diff --git a/.github/workflows/locustfile.py b/.github/workflows/locustfile.py index 34ac7bee027f..96dd8e19905b 100644 --- a/.github/workflows/locustfile.py +++ b/.github/workflows/locustfile.py @@ -1,6 +1,4 @@ -from locust import HttpUser, task, between, events -import json -import time +from locust import HttpUser, task, between class MyUser(HttpUser): @@ -10,7 +8,7 @@ class MyUser(HttpUser): def chat_completion(self): headers = { "Content-Type": "application/json", - "Authorization": f"Bearer sk-ZoHqrLIs2-5PzJrqBaviAA", + "Authorization": "Bearer sk-ZoHqrLIs2-5PzJrqBaviAA", # Include any additional headers you may need for authentication, etc. } diff --git a/cookbook/Benchmarking_LLMs_by_use_case.ipynb b/cookbook/Benchmarking_LLMs_by_use_case.ipynb index 80d96261bfa5..6ea6211bfb65 100644 --- a/cookbook/Benchmarking_LLMs_by_use_case.ipynb +++ b/cookbook/Benchmarking_LLMs_by_use_case.ipynb @@ -1,757 +1,753 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "4Cq-_Y-TKf0r" + }, + "source": [ + "# LiteLLM - Benchmark Llama2, Claude1.2 and GPT3.5 for a use case\n", + "In this notebook for a given use case we run the same question and view:\n", + "* LLM Response\n", + "* Response Time\n", + "* Response Cost\n", + "\n", + "## Sample output for a question\n", + "![Screenshot 2023-09-07 at 4.45.37 PM.png]()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "O3ENsWYB27Mb" + }, + "outputs": [], + "source": [ + "!pip install litellm" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pk55Mjq_3DiR" + }, + "source": [ + "## Example Use Case 1 - Code Generator\n", + "### For this use case enter your system prompt and questions\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "_1SZYJFB3HmQ" + }, + "outputs": [], + "source": [ + "# enter your system prompt if you have one\n", + "system_prompt = \"\"\"\n", + "You are a coding assistant helping users using litellm.\n", + "litellm is a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints\n", + "--\n", + "Sample Usage:\n", + "```\n", + "pip install litellm\n", + "from litellm import completion\n", + "## set ENV variables\n", + "os.environ[\"OPENAI_API_KEY\"] = \"openai key\"\n", + "os.environ[\"COHERE_API_KEY\"] = \"cohere key\"\n", + "messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", + "# openai call\n", + "response = completion(model=\"gpt-3.5-turbo\", messages=messages)\n", + "# cohere call\n", + "response = completion(\"command-nightly\", messages)\n", + "```\n", + "\n", + "\"\"\"\n", + "\n", + "\n", + "# qustions/logs you want to run the LLM on\n", + "questions = [\n", + " \"what is litellm?\",\n", + " \"why should I use LiteLLM\",\n", + " \"does litellm support Anthropic LLMs\",\n", + " \"write code to make a litellm completion call\",\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AHH3cqeU3_ZT" + }, + "source": [ + "## Running questions\n", + "### Select from 100+ LLMs here: https://docs.litellm.ai/docs/providers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BpQD4A5339L3" + }, + "outputs": [], + "source": [ + "from litellm import completion, completion_cost\n", + "import os\n", + "import time\n", + "\n", + "# optional use litellm dashboard to view logs\n", + "# litellm.use_client = True\n", + "# litellm.token = \"ishaan_2@berri.ai\" # set your email\n", + "\n", + "\n", + "# set API keys\n", + "os.environ['TOGETHERAI_API_KEY'] = \"\"\n", + "os.environ['OPENAI_API_KEY'] = \"\"\n", + "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", + "\n", + "\n", + "# select LLMs to benchmark\n", + "# using https://api.together.xyz/playground for llama2\n", + "# try any supported LLM here: https://docs.litellm.ai/docs/providers\n", + "\n", + "models = ['togethercomputer/llama-2-70b-chat', 'gpt-3.5-turbo', 'claude-instant-1.2']\n", + "data = []\n", + "\n", + "for question in questions: # group by question\n", + " for model in models:\n", + " print(f\"running question: {question} for model: {model}\")\n", + " start_time = time.time()\n", + " # show response, response time, cost for each question\n", + " response = completion(\n", + " model=model,\n", + " max_tokens=500,\n", + " messages = [\n", + " {\n", + " \"role\": \"system\", \"content\": system_prompt\n", + " },\n", + " {\n", + " \"role\": \"user\", \"content\": question\n", + " }\n", + " ],\n", + " )\n", + " end = time.time()\n", + " total_time = end-start_time # response time\n", + " # print(response)\n", + " cost = completion_cost(response) # cost for completion\n", + " raw_response = response['choices'][0]['message']['content'] # response string\n", + "\n", + "\n", + " # add log to pandas df\n", + " data.append(\n", + " {\n", + " 'Model': model,\n", + " 'Question': question,\n", + " 'Response': raw_response,\n", + " 'ResponseTime': total_time,\n", + " 'Cost': cost\n", + " })" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "apOSV3PBLa5Y" + }, + "source": [ + "## View Benchmarks for LLMs" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" + "base_uri": "https://localhost:8080/", + "height": 1000 }, - "language_info": { - "name": "python" - } - }, - "cells": [ + "id": "CJqBlqUh_8Ws", + "outputId": "e02c3427-d8c6-4614-ff07-6aab64247ff6" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "# LiteLLM - Benchmark Llama2, Claude1.2 and GPT3.5 for a use case\n", - "In this notebook for a given use case we run the same question and view:\n", - "* LLM Response\n", - "* Response Time\n", - "* Response Cost\n", - "\n", - "## Sample output for a question\n", - "![Screenshot 2023-09-07 at 4.45.37 PM.png]()" - ], - "metadata": { - "id": "4Cq-_Y-TKf0r" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: does litellm support Anthropic LLMs\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "O3ENsWYB27Mb" - }, - "outputs": [], - "source": [ - "!pip install litellm" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
6togethercomputer/llama-2-70b-chatdoes litellm support Anthropic LLMsYes, litellm supports Anthropic LLMs.\\n\\nIn the example usage you provided, the `completion` function is called with the `model` parameter set to `\"gpt-3.5-turbo\"` for OpenAI and `\"command-nightly\"` for Cohere.\\n\\nTo use an Anthropic LLM with litellm, you would set the `model` parameter to the name of the Anthropic model you want to use, followed by the version number, if applicable. For example:\\n```\\nresponse = completion(model=\"anthropic-gpt-2\", messages=messages)\\n```\\nThis would call the Anthropic GPT-2 model to generate a completion for the given input messages.\\n\\nNote that you will need to set the `ANTHROPIC_API_KEY` environment variable to your Anthropic API key before making the call. You can do this by running the following command in your terminal:\\n```\\nos.environ[\"ANTHROPIC_API_KEY\"] = \"your-anthropic-api-key\"\\n```\\nReplace `\"your-anthropic-api-key\"` with your actual Anthropic API key.\\n\\nOnce you've set the environment variable, you can use the `completion` function with the `model` parameter set to an Anthropic model name to call the Anthropic API and generate a completion.21.5130090.001347
7gpt-3.5-turbodoes litellm support Anthropic LLMsNo, currently litellm does not support Anthropic LLMs. It mainly focuses on simplifying the usage of OpenAI, Azure, Cohere, and Huggingface API endpoints.8.6565100.000342
8claude-instant-1.2does litellm support Anthropic LLMsYes, litellm supports calling Anthropic LLMs through the completion function.\\n\\nTo use an Anthropic model with litellm:\\n\\n1. Set the ANTHROPIC_API_KEY environment variable with your Anthropic API key\\n\\n2. Pass the model name as the 'model' argument to completion(). Anthropic model names follow the format 'anthropic/<model_name>'\\n\\nFor example:\\n\\n```python \\nimport os\\nfrom litellm import completion\\n\\nos.environ[\"ANTHROPIC_API_KEY\"] = \"your_anthropic_api_key\"\\n\\nmessages = [{\"content\": \"Hello\", \"role\": \"user\"}]\\n\\nresponse = completion(model=\"anthropic/constitutional\", messages=messages)\\n```\\n\\nThis would call the Constitutional AI model from Anthropic.\\n\\nSo in summary, litellm provides a simple interface to call any Anthropic models as long as you specify the model name correctly and set the ANTHROPIC_API_KEY env variable.9.6981950.001342
" + ], + "text/plain": [ + "" ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "source": [ - "## Example Use Case 1 - Code Generator\n", - "### For this use case enter your system prompt and questions\n" - ], - "metadata": { - "id": "Pk55Mjq_3DiR" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: what is litellm?\n" + ] }, { - "cell_type": "code", - "source": [ - "# enter your system prompt if you have one\n", - "system_prompt = \"\"\"\n", - "You are a coding assistant helping users using litellm.\n", - "litellm is a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints\n", - "--\n", - "Sample Usage:\n", - "```\n", - "pip install litellm\n", - "from litellm import completion\n", - "## set ENV variables\n", - "os.environ[\"OPENAI_API_KEY\"] = \"openai key\"\n", - "os.environ[\"COHERE_API_KEY\"] = \"cohere key\"\n", - "messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", - "# openai call\n", - "response = completion(model=\"gpt-3.5-turbo\", messages=messages)\n", - "# cohere call\n", - "response = completion(\"command-nightly\", messages)\n", - "```\n", - "\n", - "\"\"\"\n", - "\n", - "\n", - "# qustions/logs you want to run the LLM on\n", - "questions = [\n", - " \"what is litellm?\",\n", - " \"why should I use LiteLLM\",\n", - " \"does litellm support Anthropic LLMs\",\n", - " \"write code to make a litellm completion call\",\n", - "]" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
0togethercomputer/llama-2-70b-chatwhat is litellm?Litellm is a lightweight Python package that simplifies calling various AI API endpoints, including OpenAI, Azure, Cohere, Anthropic, and Hugging Face. It provides a convenient interface for making requests to these APIs, allowing developers to easily integrate them into their applications. With Litellm, developers can quickly and easily interact with multiple AI models and services, without having to handle the details of authentication, API calls, and response parsing. This makes it easier to build and deploy AI-powered applications, and can help developers save time and effort.13.4796440.000870
1gpt-3.5-turbowhat is litellm?litellm is a light package that provides a simplified interface for making API calls to various language models and APIs. It abstracts away the complexities of handling network requests, authentication, and response parsing, making it easier for developers to integrate powerful language models into their applications.\\n\\nWith litellm, you can quickly make API calls to models like OpenAI's GPT-3.5 Turbo, Azure's Text Analytics, Cohere's Command API, Anthropic's API, and Huggingface's models. It also supports additional functionality like conversational AI, summarization, translation, and more.\\n\\nBy using litellm, you can focus on your application logic without getting tangled in the details of API integration, allowing you to quickly build intelligent and conversational applications.8.3243320.000566
2claude-instant-1.2what is litellm?litellm is a Python library that simplifies calling various AI API endpoints like OpenAI, Azure, Cohere, Anthropic, and Huggingface. \\n\\nSome key things to know about litellm:\\n\\n- It provides a consistent interface for completing prompts and generating responses from different AI models through a single method called completion().\\n\\n- You specify the API (e.g. OpenAI, Cohere etc.) and model either by name or by setting environment variables before making the completion call.\\n\\n- This avoids having to use different SDKs or APIs for each provider and standardizes the call structure. \\n\\n- It handles things like setting headers, encoding inputs, parsing responses so the user doesn't have to deal with those details.\\n\\n- The goal is to make it easy to try different AI APIs and models without having to change code or learn different interfaces.\\n\\n- It's lightweight with no other dependencies required besides what's needed for each API (e.g. openai, azure SDKs etc.).\\n\\nSo in summary, litellm is a small library that provides a common way to interact with multiple conversational AI APIs through a single Python method, avoiding the need to directly use each provider's specific SDK.10.3164880.001603
