Shein enforce compliance throughput the supply chain?",
),
cl.Starter(
label="What is Shein doing to be more sustainable?",
message="What is Shein doing to be more sustainable?",
),
]
@cl.on_message # type: ignore
async def chat(message: cl.Message) -> None:
"""Handle the chat messages and populate the UI if needed.
Args:
message (cl.Message): Message to handle."""
# Get the team from the user session.
agent = cl.user_session.get("agent") # type: ignore
if agent == "RAG Agent":
team = Rag()
elif agent == "RAT Agent":
team = Rat()
else:
return
# Streaming response message.
streaming_response: cl.Message | None = None
# Stream the messages from the team.
# Rest the team
last_chunk_is_image = False
async for msg in team.group_chat.run_stream(
task=[TextMessage(content=message.content, source="user")],
cancellation_token=CancellationToken(),
):
if isinstance(msg, ToolCallRequestEvent):
# Handle the tool call request.
search_terms = msg.content[0].arguments
# Send the search terms to the user.
try:
args = json.loads(search_terms)
extracted_search_terms = None
if "search_term" in args:
extracted_search_terms = args["search_term"]
elif "search_terms" in args:
extracted_search_terms = ", ".join(args["search_terms"])
if extracted_search_terms is not None:
await cl.Message(
content=f"**Research Agent ({agent}):**\n\nSearching AI Search with: *'{extracted_search_terms}'*"
).send()
except json.JSONDecodeError:
pass
elif isinstance(msg, ToolCallExecutionEvent):
# Handle the tool call execution.
ai_search_results = msg.content[0].content
try:
results = json.loads(ai_search_results)
retrieval_message = f"**Research Agent ({agent}):**\n\nRetrieved the following information:"
image_retrievals = []
for chunk_id, result in results.items():
cleaned_text, chunk_image_retrievals = get_figures_from_chunk(
team.figure_and_chunk_pairs, result["Chunk"], chunk_id=chunk_id
)
image_retrievals.extend(chunk_image_retrievals)
first_150_chars = cleaned_text[:150]
retrieval_message += (
f"\n\n {remove_markdown_formatting(first_150_chars)}... "
)
await cl.Message(
content=retrieval_message, elements=image_retrievals
).send()
except json.JSONDecodeError:
pass
elif isinstance(msg, ModelClientStreamingChunkEvent):
# Stream the model client response to the user.
author = msg.source
if author in ["answer_agent", "revise_answer_agent"]:
if streaming_response is None:
# Start a new streaming response.
streaming_response = cl.Message(content="", author=msg.source)
# Stream the printable author
printable_author = (
"**" + author.replace("_", " ").title() + f" ({agent}):**\n\n"
)
await streaming_response.stream_token(printable_author)
await streaming_response.stream_token(msg.content)
else:
if "<" in msg.content:
last_chunk_is_image = True
# Split content up to <figure
content_split = msg.content.split("<")[0]
await streaming_response.stream_token(content_split)
elif last_chunk_is_image is False:
await streaming_response.stream_token(msg.content)
elif (
streaming_response is not None and isinstance(msg, TextMessage)
) or isinstance(msg, TextMessage):
author = msg.source
if author in ["answer_agent", "revise_answer_agent"]:
printable_author = (
"**" + author.replace("_", " ").title() + f" ({agent}):**\n\n"
)
clean_text, image_retrievals = get_figures_from_chunk(
team.figure_and_chunk_pairs, msg.content
)
cleaned_content = printable_author + clean_text
if streaming_response is not None:
last_chunk_is_image = False
streaming_response.content = cleaned_content
await streaming_response.send()
streaming_response = None
if len(image_retrievals) > 0:
await cl.Message(content="", elements=image_retrievals).send()
else:
await cl.Message(
content=cleaned_content, elements=image_retrievals
).send()
else:
# Skip all other message types.
pass