From fcfd891e2dbe91c14223cdcd5c79ec0fece92054 Mon Sep 17 00:00:00 2001 From: Eric Chen Date: Mon, 8 Apr 2024 23:38:43 +0000 Subject: [PATCH] Update README.md with improved descriptions and examples --- README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index caad977..30822eb 100644 --- a/README.md +++ b/README.md @@ -3,9 +3,9 @@ [![codecov](https://codecov.io/gh/KeplerC/fog_rtx/branch/main/graph/badge.svg?token=fog_rtx_token_here)](https://codecov.io/gh/KeplerC/fog_rtx) [![CI](https://github.com/KeplerC/fog_rtx/actions/workflows/main.yml/badge.svg)](https://github.com/KeplerC/fog_rtx/actions/workflows/main.yml) -๐ŸฆŠFog-X: An Efficient and Scalable Data Collection and Management Framework For Robotics Learning. Support [Open-X-Embodiment](https://robotics-transformer-x.github.io/), [HuggingFace](https://huggingface.co/)๐Ÿค—. +๐ŸฆŠ Fog-X: An Efficient and Scalable Data Collection and Management Framework For Robotics Learning. Support [Open-X-Embodiment](https://robotics-transformer-x.github.io/), ๐Ÿค—[HuggingFace](https://huggingface.co/). -๐ŸฆŠFog-X considers both speed๐Ÿš€ and memory efficiency๐Ÿ“ˆ with active metadata and lazily-loaded trajectory data. ๐ŸฆŠ supports flexible and distributed partitioning of the dataset. +๐ŸฆŠ Fog-X considers both speed ๐Ÿš€ and memory efficiency ๐Ÿ“ˆ with active metadata and lazily-loaded trajectory data. It supports flexible and distributed dataset partitioning. ## Install @@ -27,7 +27,7 @@ dataset = fox.Dataset(load_from = ["/tmp/rtx", "s3://fox_stroage/"]) episode = dataset.new_episode() # collect step data for the episode episode.add(feature = "arm_view", value = "image1.jpg") -# Automatically time-aligns the features +# Automatically time-aligns and saves the trajectory episode.close() # ๐ŸฆŠ Data Loading: @@ -37,16 +37,16 @@ dataset.load_rtx_episodes( additional_metadata={"collector": "User 2"} ) -# ๐ŸฆŠ Data Management and Analytics +# ๐ŸฆŠ Data Management and Analytics: # Compute and memory efficient filter, map, aggregate, groupby episode_info = dataset.get_episode_info() -metadata = episode_info.filter(episode_info["collector"] == "User 2") +desired_episodes = episode_info.filter(episode_info["collector"] == "User 2") # ๐ŸฆŠ Data Sharing and Usage: # Export and share the dataset as standard Open-X-Embodiment format -dataset.export(metadata, format="rtx") -# Use with pytorch dataloader -torch.utils.data.DataLoader(dataset.as_pytorch_dataset(metadata)) +dataset.export(desired_episodes, format="rtx") +# Load with pytorch dataloader +torch.utils.data.DataLoader(dataset.as_pytorch_dataset(desired_episodes)) ``` ## More Coming Soon!