" ], - "metadata": { - "id": "_1SZYJFB3HmQ" - }, - "execution_count": 21, - "outputs": [] + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "source": [ - "## Running questions\n", - "### Select from 100+ LLMs here: https://docs.litellm.ai/docs/providers" - ], - "metadata": { - "id": "AHH3cqeU3_ZT" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: why should I use LiteLLM\n" + ] }, { - "cell_type": "code", - "source": [ - "import litellm\n", - "from litellm import completion, completion_cost\n", - "import os\n", - "import time\n", - "\n", - "# optional use litellm dashboard to view logs\n", - "# litellm.use_client = True\n", - "# litellm.token = \"ishaan_2@berri.ai\" # set your email\n", - "\n", - "\n", - "# set API keys\n", - "os.environ['TOGETHERAI_API_KEY'] = \"\"\n", - "os.environ['OPENAI_API_KEY'] = \"\"\n", - "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", - "\n", - "\n", - "# select LLMs to benchmark\n", - "# using https://api.together.xyz/playground for llama2\n", - "# try any supported LLM here: https://docs.litellm.ai/docs/providers\n", - "\n", - "models = ['togethercomputer/llama-2-70b-chat', 'gpt-3.5-turbo', 'claude-instant-1.2']\n", - "data = []\n", - "\n", - "for question in questions: # group by question\n", - " for model in models:\n", - " print(f\"running question: {question} for model: {model}\")\n", - " start_time = time.time()\n", - " # show response, response time, cost for each question\n", - " response = completion(\n", - " model=model,\n", - " max_tokens=500,\n", - " messages = [\n", - " {\n", - " \"role\": \"system\", \"content\": system_prompt\n", - " },\n", - " {\n", - " \"role\": \"user\", \"content\": question\n", - " }\n", - " ],\n", - " )\n", - " end = time.time()\n", - " total_time = end-start_time # response time\n", - " # print(response)\n", - " cost = completion_cost(response) # cost for completion\n", - " raw_response = response['choices'][0]['message']['content'] # response string\n", - "\n", - "\n", - " # add log to pandas df\n", - " data.append(\n", - " {\n", - " 'Model': model,\n", - " 'Question': question,\n", - " 'Response': raw_response,\n", - " 'ResponseTime': total_time,\n", - " 'Cost': cost\n", - " })" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
3togethercomputer/llama-2-70b-chatwhy should I use LiteLLM\\nThere are several reasons why you might want to use LiteLLM:\\n\\n1. Simplified API calls: LiteLLM provides a simple and consistent API for calling various language models, making it easier to use multiple models and switch between them.\\n2. Environment variable configuration: LiteLLM allows you to set environment variables for API keys and model names, making it easier to manage and switch between different models and APIs.\\n3. Support for multiple models and APIs: LiteLLM supports a wide range of language models and APIs, including OpenAI, Azure, Cohere, Anthropic, and Hugging Face.\\n4. Easy integration with popular frameworks: LiteLLM can be easily integrated with popular frameworks such as PyTorch and TensorFlow, making it easy to use with your existing codebase.\\n5. Lightweight: LiteLLM is a lightweight package, making it easy to install and use, even on resource-constrained devices.\\n6. Flexible: LiteLLM allows you to define your own models and APIs, making it easy to use with custom models and APIs.\\n7. Extensive documentation: LiteLLM has extensive documentation, making it easy to get started and learn how to use the package.\\n8. Active community: LiteLLM has an active community of developers and users, making it easy to get help and feedback on your projects.\\n\\nOverall, LiteLLM can help you to simplify your workflow, improve your productivity, and make it easier to work with multiple language models and APIs.23.7778850.001443
4gpt-3.5-turbowhy should I use LiteLLMLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience.12.1098810.000881
5claude-instant-1.2why should I use LiteLLMHere are some key reasons why you may want to consider using LiteLLM:\\n\\n- Simplifies calling multiple large language models - LiteLLM provides a unified API to call models from different providers like OpenAI, Azure, HuggingFace, Anthropic etc. This avoids having to deal with different APIs from each provider.\\n\\n- Easy to get started - LiteLLM is very lightweight and simple to install with just one pip install. It has minimal configuration needed with just API keys. This lowers the barrier to start experimenting with LLMs.\\n\\n- Standard interface - The completion API provides a standard way to send messages and get responses back regardless of underlying model. This keeps the code interface consistent. \\n\\n- Model agnostic - Your code doesn't need to change to switch between different models. You can easily compare performance of models from different providers.\\n\\n- Open source - As it is open source, the library can be expanded to support more models and providers over time via community contributions.\\n\\n- Cost effective - LiteLLM helps avoid vendor lock-in. You can optimize costs by testing multiple models and choosing the best suitable and cost-effective option for your needs.\\n\\nSo in summary, L12.6102590.001568
" ], - "metadata": { - "id": "BpQD4A5339L3" - }, - "execution_count": null, - "outputs": [] + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "source": [ - "## View Benchmarks for LLMs" - ], - "metadata": { - "id": "apOSV3PBLa5Y" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: write code to make a litellm completion call\n" + ] }, { - "cell_type": "code", - "source": [ - "from IPython.display import display\n", - "from IPython.core.interactiveshell import InteractiveShell\n", - "InteractiveShell.ast_node_interactivity = \"all\"\n", - "from IPython.display import HTML\n", - "import pandas as pd\n", - "\n", - "df = pd.DataFrame(data)\n", - "grouped_by_question = df.groupby('Question')\n", - "\n", - "for question, group_data in grouped_by_question:\n", - " print(f\"Question: {question}\")\n", - " HTML(group_data.to_html())\n" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
9togethercomputer/llama-2-70b-chatwrite code to make a litellm completion call\\nTo make a completion call using litellm, you can use the `completion` function from the litellm package. Here's an example of how to use it:\\n```\\nfrom litellm import completion\\n\\n# Set ENV variables\\nos.environ[\"OPENAI_API_KEY\"] = \"your_openai_api_key\"\\nos.environ[\"COHERE_API_KEY\"] = \"your_cohere_api_key\"\\n\\n# Define the messages to be completed\\nmessages = [\\n {\\n \"content\": \"Hello, how are you?\",\\n \"role\": \"user\"\\n }\\n]\\n\\n# Make a completion call using OpenAI\\nresponse = completion(model=\"gpt-3.5-turbo\", messages=messages)\\n\\n# Make a completion call using Cohere\\nresponse = completion(\"command-nightly\", messages)\\n```\\nIn this example, we first set the ENV variables for the OpenAI and Cohere API keys. Then, we define a list of messages to be completed, which in this case contains a single message with the content \"Hello, how are you?\" and the role \"user\".\\n\\nNext, we make two completion calls using the `completion` function from litellm. The first call uses the OpenAI model `gpt-3.5-turbo` and passes in the list of messages. The second call uses the Cohere model `command-nightly` and passes in the same list of messages.\\n\\nThe `completion` function returns a response object that contains the completed messages. You can then use the `response.messages` attribute to access the completed messages.\\n\\nHere's an example of how to access the completed messages:\\n```\\n# Print the completed messages\\nprint(response.messages)\\n```\\nThis will print the completed messages, which should look something like this:\\n```\\n[{'content': 'Hello, how are you?', 'role': 'user', 'completion': 'I am doing well, thanks for asking.'}]\\n```\\nNote that the `completion` attribute contains the completed message. You can use this attribute to retrieve the completed message and use it in your application.32.1924530.001821
10gpt-3.5-turbowrite code to make a litellm completion callSure! Here's an example code to make a completion call using the litellm package:\\n\\n```python\\nfrom litellm import completion\\n\\n# Set the model and messages\\nmodel = \"gpt-3.5-turbo\"\\nmessages = [\\n {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\\n {\"role\": \"user\", \"content\": \"Who won the world series in 2020?\"},\\n {\"role\": \"assistant\", \"content\": \"The Los Angeles Dodgers won the World Series in 2020.\"},\\n {\"role\": \"user\", \"content\": \"Where was it played?\"}\\n]\\n\\n# Make the completion call\\nresponse = completion(model=model, messages=messages)\\n\\n# Print the assistant's reply\\nassistant_reply = response[\"choices\"][0][\"message\"][\"content\"]\\nprint(\"Assistant: \", assistant_reply)\\n```\\n\\nMake sure you have the litellm package installed (`pip install litellm`) and set the necessary environment variables for the API keys before running this code.9.3771550.000686
11claude-instant-1.2write code to make a litellm completion callHere is an example of making a completion call using litellm:\\n\\n```python\\nimport os\\nfrom litellm import completion\\n\\n# Set API keys as environment variables\\nos.environ[\"OPENAI_API_KEY\"] = \"your openai api key\" \\n\\n# Conversation context \\nmessages = [{\\n \"content\": \"Hello, how can I help you today?\",\\n \"role\": \"assistant\"\\n}]\\n\\n# Make completion call with GPT-3 model\\nresponse = completion(\\n model=\"gpt-3.5-turbo\", \\n messages=messages\\n)\\n\\nprint(response)\\n```\\n\\nTo break it down:\\n\\n- Import completion from litellm\\n- Set the OPENAI_API_KEY env var \\n- Define a messages list with the conversation context\\n- Call completion(), specifying the model (\"gpt-3.5-turbo\") and messages\\n- It will return the response from the API\\n- Print the response\\n\\nThis makes a simple completion call to OpenAI GPT-3 using litellm to handle the API details. You can also call other models like Cohere or Anthropic by specifying their name instead of the OpenAI9.8399880.001578
" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "CJqBlqUh_8Ws", - "outputId": "e02c3427-d8c6-4614-ff07-6aab64247ff6" - }, - "execution_count": 22, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: does litellm support Anthropic LLMs\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
6togethercomputer/llama-2-70b-chatdoes litellm support Anthropic LLMsYes, litellm supports Anthropic LLMs.\\n\\nIn the example usage you provided, the `completion` function is called with the `model` parameter set to `\"gpt-3.5-turbo\"` for OpenAI and `\"command-nightly\"` for Cohere.\\n\\nTo use an Anthropic LLM with litellm, you would set the `model` parameter to the name of the Anthropic model you want to use, followed by the version number, if applicable. For example:\\n```\\nresponse = completion(model=\"anthropic-gpt-2\", messages=messages)\\n```\\nThis would call the Anthropic GPT-2 model to generate a completion for the given input messages.\\n\\nNote that you will need to set the `ANTHROPIC_API_KEY` environment variable to your Anthropic API key before making the call. You can do this by running the following command in your terminal:\\n```\\nos.environ[\"ANTHROPIC_API_KEY\"] = \"your-anthropic-api-key\"\\n```\\nReplace `\"your-anthropic-api-key\"` with your actual Anthropic API key.\\n\\nOnce you've set the environment variable, you can use the `completion` function with the `model` parameter set to an Anthropic model name to call the Anthropic API and generate a completion.21.5130090.001347
