-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathserver.py
312 lines (278 loc) · 12.9 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import itertools
import json
import os
import pickle
import sys
import traceback
import flask
import flask_sqlalchemy as sql
import numpy as np
import sklearn.model_selection as ms
import sqlalchemy_utils as sau
if __name__ == '__main__' and __package__ is None:
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import models # noqa: E402
import utils # noqa: E402
from utils import DictTree # noqa: E402
DEBUG = False
# logging.basicConfig()
# logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)
app_name = 'HIL-MT'
app = flask.Flask(app_name)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///hilmt/hilmt.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.json_encoder = DictTree.JSONEncoder
db = sql.SQLAlchemy(app)
MIN_VALID_DATA = 2
NUM_FOLDS = 20
EPSILON = 1e-6
class SubSkill(db.Model):
__tablename__ = 'sub_skills'
domain_name = db.Column(db.String, db.ForeignKey('agent_skills.domain_name'), primary_key=True)
agent_name = db.Column(db.String, db.ForeignKey('agent_skills.agent_name'), primary_key=True)
skill_name = db.Column(db.String, db.ForeignKey('agent_skills.skill_name'), primary_key=True)
sub_skill_index = db.Column(db.Integer, primary_key=True)
sub_skill_name = db.Column(db.String, db.ForeignKey('agent_skills.skill_name'))
class AgentSkill(db.Model):
__tablename__ = 'agent_skills'
domain_name = db.Column(db.String, primary_key=True)
agent_name = db.Column(db.String, primary_key=True)
skill_name = db.Column(db.String, primary_key=True)
elementary = db.Column(db.Boolean, nullable=False)
sub_skills = db.relationship(
'AgentSkill', secondary=SubSkill.__table__,
primaryjoin=db.and_(domain_name == SubSkill.domain_name, agent_name == SubSkill.agent_name, skill_name == SubSkill.skill_name),
secondaryjoin=db.and_(domain_name == SubSkill.domain_name, agent_name == SubSkill.agent_name, skill_name == SubSkill.sub_skill_name),
order_by=SubSkill.sub_skill_index)
min_valid_data = db.Column(db.Integer, nullable=False)
sub_arg_accuracy = db.Column(sau.ScalarListType(float), nullable=False)
validated = db.Column(db.Boolean)
data = db.Column(db.PickleType)
skill_model_id = db.Column(db.Integer, db.ForeignKey('skill_models.id'))
skill_model = db.relationship('SkillModel', primaryjoin='AgentSkill.skill_model_id == SkillModel.id', backref='agent_skills')
def as_dict(self):
return {c.name: getattr(self, c.name) for c in self.__table__.columns}
class SkillModel(db.Model):
__tablename__ = 'skill_models'
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String, nullable=False)
arg_in_len = db.Column(db.Integer, nullable=False)
max_cnt = db.Column(db.Integer)
ret_in_len = db.Column(db.Integer, nullable=False)
num_sub = db.Column(db.Integer, nullable=False)
arg_out_len = db.Column(db.Integer, nullable=False)
model = db.Column(db.PickleType)
db.create_all()
@app.route('/agent/<domain_name>/<agent_name>/', methods=['DELETE', 'POST', 'PUT', 'GET'])
def agent(domain_name, agent_name):
try:
if flask.request.method == 'DELETE':
res = delete(domain_name, agent_name)
elif flask.request.method == 'POST':
res = register(domain_name, agent_name)
elif flask.request.method == 'PUT':
res = train(domain_name, agent_name)
else: # GET
agent_skills = AgentSkill.query.filter(AgentSkill.domain_name == domain_name, AgentSkill.agent_name == agent_name).all()
res = [agent_skill.as_dict() for agent_skill in agent_skills]
return flask.jsonify(res)
except Exception, e:
if DEBUG:
print(traceback.format_exc())
flask.request.environ.get('werkzeug.server.shutdown')()
else:
raise e
def delete(domain_name, agent_name):
if DEBUG:
print("delete({}, {})".format(domain_name, agent_name))
SubSkill.query.filter(SubSkill.domain_name == domain_name).filter(SubSkill.agent_name == agent_name).delete()
AgentSkill.query.filter(AgentSkill.domain_name == domain_name).filter(AgentSkill.agent_name == agent_name).delete()
SkillModel.query.filter(~SkillModel.agent_skills.any()).delete(synchronize_session='fetch')