7gpt-3.5-turbodoes litellm support Anthropic LLMsNo, currently litellm does not support Anthropic LLMs. It mainly focuses on simplifying the usage of OpenAI, Azure, Cohere, and Huggingface API endpoints.8.6565100.000342
8claude-instant-1.2does litellm support Anthropic LLMsYes, litellm supports calling Anthropic LLMs through the completion function.\\n\\nTo use an Anthropic model with litellm:\\n\\n1. Set the ANTHROPIC_API_KEY environment variable with your Anthropic API key\\n\\n2. Pass the model name as the 'model' argument to completion(). Anthropic model names follow the format 'anthropic/<model_name>'\\n\\nFor example:\\n\\n```python \\nimport os\\nfrom litellm import completion\\n\\nos.environ[\"ANTHROPIC_API_KEY\"] = \"your_anthropic_api_key\"\\n\\nmessages = [{\"content\": \"Hello\", \"role\": \"user\"}]\\n\\nresponse = completion(model=\"anthropic/constitutional\", messages=messages)\\n```\\n\\nThis would call the Constitutional AI model from Anthropic.\\n\\nSo in summary, litellm provides a simple interface to call any Anthropic models as long as you specify the model name correctly and set the ANTHROPIC_API_KEY env variable.9.6981950.001342
" - ] - }, - "metadata": {}, - "execution_count": 22 - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: what is litellm?\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
0togethercomputer/llama-2-70b-chatwhat is litellm?Litellm is a lightweight Python package that simplifies calling various AI API endpoints, including OpenAI, Azure, Cohere, Anthropic, and Hugging Face. It provides a convenient interface for making requests to these APIs, allowing developers to easily integrate them into their applications. With Litellm, developers can quickly and easily interact with multiple AI models and services, without having to handle the details of authentication, API calls, and response parsing. This makes it easier to build and deploy AI-powered applications, and can help developers save time and effort.13.4796440.000870
1gpt-3.5-turbowhat is litellm?litellm is a light package that provides a simplified interface for making API calls to various language models and APIs. It abstracts away the complexities of handling network requests, authentication, and response parsing, making it easier for developers to integrate powerful language models into their applications.\\n\\nWith litellm, you can quickly make API calls to models like OpenAI's GPT-3.5 Turbo, Azure's Text Analytics, Cohere's Command API, Anthropic's API, and Huggingface's models. It also supports additional functionality like conversational AI, summarization, translation, and more.\\n\\nBy using litellm, you can focus on your application logic without getting tangled in the details of API integration, allowing you to quickly build intelligent and conversational applications.8.3243320.000566
2claude-instant-1.2what is litellm?litellm is a Python library that simplifies calling various AI API endpoints like OpenAI, Azure, Cohere, Anthropic, and Huggingface. \\n\\nSome key things to know about litellm:\\n\\n- It provides a consistent interface for completing prompts and generating responses from different AI models through a single method called completion().\\n\\n- You specify the API (e.g. OpenAI, Cohere etc.) and model either by name or by setting environment variables before making the completion call.\\n\\n- This avoids having to use different SDKs or APIs for each provider and standardizes the call structure. \\n\\n- It handles things like setting headers, encoding inputs, parsing responses so the user doesn't have to deal with those details.\\n\\n- The goal is to make it easy to try different AI APIs and models without having to change code or learn different interfaces.\\n\\n- It's lightweight with no other dependencies required besides what's needed for each API (e.g. openai, azure SDKs etc.).\\n\\nSo in summary, litellm is a small library that provides a common way to interact with multiple conversational AI APIs through a single Python method, avoiding the need to directly use each provider's specific SDK.10.3164880.001603
" - ] - }, - "metadata": {}, - "execution_count": 22 - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: why should I use LiteLLM\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
3togethercomputer/llama-2-70b-chatwhy should I use LiteLLM\\nThere are several reasons why you might want to use LiteLLM:\\n\\n1. Simplified API calls: LiteLLM provides a simple and consistent API for calling various language models, making it easier to use multiple models and switch between them.\\n2. Environment variable configuration: LiteLLM allows you to set environment variables for API keys and model names, making it easier to manage and switch between different models and APIs.\\n3. Support for multiple models and APIs: LiteLLM supports a wide range of language models and APIs, including OpenAI, Azure, Cohere, Anthropic, and Hugging Face.\\n4. Easy integration with popular frameworks: LiteLLM can be easily integrated with popular frameworks such as PyTorch and TensorFlow, making it easy to use with your existing codebase.\\n5. Lightweight: LiteLLM is a lightweight package, making it easy to install and use, even on resource-constrained devices.\\n6. Flexible: LiteLLM allows you to define your own models and APIs, making it easy to use with custom models and APIs.\\n7. Extensive documentation: LiteLLM has extensive documentation, making it easy to get started and learn how to use the package.\\n8. Active community: LiteLLM has an active community of developers and users, making it easy to get help and feedback on your projects.\\n\\nOverall, LiteLLM can help you to simplify your workflow, improve your productivity, and make it easier to work with multiple language models and APIs.23.7778850.001443
4gpt-3.5-turbowhy should I use LiteLLMLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience.12.1098810.000881
5claude-instant-1.2why should I use LiteLLMHere are some key reasons why you may want to consider using LiteLLM:\\n\\n- Simplifies calling multiple large language models - LiteLLM provides a unified API to call models from different providers like OpenAI, Azure, HuggingFace, Anthropic etc. This avoids having to deal with different APIs from each provider.\\n\\n- Easy to get started - LiteLLM is very lightweight and simple to install with just one pip install. It has minimal configuration needed with just API keys. This lowers the barrier to start experimenting with LLMs.\\n\\n- Standard interface - The completion API provides a standard way to send messages and get responses back regardless of underlying model. This keeps the code interface consistent. \\n\\n- Model agnostic - Your code doesn't need to change to switch between different models. You can easily compare performance of models from different providers.\\n\\n- Open source - As it is open source, the library can be expanded to support more models and providers over time via community contributions.\\n\\n- Cost effective - LiteLLM helps avoid vendor lock-in. You can optimize costs by testing multiple models and choosing the best suitable and cost-effective option for your needs.\\n\\nSo in summary, L12.6102590.001568
" - ] - }, - "metadata": {}, - "execution_count": 22 - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: write code to make a litellm completion call\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
9togethercomputer/llama-2-70b-chatwrite code to make a litellm completion call\\nTo make a completion call using litellm, you can use the `completion` function from the litellm package. Here's an example of how to use it:\\n```\\nfrom litellm import completion\\n\\n# Set ENV variables\\nos.environ[\"OPENAI_API_KEY\"] = \"your_openai_api_key\"\\nos.environ[\"COHERE_API_KEY\"] = \"your_cohere_api_key\"\\n\\n# Define the messages to be completed\\nmessages = [\\n {\\n \"content\": \"Hello, how are you?\",\\n \"role\": \"user\"\\n }\\n]\\n\\n# Make a completion call using OpenAI\\nresponse = completion(model=\"gpt-3.5-turbo\", messages=messages)\\n\\n# Make a completion call using Cohere\\nresponse = completion(\"command-nightly\", messages)\\n```\\nIn this example, we first set the ENV variables for the OpenAI and Cohere API keys. Then, we define a list of messages to be completed, which in this case contains a single message with the content \"Hello, how are you?\" and the role \"user\".\\n\\nNext, we make two completion calls using the `completion` function from litellm. The first call uses the OpenAI model `gpt-3.5-turbo` and passes in the list of messages. The second call uses the Cohere model `command-nightly` and passes in the same list of messages.\\n\\nThe `completion` function returns a response object that contains the completed messages. You can then use the `response.messages` attribute to access the completed messages.\\n\\nHere's an example of how to access the completed messages:\\n```\\n# Print the completed messages\\nprint(response.messages)\\n```\\nThis will print the completed messages, which should look something like this:\\n```\\n[{'content': 'Hello, how are you?', 'role': 'user', 'completion': 'I am doing well, thanks for asking.'}]\\n```\\nNote that the `completion` attribute contains the completed message. You can use this attribute to retrieve the completed message and use it in your application.32.1924530.001821
10gpt-3.5-turbowrite code to make a litellm completion callSure! Here's an example code to make a completion call using the litellm package:\\n\\n```python\\nfrom litellm import completion\\n\\n# Set the model and messages\\nmodel = \"gpt-3.5-turbo\"\\nmessages = [\\n {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\\n {\"role\": \"user\", \"content\": \"Who won the world series in 2020?\"},\\n {\"role\": \"assistant\", \"content\": \"The Los Angeles Dodgers won the World Series in 2020.\"},\\n {\"role\": \"user\", \"content\": \"Where was it played?\"}\\n]\\n\\n# Make the completion call\\nresponse = completion(model=model, messages=messages)\\n\\n# Print the assistant's reply\\nassistant_reply = response[\"choices\"][0][\"message\"][\"content\"]\\nprint(\"Assistant: \", assistant_reply)\\n```\\n\\nMake sure you have the litellm package installed (`pip install litellm`) and set the necessary environment variables for the API keys before running this code.9.3771550.000686
11claude-instant-1.2write code to make a litellm completion callHere is an example of making a completion call using litellm:\\n\\n```python\\nimport os\\nfrom litellm import completion\\n\\n# Set API keys as environment variables\\nos.environ[\"OPENAI_API_KEY\"] = \"your openai api key\" \\n\\n# Conversation context \\nmessages = [{\\n \"content\": \"Hello, how can I help you today?\",\\n \"role\": \"assistant\"\\n}]\\n\\n# Make completion call with GPT-3 model\\nresponse = completion(\\n model=\"gpt-3.5-turbo\", \\n messages=messages\\n)\\n\\nprint(response)\\n```\\n\\nTo break it down:\\n\\n- Import completion from litellm\\n- Set the OPENAI_API_KEY env var \\n- Define a messages list with the conversation context\\n- Call completion(), specifying the model (\"gpt-3.5-turbo\") and messages\\n- It will return the response from the API\\n- Print the response\\n\\nThis makes a simple completion call to OpenAI GPT-3 using litellm to handle the API details. You can also call other models like Cohere or Anthropic by specifying their name instead of the OpenAI9.8399880.001578
" - ] - }, - "metadata": {}, - "execution_count": 22 - } + "text/plain": [ + "" ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = \"all\"\n", + "from IPython.display import HTML\n", + "import pandas as pd\n", + "\n", + "df = pd.DataFrame(data)\n", + "grouped_by_question = df.groupby('Question')\n", + "\n", + "for question, group_data in grouped_by_question:\n", + " print(f\"Question: {question}\")\n", + " HTML(group_data.to_html())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bmtAbC1rGVAm" + }, + "source": [ + "## Use Case 2 - Rewrite user input concisely" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "boiHO1PhGXSL" + }, + "outputs": [], + "source": [ + "# enter your system prompt if you have one\n", + "system_prompt = \"\"\"\n", + "For a given user input, rewrite the input to make be more concise.\n", + "\"\"\"\n", + "\n", + "# user input for re-writing questions\n", + "questions = [\n", + " \"LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience\",\n", + " \"Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\",\n", + " \"Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\"\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fwNcC_obICUc" + }, + "source": [ + "## Run Questions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KtBjZ1mUIBiJ" + }, + "outputs": [], + "source": [ + "from litellm import completion, completion_cost\n", + "import os\n", + "import time\n", + "\n", + "# optional use litellm dashboard to view logs\n", + "# litellm.use_client = True\n", + "# litellm.token = \"ishaan_2@berri.ai\" # set your email\n", + "\n", + "os.environ['TOGETHERAI_API_KEY'] = \"\"\n", + "os.environ['OPENAI_API_KEY'] = \"\"\n", + "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", + "\n", + "models = ['togethercomputer/llama-2-70b-chat', 'gpt-3.5-turbo', 'claude-instant-1.2'] # enter llms to benchmark\n", + "data_2 = []\n", + "\n", + "for question in questions: # group by question\n", + " for model in models:\n", + " print(f\"running question: {question} for model: {model}\")\n", + " start_time = time.time()\n", + " # show response, response time, cost for each question\n", + " response = completion(\n", + " model=model,\n", + " max_tokens=500,\n", + " messages = [\n", + " {\n", + " \"role\": \"system\", \"content\": system_prompt\n", + " },\n", + " {\n", + " \"role\": \"user\", \"content\": \"User input:\" + question\n", + " }\n", + " ],\n", + " )\n", + " end = time.time()\n", + " total_time = end-start_time # response time\n", + " # print(response)\n", + " cost = completion_cost(response) # cost for completion\n", + " raw_response = response['choices'][0]['message']['content'] # response string\n", + " #print(raw_response, total_time, cost)\n", + "\n", + " # add to pandas df\n", + " data_2.append(\n", + " {\n", + " 'Model': model,\n", + " 'Question': question,\n", + " 'Response': raw_response,\n", + " 'ResponseTime': total_time,\n", + " 'Cost': cost\n", + " })\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-PCYIzG5M0II" + }, + "source": [ + "## View Logs - Group by Question" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 }, + "id": "-3R5-2q8IiL2", + "outputId": "c4a0d9e5-bb21-4de0-fc4c-9f5e71d0f177" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Use Case 2 - Rewrite user input concisely" - ], - "metadata": { - "id": "bmtAbC1rGVAm" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\n" + ] }, { - "cell_type": "code", - "source": [ - "# enter your system prompt if you have one\n", - "system_prompt = \"\"\"\n", - "For a given user input, rewrite the input to make be more concise.\n", - "\"\"\"\n", - "\n", - "# user input for re-writing questions\n", - "questions = [\n", - " \"LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience\",\n", - " \"Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\",\n", - " \"Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\"\n", - "]" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
3togethercomputer/llama-2-70b-chatHi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\\nHere's a more concise version of the user input:\\n\\n\"Hi everyone! I'm [your name] and I'm working on [your project/role involving LLMs]. I recently discovered LiteLLM and I'm excited to use it to [build an app/simplify my code/test different models etc]. Before LiteLLM, I struggled with [describe any issues you faced working with multiple LLMs]. I'm looking forward to using LiteLLM's unified API and automatic translation to achieve my goals. I'm eager to learn more about building impactful applications powered by LLMs and to be part of this community. Let me know if you have any questions or need further clarification.\"\\n\\nIn this revised version, we've kept the essential information and removed some of the extraneous language. We've also rephrased some of the sentences to make them more concise and easier to read.18.3006200.001200
4gpt-3.5-turboHi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!User input: Hi, I'm [your name] and I'm excited about using LiteLLM to simplify working with different LLM providers. Before finding LiteLLM, I faced challenges working with multiple LLMs. With LiteLLM's unified API and automatic translation, I believe it will help me achieve my goals of [state your goals]. I look forward to being part of this community and learning how to build impactful applications with LLMs. Let me know if you need any further clarification or details.7.3854720.000525
5claude-instant-1.2Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!Here is a more concise rewrite of the user input:\\n\\nHi everyone, I'm [your name]. I'm currently [your project/role] and came across LiteLLM, which simplifies working with different LLMs through its unified API. I hope to [build an app/simplify code/test models] with LiteLLM since I previously struggled with [issues]. LiteLLM's automatic translation between providers will help me [goals] and build impactful LLM applications. Looking forward to learning more as part of this community. Let me know if you need any clarification on my plans to use LiteLLM.8.6282170.001022
" ], - "metadata": { - "id": "boiHO1PhGXSL" - }, - "execution_count": 23, - "outputs": [] + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "source": [ - "## Run Questions" - ], - "metadata": { - "id": "fwNcC_obICUc" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\n", + "\n", + "1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\n", + "\n", + "2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\n", + "\n", + "3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\n", + "\n", + "4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\n", + "\n", + "5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\n", + "\n", + "6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\n", + "\n", + "Overall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience\n" + ] }, { - "cell_type": "code", - "source": [ - "import litellm\n", - "from litellm import completion, completion_cost\n", - "import os\n", - "import time\n", - "\n", - "# optional use litellm dashboard to view logs\n", - "# litellm.use_client = True\n", - "# litellm.token = \"ishaan_2@berri.ai\" # set your email\n", - "\n", - "os.environ['TOGETHERAI_API_KEY'] = \"\"\n", - "os.environ['OPENAI_API_KEY'] = \"\"\n", - "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", - "\n", - "models = ['togethercomputer/llama-2-70b-chat', 'gpt-3.5-turbo', 'claude-instant-1.2'] # enter llms to benchmark\n", - "data_2 = []\n", - "\n", - "for question in questions: # group by question\n", - " for model in models:\n", - " print(f\"running question: {question} for model: {model}\")\n", - " start_time = time.time()\n", - " # show response, response time, cost for each question\n", - " response = completion(\n", - " model=model,\n", - " max_tokens=500,\n", - " messages = [\n", - " {\n", - " \"role\": \"system\", \"content\": system_prompt\n", - " },\n", - " {\n", - " \"role\": \"user\", \"content\": \"User input:\" + question\n", - " }\n", - " ],\n", - " )\n", - " end = time.time()\n", - " total_time = end-start_time # response time\n", - " # print(response)\n", - " cost = completion_cost(response) # cost for completion\n", - " raw_response = response['choices'][0]['message']['content'] # response string\n", - " #print(raw_response, total_time, cost)\n", - "\n", - " # add to pandas df\n", - " data_2.append(\n", - " {\n", - " 'Model': model,\n", - " 'Question': question,\n", - " 'Response': raw_response,\n", - " 'ResponseTime': total_time,\n", - " 'Cost': cost\n", - " })\n", - "\n", - "\n" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
0togethercomputer/llama-2-70b-chatLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceHere's a more concise version of the user input:\\n\\nLiteLLM is a lightweight Python package that simplifies API calls to various language models. It abstracts away complexity, integrates seamlessly, supports multiple models, and handles authentication. It's ideal for rapid prototyping and has community support. It saves time and effort while providing flexibility and convenience.11.2942500.001251
1gpt-3.5-turboLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceLiteLLM is a lightweight Python package that simplifies API calls to various language models. Here's why you should use it:\\n1. Simplified API Calls: Works with multiple models (OpenAI, Azure, Cohere, Anthropic, Huggingface).\\n2. Easy Integration: Import and start using it quickly in your codebase.\\n3. Flexibility: Supports GPT-3, GPT-Neo, chatGPT, etc. easily switch between models.\\n4. Convenience: Handles authentication and connection details, just set environment variables.\\n5. Quick Prototyping: Great for rapid prototyping and building interactive applications.\\n6. Community Support: Actively maintained and supported by a developer community.9.7783150.000795
2claude-instant-1.2LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceHere is a concise rewrite of the user input:\\n\\nLiteLLM is a lightweight Python package that simplifies accessing various language models. It provides a unified interface for models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more. Key benefits include simplified API calls, easy integration, flexibility to use different models, automated handling of authentication, and support for quick prototyping. The actively maintained package saves time by abstracting away complexity while offering convenience and a collaborative community.7.6975200.001098
" ], - "metadata": { - "id": "KtBjZ1mUIBiJ" - }, - "execution_count": null, - "outputs": [] + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "source": [ - "## View Logs - Group by Question" - ], - "metadata": { - "id": "-PCYIzG5M0II" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Question: Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\n" + ] }, { - "cell_type": "code", - "source": [ - "from IPython.display import display\n", - "from IPython.core.interactiveshell import InteractiveShell\n", - "InteractiveShell.ast_node_interactivity = \"all\"\n", - "from IPython.display import HTML\n", - "import pandas as pd\n", - "\n", - "df = pd.DataFrame(data_2)\n", - "grouped_by_question = df.groupby('Question')\n", - "\n", - "for question, group_data in grouped_by_question:\n", - " print(f\"Question: {question}\")\n", - " HTML(group_data.to_html())\n" + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelQuestionResponseResponseTimeCost
6togethercomputer/llama-2-70b-chatTraceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\\nRewritten input: Traceloop is a platform for monitoring and debugging LLM outputs. It allows users to track performance, rollout changes confidently, and debug issues in production. It uses OpenTelemetry for full visibility into LLM requests, vector DB usage, and other infrastructure.9.0604440.000525
7gpt-3.5-turboTraceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It helps track performance, rollout changes, and debug issues in production. It is based on OpenTelemetry, providing visibility to LLM requests, vector DB usage, and other infrastructure in your stack.7.3046610.000283
8claude-instant-1.2Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.Here is a more concise rewrite of the user input:\\n\\nTraceloop monitors and debugs LLM quality. It tracks LLM performance, enables confident changes, and debugs production issues. Based on OpenTelemetry, Traceloop provides full visibility into LLM requests, vector DB usage, and other stack infrastructure.7.9761580.000538
" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "-3R5-2q8IiL2", - "outputId": "c4a0d9e5-bb21-4de0-fc4c-9f5e71d0f177" - }, - "execution_count": 20, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
3togethercomputer/llama-2-70b-chatHi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!\\nHere's a more concise version of the user input:\\n\\n\"Hi everyone! I'm [your name] and I'm working on [your project/role involving LLMs]. I recently discovered LiteLLM and I'm excited to use it to [build an app/simplify my code/test different models etc]. Before LiteLLM, I struggled with [describe any issues you faced working with multiple LLMs]. I'm looking forward to using LiteLLM's unified API and automatic translation to achieve my goals. I'm eager to learn more about building impactful applications powered by LLMs and to be part of this community. Let me know if you have any questions or need further clarification.\"\\n\\nIn this revised version, we've kept the essential information and removed some of the extraneous language. We've also rephrased some of the sentences to make them more concise and easier to read.18.3006200.001200
4gpt-3.5-turboHi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!User input: Hi, I'm [your name] and I'm excited about using LiteLLM to simplify working with different LLM providers. Before finding LiteLLM, I faced challenges working with multiple LLMs. With LiteLLM's unified API and automatic translation, I believe it will help me achieve my goals of [state your goals]. I look forward to being part of this community and learning how to build impactful applications with LLMs. Let me know if you need any further clarification or details.7.3854720.000525
5claude-instant-1.2Hi everyone! I'm [your name] and I'm currently working on [your project/role involving LLMs]. I came across LiteLLM and was really excited by how it simplifies working with different LLM providers. I'm hoping to use LiteLLM to [build an app/simplify my code/test different models etc]. Before finding LiteLLM, I was struggling with [describe any issues you faced working with multiple LLMs]. With LiteLLM's unified API and automatic translation between providers, I think it will really help me to [goals you have for using LiteLLM]. Looking forward to being part of this community and learning more about how I can build impactful applications powered by LLMs!Let me know if you would like me to modify or expand on any part of this suggested intro. I'm happy to provide any clarification or additional details you need!Here is a more concise rewrite of the user input:\\n\\nHi everyone, I'm [your name]. I'm currently [your project/role] and came across LiteLLM, which simplifies working with different LLMs through its unified API. I hope to [build an app/simplify code/test models] with LiteLLM since I previously struggled with [issues]. LiteLLM's automatic translation between providers will help me [goals] and build impactful LLM applications. Looking forward to learning more as part of this community. Let me know if you need any clarification on my plans to use LiteLLM.8.6282170.001022
" - ] - }, - "metadata": {}, - "execution_count": 20 - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\n", - "\n", - "1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\n", - "\n", - "2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\n", - "\n", - "3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\n", - "\n", - "4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\n", - "\n", - "5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\n", - "\n", - "6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\n", - "\n", - "Overall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenience\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
0togethercomputer/llama-2-70b-chatLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceHere's a more concise version of the user input:\\n\\nLiteLLM is a lightweight Python package that simplifies API calls to various language models. It abstracts away complexity, integrates seamlessly, supports multiple models, and handles authentication. It's ideal for rapid prototyping and has community support. It saves time and effort while providing flexibility and convenience.11.2942500.001251
1gpt-3.5-turboLiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceLiteLLM is a lightweight Python package that simplifies API calls to various language models. Here's why you should use it:\\n1. Simplified API Calls: Works with multiple models (OpenAI, Azure, Cohere, Anthropic, Huggingface).\\n2. Easy Integration: Import and start using it quickly in your codebase.\\n3. Flexibility: Supports GPT-3, GPT-Neo, chatGPT, etc. easily switch between models.\\n4. Convenience: Handles authentication and connection details, just set environment variables.\\n5. Quick Prototyping: Great for rapid prototyping and building interactive applications.\\n6. Community Support: Actively maintained and supported by a developer community.9.7783150.000795
2claude-instant-1.2LiteLLM is a lightweight Python package that simplifies the process of making API calls to various language models. Here are some reasons why you should use LiteLLM:\\n\\n1. **Simplified API Calls**: LiteLLM abstracts away the complexity of making API calls to different language models. It provides a unified interface for invoking models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more.\\n\\n2. **Easy Integration**: LiteLLM seamlessly integrates with your existing codebase. You can import the package and start making API calls with just a few lines of code.\\n\\n3. **Flexibility**: LiteLLM supports a variety of language models, including GPT-3, GPT-Neo, chatGPT, and more. You can choose the model that suits your requirements and easily switch between them.\\n\\n4. **Convenience**: LiteLLM handles the authentication and connection details for you. You just need to set the relevant environment variables, and the package takes care of the rest.\\n\\n5. **Quick Prototyping**: LiteLLM is ideal for rapid prototyping and experimentation. With its simple API, you can quickly generate text, chat with models, and build interactive applications.\\n\\n6. **Community Support**: LiteLLM is actively maintained and supported by a community of developers. You can find help, share ideas, and collaborate with others to enhance your projects.\\n\\nOverall, LiteLLM simplifies the process of making API calls to language models, saving you time and effort while providing flexibility and convenienceHere is a concise rewrite of the user input:\\n\\nLiteLLM is a lightweight Python package that simplifies accessing various language models. It provides a unified interface for models from OpenAI, Azure, Cohere, Anthropic, Huggingface, and more. Key benefits include simplified API calls, easy integration, flexibility to use different models, automated handling of authentication, and support for quick prototyping. The actively maintained package saves time by abstracting away complexity while offering convenience and a collaborative community.7.6975200.001098
" - ] - }, - "metadata": {}, - "execution_count": 20 - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Question: Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ModelQuestionResponseResponseTimeCost
6togethercomputer/llama-2-70b-chatTraceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.\\nRewritten input: Traceloop is a platform for monitoring and debugging LLM outputs. It allows users to track performance, rollout changes confidently, and debug issues in production. It uses OpenTelemetry for full visibility into LLM requests, vector DB usage, and other infrastructure.9.0604440.000525
7gpt-3.5-turboTraceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It helps track performance, rollout changes, and debug issues in production. It is based on OpenTelemetry, providing visibility to LLM requests, vector DB usage, and other infrastructure in your stack.7.3046610.000283
8claude-instant-1.2Traceloop is a platform for monitoring and debugging the quality of your LLM outputs. It provides you with a way to track the performance of your LLM application; rollout changes with confidence; and debug issues in production. It is based on OpenTelemetry, so it can provide full visibility to your LLM requests, as well vector DB usage, and other infra in your stack.Here is a more concise rewrite of the user input:\\n\\nTraceloop monitors and debugs LLM quality. It tracks LLM performance, enables confident changes, and debugs production issues. Based on OpenTelemetry, Traceloop provides full visibility into LLM requests, vector DB usage, and other stack infrastructure.7.9761580.000538
" - ] - }, - "metadata": {}, - "execution_count": 20 - } + "text/plain": [ + "" ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" } - ] + ], + "source": [ + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = \"all\"\n", + "from IPython.display import HTML\n", + "import pandas as pd\n", + "\n", + "df = pd.DataFrame(data_2)\n", + "grouped_by_question = df.groupby('Question')\n", + "\n", + "for question, group_data in grouped_by_question:\n", + " print(f\"Question: {question}\")\n", + " HTML(group_data.to_html())\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/Evaluating_LLMs.ipynb b/cookbook/Evaluating_LLMs.ipynb index 6d7757ec7160..e27e8934f761 100644 --- a/cookbook/Evaluating_LLMs.ipynb +++ b/cookbook/Evaluating_LLMs.ipynb @@ -1,581 +1,579 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "Ys9n20Es2IzT" - }, - "source": [ - "# Evaluate Multiple LLM Providers with LiteLLM\n", - "\n", - "\n", - "\n", - "* Quality Testing\n", - "* Load Testing\n", - "* Duration Testing\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ZXOXl23PIIP6" - }, - "outputs": [], - "source": [ - "!pip install litellm python-dotenv" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "LINuBzXDItq2" - }, - "outputs": [], - "source": [ - "import litellm\n", - "from litellm import load_test_model, testing_batch_completion\n", - "import time" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "EkxMhsWdJdu4" - }, - "outputs": [], - "source": [ - "import os \n", - "os.environ[\"OPENAI_API_KEY\"] = \"...\"\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = \"...\"\n", - "os.environ[\"REPLICATE_API_KEY\"] = \"...\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "mv5XdnqeW5I_" - }, - "source": [ - "# Quality Test endpoint\n", - "\n", - "## Test the same prompt across multiple LLM providers\n", - "\n", - "In this example, let's ask some questions about Paul Graham" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "id": "XpzrR5m4W_Us" - }, - "outputs": [], - "source": [ - "models = [\"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\", \"gpt-4\", \"claude-instant-1\", {\"model\": \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"custom_llm_provider\": \"replicate\"}]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompts = [\"Who is Paul Graham?\", \"What is Paul Graham known for?\" , \"Is paul graham a writer?\" , \"Where does Paul Graham live?\", \"What has Paul Graham done?\"]\n", - "messages = [[{\"role\": \"user\", \"content\": context + \"\\n\" + prompt}] for prompt in prompts] # pass in a list of messages we want to test\n", - "result = testing_batch_completion(models=models, messages=messages)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "9nzeLySnvIIW" - }, - "source": [ - "## Visualize the data" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 403 - }, - "id": "X-2n7hdAuVAY", - "outputId": "69cc0de1-68e3-4c12-a8ea-314880010d94" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Model Nameclaude-instant-1gpt-3.5-turbo-0613gpt-3.5-turbo-16k-0613gpt-4-0613replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781
Prompt
\\nIs paul graham a writer?Yes, Paul Graham is considered a writer in ad...Yes, Paul Graham is a writer. He has written s...Yes, Paul Graham is a writer. He has authored ...Yes, Paul Graham is a writer. He is an essayis...Yes, Paul Graham is an author. According to t...