db.session.commit()
return DictTree(deleted=agent_name)
def register(domain_name, agent_name):
if DEBUG:
print("register({}, {})".format(domain_name, agent_name))
skillset = json.loads(flask.request.data, cls=DictTree.JSONDecoder)
res = DictTree()
for skill_name, skill in skillset.items():
if DEBUG:
print("Registering {}".format(skill_name))
skill_model = None
if len(skill.sub_skill_names) > 0:
skill_model = SkillModel(
name=skill.model_name,
arg_in_len=skill.arg_in_len,
max_cnt=skill.get('max_cnt'),
ret_in_len=skill.ret_in_len,
num_sub=1 + len(skill.sub_skill_names),
arg_out_len=skill.arg_out_len,
)
res[skill_name] = skill.get('validated', False)
db.session.add(AgentSkill(
domain_name=domain_name,
agent_name=agent_name,
skill_name=skill_name,
elementary=len(skill.sub_skill_names) == 0,
min_valid_data=skill.get('min_valid_data') or MIN_VALID_DATA,
sub_arg_accuracy=skill.get('sub_arg_accuracy') or [EPSILON],
validated=skill.get('validated', False),
skill_model=skill_model,
))
db.session.add_all([SubSkill(
domain_name=domain_name,
agent_name=agent_name,
skill_name=skill_name,
sub_skill_index=sub_skill_index,
sub_skill_name=sub_skill_name,
) for skill_name, skill in skillset.items() for sub_skill_index, sub_skill_name in enumerate(skill.sub_skill_names)])
db.session.commit()
return res
def train(domain_name, agent_name):
if DEBUG:
print("train({}, {})".format(domain_name, agent_name))
config = json.loads(flask.request.data, cls=DictTree.JSONDecoder)
skill_steps = {}
for trace in config.batch:
for time_step in trace:
if isinstance(time_step.info, DictTree):
steps = time_step.info.steps
else:
steps = time_step.info
for skill_step in steps:
skill_steps.setdefault(skill_step.name, []).append(skill_step)
res = DictTree()
for skill_name, steps in skill_steps.items():
agent_skill = AgentSkill.query.filter(
AgentSkill.domain_name == domain_name).filter(
AgentSkill.agent_name == agent_name).filter(
AgentSkill.skill_name == skill_name).one_or_none()
if agent_skill is None:
raise ValueError("Agent {}/{} has no skill {}".format(domain_name, agent_name, skill_name))
if DEBUG:
print("Training {} with {} new steps + {} existing".format(skill_name, len(steps), len(agent_skill.data or [])))
agent_skill.data = (agent_skill.data or []) + steps
if len(agent_skill.data) < agent_skill.min_valid_data:
print("Not enough data to train {}".format(skill_name))
agent_skill.validated = False
else:
shared_skills = []
for shared_skill in config.shared_skills.get(skill_name, []):
shared_skills.append(AgentSkill.query.filter(
AgentSkill.domain_name == domain_name).filter(
AgentSkill.agent_name == shared_skill.agent_name).filter(
AgentSkill.skill_name == shared_skill.skill_name).one_or_none())
shared_skill_lists = list((itertools.chain.from_iterable(
itertools.combinations(shared_skills, cnt)
for cnt in range(len(shared_skills), 0, -1))))
training_list = []
if 'validation' in config.modes:
training_list += [('validate', shared_skills) for shared_skills in shared_skill_lists]
if 'training' in config.modes:
training_list += [('train', shared_skills) for shared_skills in shared_skill_lists]
if 'independent' in config.modes:
training_list.append(('train', []))
for mode, shared_skills in training_list:
shared_data = sum((shared_skill.data for shared_skill in shared_skills), [])
if mode == 'validate':
if DEBUG:
print("Trying to validate with {} steps from {}".format(
len(shared_data), [(shared_skill.agent_name, shared_skill.skill_name) for shared_skill in shared_skills]))
shared_data = _process(agent_skill, shared_data)
validated = _validate(agent_skill, shared_data, config.validate, config.model_dirname)
else: # train
if DEBUG:
print("Trying to train with {} steps from {}".format(
len(shared_data), [(shared_skill.agent_name, shared_skill.skill_name) for shared_skill in shared_skills]))
validated = _train(agent_skill, shared_data, config.validate, config.model_dirname)
if validated:
# TODO: clean up training_model once a transfer model is finalized
if DEBUG:
print("Success!!!")