\\nWhat has Paul Graham done?Paul Graham has made significant contribution...Paul Graham has achieved several notable accom...Paul Graham has made significant contributions...Paul Graham is known for his work on the progr...Paul Graham has had a diverse career in compu...
\\nWhat is Paul Graham known for?Paul Graham is known for several things:\\n\\n-...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for many things, includi...
\\nWhere does Paul Graham live?Based on the information provided:\\n\\n- Paul ...According to the given information, Paul Graha...Paul Graham currently lives in England, where ...The text does not provide a current place of r...Based on the information provided, Paul Graha...
\\nWho is Paul Graham?Paul Graham is an influential computer scient...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist,...
\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - "
\n", - " \n", - "
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "Model Name claude-instant-1 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is considered a writer in ad... \n", - "\\nWhat has Paul Graham done? Paul Graham has made significant contribution... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for several things:\\n\\n-... \n", - "\\nWhere does Paul Graham live? Based on the information provided:\\n\\n- Paul ... \n", - "\\nWho is Paul Graham? Paul Graham is an influential computer scient... \n", - "\n", - "Model Name gpt-3.5-turbo-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has written s... \n", - "\\nWhat has Paul Graham done? Paul Graham has achieved several notable accom... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? According to the given information, Paul Graha... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name gpt-3.5-turbo-16k-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has authored ... \n", - "\\nWhat has Paul Graham done? Paul Graham has made significant contributions... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? Paul Graham currently lives in England, where ... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name gpt-4-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He is an essayis... \n", - "\\nWhat has Paul Graham done? Paul Graham is known for his work on the progr... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? The text does not provide a current place of r... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781 \n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is an author. According to t... \n", - "\\nWhat has Paul Graham done? Paul Graham has had a diverse career in compu... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for many things, includi... \n", - "\\nWhere does Paul Graham live? Based on the information provided, Paul Graha... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist,... " - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "# Create an empty list to store the row data\n", - "table_data = []\n", - "\n", - "# Iterate through the list and extract the required data\n", - "for item in result:\n", - " prompt = item['prompt'][0]['content'].replace(context, \"\") # clean the prompt for easy comparison\n", - " model = item['response']['model']\n", - " response = item['response']['choices'][0]['message']['content']\n", - " table_data.append([prompt, model, response])\n", - "\n", - "# Create a DataFrame from the table data\n", - "df = pd.DataFrame(table_data, columns=['Prompt', 'Model Name', 'Response'])\n", - "\n", - "# Pivot the DataFrame to get the desired table format\n", - "table = df.pivot(index='Prompt', columns='Model Name', values='Response')\n", - "table" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "zOxUM40PINDC" - }, - "source": [ - "# Load Test endpoint\n", - "\n", - "Run 100+ simultaneous queries across multiple providers to see when they fail + impact on latency" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ZkQf_wbcIRQ9" - }, - "outputs": [], - "source": [ - "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompt = \"Where does Paul Graham live?\"\n", - "final_prompt = context + prompt\n", - "result = load_test_model(models=models, prompt=final_prompt, num_calls=5)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "8vSNBFC06aXY" - }, - "source": [ - "## Visualize the data" - ] + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "Ys9n20Es2IzT" + }, + "source": [ + "# Evaluate Multiple LLM Providers with LiteLLM\n", + "\n", + "\n", + "\n", + "* Quality Testing\n", + "* Load Testing\n", + "* Duration Testing\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZXOXl23PIIP6" + }, + "outputs": [], + "source": [ + "!pip install litellm python-dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "LINuBzXDItq2" + }, + "outputs": [], + "source": [ + "from litellm import load_test_model, testing_batch_completion" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EkxMhsWdJdu4" + }, + "outputs": [], + "source": [ + "import os \n", + "os.environ[\"OPENAI_API_KEY\"] = \"...\"\n", + "os.environ[\"ANTHROPIC_API_KEY\"] = \"...\"\n", + "os.environ[\"REPLICATE_API_KEY\"] = \"...\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "mv5XdnqeW5I_" + }, + "source": [ + "# Quality Test endpoint\n", + "\n", + "## Test the same prompt across multiple LLM providers\n", + "\n", + "In this example, let's ask some questions about Paul Graham" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "XpzrR5m4W_Us" + }, + "outputs": [], + "source": [ + "models = [\"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\", \"gpt-4\", \"claude-instant-1\", {\"model\": \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"custom_llm_provider\": \"replicate\"}]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompts = [\"Who is Paul Graham?\", \"What is Paul Graham known for?\" , \"Is paul graham a writer?\" , \"Where does Paul Graham live?\", \"What has Paul Graham done?\"]\n", + "messages = [[{\"role\": \"user\", \"content\": context + \"\\n\" + prompt}] for prompt in prompts] # pass in a list of messages we want to test\n", + "result = testing_batch_completion(models=models, messages=messages)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "9nzeLySnvIIW" + }, + "source": [ + "## Visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 403 }, + "id": "X-2n7hdAuVAY", + "outputId": "69cc0de1-68e3-4c12-a8ea-314880010d94" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 552 - }, - "id": "SZfiKjLV3-n8", - "outputId": "00f7f589-b3da-43ed-e982-f9420f074b8d" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIXCAYAAACy1HXAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABn5UlEQVR4nO3dd1QT2d8G8Cf0ojQBEUFRsSv2FXvvvSx2saNi7733ihXELotd7KuIir33sjZUsIuKVGmS+/7hy/yM6K7RYEZ4PufkaO5Mkm/IJHly594ZhRBCgIiIiEiGdLRdABEREdG3MKgQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBCR7Dk5OaFLly7aLkNtc+fORd68eaGrq4uSJUtquxyNO3bsGBQKBbZv367tUtSmUCgwadIktW8XGhoKhUKBdevWabwm+joGFVKxfPlyKBQKlC9fXtulyI6TkxMUCoV0MTU1xR9//IENGzZou7TfTuoX3PdcfleHDh3CiBEjUKlSJaxduxYzZszQdkmys27dOul1PnXqVJrlQgg4OjpCoVCgcePGWqiQ5EBP2wWQvPj7+8PJyQkXLlxASEgInJ2dtV2SrJQsWRJDhw4FALx8+RKrVq2Cu7s7EhMT0bNnTy1X9/soXLgw/Pz8VNpGjx6NLFmyYOzYsWnWv3fvHnR0fq/fVUePHoWOjg5Wr14NAwMDbZcja0ZGRti4cSMqV66s0n78+HE8e/YMhoaGWqqM5IBBhSSPHz/GmTNnEBAQAA8PD/j7+2PixIm/tAalUomkpCQYGRn90sf9Xjlz5kTHjh2l6126dEHevHmxcOFCBhU1ZM+eXeXvCACzZs2CtbV1mnYAv+UXVXh4OIyNjTUWUoQQSEhIgLGxsUbuT04aNmyIbdu2YfHixdDT+9/X0saNG1GmTBm8fftWi9WRtv1eP1EoXfn7+8PS0hKNGjVC69at4e/vLy1LTk6GlZUVunbtmuZ20dHRMDIywrBhw6S2xMRETJw4Ec7OzjA0NISjoyNGjBiBxMREldsqFAr069cP/v7+KFq0KAwNDXHw4EEAwLx581CxYkVky5YNxsbGKFOmzFf3hcfHx2PAgAGwtrZG1qxZ0bRpUzx//vyr+6CfP3+Obt26IXv27DA0NETRokWxZs2aH/6b2djYoFChQnj48KFKu1KphJeXF4oWLQojIyNkz54dHh4eeP/+vcp6ly5dQr169WBtbQ1jY2PkyZMH3bp1k5an7g+fN28eFi5ciNy5c8PY2BjVqlXDrVu30tRz9OhRVKlSBaamprCwsECzZs1w584dlXUmTZoEhUKBkJAQdOnSBRYWFjA3N0fXrl3x4cMHlXWDgoJQuXJlWFhYIEuWLChYsCDGjBmjss73vtY/48sxKqm7DE6dOoUBAwbAxsYGFhYW8PDwQFJSEiIjI9G5c2dYWlrC0tISI0aMwJcnitfUa/Q1CoUCa9euRVxcnLRrI3VMw8ePHzF16lTky5cPhoaGcHJywpgxY9L8vZycnNC4cWMEBgaibNmyMDY2xooVK/71cc+fP4/69evD3NwcJiYmqFatGk6fPq2yTlhYGPr27YuCBQvC2NgY2bJlw59//onQ0NA09xcZGYnBgwfDyckJhoaGcHBwQOfOndMEB6VSienTp8PBwQFGRkaoVasWQkJC/rXWz7Vr1w7v3r1DUFCQ1JaUlITt27ejffv2X71NXFwchg4dCkdHRxgaGqJgwYKYN29emtc5MTERgwcPho2NjfT58OzZs6/ep6Y/H0hDBNH/K1SokOjevbsQQogTJ04IAOLChQvS8m7dugkLCwuRmJiocrv169cLAOLixYtCCCFSUlJE3bp1hYmJiRg0aJBYsWKF6Nevn9DT0xPNmjVTuS0AUbhwYWFjYyMmT54sli1bJq5evSqEEMLBwUH07dtXLF26VCxYsED88ccfAoDYt2+fyn24ubkJAKJTp05i2bJlws3NTZQoUUIAEBMnTpTWe/XqlXBwcBCOjo5iypQpwtvbWzRt2lQAEAsXLvzPv0/u3LlFo0aNVNqSk5OFnZ2dyJ49u0p7jx49hJ6enujZs6fw8fERI0eOFKampqJcuXIiKSlJCCHE69evhaWlpShQoICYO3euWLlypRg7dqwoXLiwdD+PHz8WAETx4sWFk5OTmD17tpg8ebKwsrISNjY24tWrV9K6QUFBQk9PTxQoUEDMmTNHTJ48WVhbWwtLS0vx+PFjab2JEycKAKJUqVKiZcuWYvny5aJHjx4CgBgxYoS03q1bt4SBgYEoW7asWLRokfDx8RHDhg0TVatWldZR57X+L0WLFhXVqlX75t/e3d1dur527VoBQJQsWVLUr19fLFu2THTq1El6DpUrVxbt27cXy5cvF40bNxYAxPr169PlNfoaPz8/UaVKFWFoaCj8/PyEn5+fePjwoRBCCHd3dwFAtG7dWixbtkx07txZABDNmzdP85ydnZ2FpaWlGDVqlPDx8RHBwcHffMwjR44IAwMDUaFCBTF//nyxcOFC4eLiIgwMDMT58+el9bZt2yZKlCghJkyYIHx9fcWYMWOEpaWlyJ07t4iLi5PWi4mJEcWKFRO6urqiZ8+ewtvbW0ydOlWUK1dOeo8GBwdL21KZMmXEwoULxaRJk4SJiYn4448//vVv9PnrePHiRVGxYkXRqVMnadmuXbuEjo6OeP78eZr3nlKpFDVr1hQKhUL06NFDLF26VDRp0kQAEIMGDVJ5jI4dOwoAon379mLp0qWiZcuWwsXF5Yc/H1Lfk2vXrv3P50eawaBCQgghLl26JACIoKAgIcSnDwIHBwcxcOBAaZ3AwEABQOzdu1fltg0bNhR58+aVrvv5+QkdHR1x8uRJlfV8fHwEAHH69GmpDYDQ0dERt2/fTlPThw8fVK4nJSWJYsWKiZo1a0ptly9f/uqHU5cuXdJ8EHXv3l3kyJFDvH37VmXdtm3bCnNz8zSP96XcuXOLunXrijdv3og3b96ImzdvSl+Onp6e0nonT54UAIS/v7/K7Q8ePKjSvnPnTpWA9zWpH4rGxsbi2bNnUvv58+cFADF48GCprWTJksLW1la8e/dOart+/brQ0dERnTt3ltpSg0q3bt1UHqtFixYiW7Zs0vWFCxcKAOLNmzffrE+d1/q//EhQqVevnlAqlVJ7hQoVhEKhEL1795baPn78KBwcHFTuW5Ov0be4u7sLU1NTlbZr164JAKJHjx4q7cOGDRMAxNGjR1WeMwBx8ODB/3wspVIp8ufPn+bv8eHDB5EnTx5Rp04dlbYvnT17VgAQGzZskNomTJggAIiAgICvPp4Q/wsqhQsXVvkBs2jRIgFA3Lx581/r/jyoLF26VGTNmlWq788//xQ1atSQ/hafB5Vdu3YJAGLatGkq99e6dWuhUChESEiIEOJ/f+++ffuqrNe+ffsf/nxgUPn1uOuHAHza7ZM9e3bUqFEDwKeu6zZt2mDz5s1ISUkBANSsWRPW1tbYsmWLdLv3798jKCgIbdq0kdq2bduGwoULo1ChQnj79q10qVmzJgAgODhY5bGrVauGIkWKpKnp833x79+/R1RUFKpUqYIrV65I7am7ifr27aty2/79+6tcF0Jgx44daNKkCYQQKnXVq1cPUVFRKvf7LYcOHYKNjQ1sbGxQvHhx+Pn5oWvXrpg7d67K8zc3N0edOnVUHqdMmTLIkiWL9PwtLCwAAPv27UNycvK/Pm7z5s2RM2dO6foff/yB8uXL4++//wbwaWDvtWvX0KVLF1hZWUnrubi4oE6dOtJ6n+vdu7fK9SpVquDdu3eIjo5WqW/37t1QKpVfrUvd11rTunfvrjIzqHz58hBCoHv37lKbrq4uypYti0ePHqnUrenX6Hukvg5DhgxRaU8doL1//36V9jx58qBevXr/eb/Xrl3DgwcP0L59e7x79056PnFxcahVqxZOnDghvYafv6+Sk5Px7t07ODs7w8LCQuU9sGPHDpQoUQItWrRI83hfzsbq2rWrylicKlWqAIDK3/y/uLm5IT4+Hvv27UNMTAz27dv3zd0+f//9N3R1dTFgwACV9qFDh0IIgQMHDkjrAUiz3qBBg1Sua+rzgdJHhgkqJ06cQJMmTWBvbw+FQoFdu3al+2M+f/4cHTt2lMZQFC9eHJcuXUr3x9W0lJQUbN68GTVq1MDjx48REhKCkJAQlC9fHq9fv8aRI0cAAHp6emjVqhV2794t7U8PCAhAcnKySlB58OABbt++LX2hp14KFCgA4NMgw8/lyZPnq3Xt27cPrq6uMDIygpWVFWxsbODt7Y2oqChpnbCwMOjo6KS5jy9nK7158waRkZHw9fVNU1fquJsv6/qa8uXLIygoCAcPHsS8efNgYWGB9+/fq3xIP3jwAFFRUbC1tU3zWLGxsdLjVKtWDa1atcLkyZNhbW2NZs2aYe3atV8d25E/f/40bQUKFJDGFYSFhQEAChYsmGa9woULS19an8uVK5fKdUtLSwCQxmi0adMGlSpVQo8ePZA9e3a0bdsWW7duVQkt6r7WmvblczA3NwcAODo6pmn/fOxJerxG3yN1e/1y+7Szs4OFhYX0Oqb61nvjSw8ePAAAuLu7p3k+q1atQmJiovS+iY+Px4QJE6SxHdbW1rCxsUFkZKTKe+vhw4coVqzYdz3+f21L