agent_skill.validated = True
break
else:
agent_skill.validated = False
res[skill_name] = agent_skill.validated
db.session.commit()
return res
def _validate(agent_skill, shared_data, validate=True, model_dirname=None):
model = models.catalog(DictTree(
name=agent_skill.skill_model.name,
arg_in_len=agent_skill.skill_model.arg_in_len,
max_cnt=agent_skill.skill_model.max_cnt,
num_sub=agent_skill.skill_model.num_sub,
sub_arg_accuracy=agent_skill.sub_arg_accuracy,
))
model.fit(shared_data)
if validate:
valid_data = _process(agent_skill, agent_skill.data)
validated = models.validate(model, valid_data, agent_skill.sub_arg_accuracy)
else:
validated = True
if validated:
agent_skill.skill_model.model = model
if model_dirname is not None:
try:
os.makedirs(model_dirname)
except OSError:
pass
model_fn = "{}/{}.pkl".format(model_dirname, agent_skill.skill_name)
pickle.dump(model, open(model_fn, 'wb'), protocol=2)
return validated
def _train(agent_skill, shared_data, validate=True, model_dirname=None):
model = models.catalog(DictTree(
name=agent_skill.skill_model.name,
arg_in_len=agent_skill.skill_model.arg_in_len,
max_cnt=agent_skill.skill_model.max_cnt,
num_sub=agent_skill.skill_model.num_sub,
sub_arg_accuracy=agent_skill.sub_arg_accuracy,
))
if validate:
num_folds = min(len(agent_skill.data), NUM_FOLDS)
kf = ms.KFold(num_folds, True)
validation = []
for new_train_idxs, valid_idxs in kf.split(agent_skill.data):
train_data = _process(agent_skill, [agent_skill.data[idx] for idx in new_train_idxs] + shared_data)
valid_data = _process(agent_skill, [agent_skill.data[idx] for idx in valid_idxs])
model.fit(train_data)
validation.append(models.validate(model, valid_data))
validated = models.total_validation(validation, agent_skill.sub_arg_accuracy)
else:
validated = True
if validated:
all_data = agent_skill.data
if shared_data is not None:
all_data += shared_data
all_data = _process(agent_skill, all_data)
model.fit(all_data)
agent_skill.skill_model.model = model
if model_dirname is not None:
try:
os.makedirs(model_dirname)
except OSError:
pass
model_fn = "{}/{}.pkl".format(model_dirname, agent_skill.skill_name)
pickle.dump(model, open(model_fn, 'wb'), protocol=2)
return validated
def _process(agent_skill, data):
# TODO: this could be more efficient
sub_skill_names = [None] + [sub_skill.skill_name for sub_skill in agent_skill.sub_skills]
iput = np.asarray([
utils.pad(step.arg, agent_skill.skill_model.arg_in_len)
+ [step.cnt]
+ utils.one_hot(sub_skill_names.index(step.ret_name), agent_skill.skill_model.num_sub)
+ utils.pad(step.ret_val, agent_skill.skill_model.ret_in_len)
for step in data])
sub = np.asarray([sub_skill_names.index(step.sub_name) for step in data])
arg = np.asarray([utils.pad(step.sub_arg, agent_skill.skill_model.arg_out_len) for step in data])
return DictTree(
len=len(data),
iput=iput,
oput=DictTree(
sub=sub,
arg=arg,
),
)
if __name__ == '__main__':
app.run(debug=DEBUG)