38PGxga1a9fGxo0bERAQgJSUFLRu3fqr64aFhcHe3h5Zs2ZVaS9cuLC0PPVfHR0d5MuXT2W9L98nmvp8oPSRYWb9xMXFoUSJEujWrRtatmyZ7o/3/v17VKpUCTVq1MCBAwdgY2ODBw8eSG/Q38nRo0fx8uVLbN68GZs3b06z3N/fH3Xr1gUAtG3bFitWrMCBAwfQvHlzbN26FYUKFUKJEiWk9ZVKJYoXL44FCxZ89fG+/BL52iyGkydPomnTpqhatSqWL1+OHDlyQF9fH2vXrsXGjRvVfo6pX64dO3aEu7v7V9dxcXH5z/uxtrZG7dq1AQD16tVDoUKF0LhxYyxatEj6laxUKmFra6syGPlzNjY2ACAdKOvcuXPYu3cvAgMD0a1bN8yfPx/nzp1DlixZ1H6e6tDV1f1qu/j/wYjGxsY4ceIEgoODsX//fhw8eBBbtmxBzZo1cejQIejq6qr9Wmvat57D19rFZ4Mstf0afe/xYb53hk/q9j137txvHlgutdb+/ftj7dq1GDRoECpUqABzc3MoFAq0bdv2mz1n/+W/tqXv1b59e/Ts2ROvXr1CgwYNpB6t9KapzwdKHxkmqDRo0AANGjT45vLExESMHTsWmzZtQmRkJIoVK4bZs2ejevXqP/R4s2fPhqOjI9auXSu1fe+vH7nx9/eHra0tli1blmZZQEAAdu7cCR8fHxgbG6Nq1arIkSMHtmzZgsqVK+Po0aNpjnuRL18+XL9+HbVq1frhA3bt2LEDRkZGCAwMVJma+vnfGwBy584NpVKJx48fq/Q6fDnjIHXEf0pKihQ0NKFRo0aoVq0aZsyYAQ8PD5iamiJfvnw4fPgwKlWq9F1fNK6urnB1dcX06dOxceNGdOjQAZs3b0aPHj2kdVJ/MX/u/v37cHJyAvDp7wB8Ot7Il+7evQtra2uYmpqq/fx0dHRQq1Yt1KpVCwsWLMCMGTMwduxYBAcHo3bt2hp5rbUhPV6j75G6vT548ED69Q8Ar1+/RmRkpPQ6qiu1x8DMzOw/t+/t27fD3d0d8+fPl9oSEhIQGRmZ5j6/NrMsPbVo0QIeHh44d+6cyi7mL+XOnRuHDx9GTEyMSq/K3bt3peWp/yqVSjx8+FClF+XL90l6fT6QZmSYXT//pV+/fjh79iw2b96MGzdu4M8//0T9+vW/+gXwPfbs2YOyZcvizz//hK2tLUqVKoWVK1dquOr0Fx8fj4CAADRu3BitW7dOc+nXrx9iYmKwZ88eAJ++uFq3bo29e/fCz88PHz9+VNntA3za1/z8+fOv/j3i4+PT7IL4Gl1dXSgUCml8DPBpqu6Xu/RS998vX75cpX3JkiVp7q9Vq1bYsWPHVz9837x58581fcvIkSPx7t076fm6ubkhJSUFU6dOTbPux48fpS+E9+/fp/nFmfpr+MtdC7t27cLz58+l6xcuXMD58+elcJ4jRw6ULFkS69evV/nCuXXrFg4dOoSGDRuq/bwiIiLStH1ZnyZea21Ij9foe6S+Dl5eXirtqT1SjRo1Uvs+AaBMmTLIly8f5s2bh9jY2DTLP9++dXV10zynJUuWqLzXAKBVq1a4fv06du7cmeb+1O0p+V5ZsmSBt7c3Jk2ahCZNmnxzvYYNGyIlJQVLly5VaV+4cCEUCoX0vkj9d/HixSrrffn3T8/PB/p5GaZH5d88efIEa9euxZMnT2Bvbw8AGDZsGA4ePPjDh7Z+9OgRvL29MWTIEIwZMwYXL17EgAEDYGBg8M2uQznas2cPYmJi0LRp068ud3V1hY2NDfz9/aVA0qZNGyxZsgQTJ05E8eLFVX4ZAkCnTp2wdetW9O7dG8HBwahUqRJSUlJw9+5dbN26VTouxL9p1KgRFixYgPr166N9+/YIDw/HsmXL4OzsjBs3bkjrlSlTBq1atYKXlxfevXsHV1dXHD9+HPfv3weg2sU+a9YsBAcHo3z58ujZsyeKFCmCiIgIXLlyBYcPH/7qF/P3aNCgAYoVK4YFCxbA09MT1apVg4eHB2bOnIlr166hbt260NfXx4MHD7Bt2zYsWrQIrVu3xvr167F8+XK0aNEC+fLlQ0xMDFauXAkzM7M0wcLZ2RmVK1dGnz59kJiYCC8vL2TLlg0jRoyQ1pk7dy4aNGiAChUqoHv37oiPj8eSJUtgbm7+Q+c0mTJlCk6cOIFGjRohd+7cCA8Px/Lly+Hg4CAdQVQTr7U2pMdr9D1KlCgBd3d3+Pr6IjIyEtWqVcOFCxewfv16NG/eXBrMri4dHR2sWrUKDRo0QNGiRdG1a1fkzJkTz58/R3BwMMzMzLB3714AQOPGjeHn5wdzc3MUKVIEZ8+exeHDh5EtWzaV+xw+fDi2b9+OP//8E926dUOZMmUQERGBPXv2wMfHR2V3ryZ9z+dnkyZNUKNGDYwdOxahoaEoUaIEDh06hN27d2PQoEFSD1PJkiXRrl07LF++HFFRUahYsSKOHDny1WO8pNfnA2mAVuYapTMAYufOndL1ffv2CQDC1NRU5aKnpyfc3NyEEELcuXNHAPjXy8iRI6X71NfXFxUqVFB53P79+wtXV9df8hw1pUmTJsLIyEjl+Alf6tKli9DX15em7SmVSuHo6PjV6YGpkpKSxOzZs0XRokWFoaGhsLS0FGXKlBGTJ08WUVFR0nr4Ymrv51avXi3y588vDA0NRaFChcTatWulqbWfi4uLE56ensLKykpkyZJFNG/eXNy7d08AELNmzVJZ9/Xr18LT01M4OjoKfX19YWdnJ2rVqiV8fX3/82/1teOopFq3bl2aKYu+vr6iTJkywtjYWGTNmlUUL15cjBgxQrx48UIIIcSVK1dEu3btRK5cuYShoaGwtbUVjRs3FpcuXZLuI3Uq5Ny5c8X8+fOFo6OjMDQ0FFWqVBHXr19PU8fhw4dFpUqVhLGxsTAzMxNNmjQR//zzj8o6qX/DL6cdp04VTT3mypEjR0SzZs2Evb29MDAwEPb29qJdu3bi/v37Krf73tf6v/zI9OQvpw1/67l9baqwEJp5jb7lW4+ZnJwsJk+eLPLkySP09fWFo6OjGD16tEhISEjznL+1vX3L1atXRcuWLUW2bNmEoaGhyJ07t3BzcxNHjhyR1nn//r3o2rWrsLa2FlmyZBH16tUTd+/eTfM3FkKId+/eiX79+omcOXMKAwMD4eDgINzd3aXPgtTpydu2bVO53fdO4f3W6/ilr/0tYmJixODBg4W9vb3Q19cX+fPnF3PnzlWZni2EEPHx8WLAgAEiW7ZswtTUVDRp0kQ8ffo0zfRkIb7v84HTk389hRDp1IenRQqFAjt37kTz5s0BAFu2bEGHDh1w+/btNIO+smTJAjs7OyQlJf3nVLps2bJJg+xy586NOnXqYNWqVdJyb29vTJs2TaWLnrTj2rVrKFWqFP766y906NBB2+X8sNDQUOTJkwdz585VOfIvEVFmkSl2/ZQqVQopKSkIDw+X5vd/ycDAAIUKFfru+6xUqVKaAVn379//4cFw9OPi4+PTDIj08vKCjo4OqlatqqWqiIhIEzJMUImNjVXZ7/j48WNcu3YNVlZWKFCgADp06IDOnTtj/vz5KFWqFN68eYMjR47AxcXlhwawDR48GBUrVsSMGTPg5uaGCxcuwNfXF76+vpp8WvQd5syZg8uXL6NGjRrQ09PDgQMHcODAAfTq1Svdp8cSEVE60/a+J01J3Vf65SV1n2tSUpKYMGGCcHJyEvr6+iJHjhyiRYsW4saNGz/8mHv37hXFihWTxlB8zzgH0rxDhw6JSpUqCUtLS6Gvry/y5csnJk2aJJKTk7Vd2k/7fIwKEVFmlCHHqBAREVHGkGmOo0JERES/HwYVIiIikq3fejCtUqnEixcvkDVr1t/q8N1ERESZmRACMTExsLe3h47Ov/eZ/NZB5cWLF5zVQURE9Jt6+vQpHBwc/nWd3zqopJ6M6unTpzAzM9NyNURERPQ9oqOj4ejoqHJSyW/5rYNK6u4eMzMzBhUiIqLfzPcM2+BgWiIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki09bRdARETy5TRqv7ZLIC0LndVIq4/PHhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki3ZBJVZs2ZBoVBg0KBB2i6FiIiIZEIWQeXixYtYsWIFXFxctF0KERERyYjWg0psbCw6dOiAlStXwtLSUtvlEBERkYxoPah4enqiUaNGqF279n+um5iYiOjoaJULERERZVx62nzwzZs348qVK7h48eJ3rT9z5kxMnjw5nasiIiIiudBaj8rTp08xcOBA+Pv7w8jI6LtuM3r0aERFRUmXp0+fpnOVREREpE1a61G5fPkywsPDUbp0aaktJSUFJ06cwNKlS5GYmAhdXV2V2xgaGsLQ0PBXl0pERERaorWgUqtWLdy8eVOlrWvXrihUqBBGjhyZJqQQERFR5qO1oJI1a1YUK1ZMpc3U1BTZsmVL005ERESZk9Zn/RARERF9i1Zn/Xzp2LFj2i6BiIiIZIQ9KkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWz8UVB4+fIhx48ahXbt2CA8PBwAcOHAAt2/f1mhxRERElLmpHVSOHz+O4sWL4/z58wgICEBsbCwA4Pr165g4caLGCyQiIqLMS+2gMmrUKEybNg1BQUEwMDCQ2mvWrIlz585ptDgiIiLK3NQOKjdv3kSLFi3StNva2uLt27caKYqIiIgI+IGgYmFhgZcvX6Zpv3r1KnLmzKmRooiIiIiAHwgqbdu2xciRI/Hq1SsoFAoolUqcPn0aw4YNQ+fOndOjRiIiIsqk1A4qM2bMQKFCheDo6IjY2FgUKVIEVatWRcWKFTFu3Lj0qJGIiIgyKT11b2BgYICVK1di/PjxuHXrFmJjY1GqVCnkz58/PeojIiKiTEztoJIqV65cyJUrlyZrISIiIlKhdlARQmD79u0IDg5GeHg4lEqlyvKAgACNFUdERESZm9pBZdCgQVixYgVq1KiB7NmzQ6FQpEddREREROoHFT8/PwQEBKBhw4bpUQ8RERGRRO1ZP+bm5sibN2961EJERESkQu2gMmnSJEyePBnx8fHpUQ8RERGRRO1dP25ubti0aRNsbW3h5OQEfX19leVXrlzRWHFERESUuakdVNzd3XH58mV07NiRg2mJiIgoXakdVPbv34/AwEBUrlw5PeohIiIikqg9RsXR0RFmZmbpUQsRERGRCrWDyvz58zFixAiEhoamQzlERERE/6P2rp+OHTviw4cPyJcvH0xMTNIMpo2IiNBYcUSZndOo/dougbQsdFYjbZdApFVqBxUvL690KIOIiIgorR+a9UNERET0K3xXUImOjpYG0EZHR//ruhxoS0RERJryXUHF0tISL1++hK2tLSwsLL567BQhBBQKBVJSUjReJBEREWVO3xVUjh49CisrKwBAcHBwuhZERERElOq7gkq1atWQN29eXLx4EdWqVUvvmoiIiIgAqHEcldDQUO7WISIiol9K7QO+aZK3tzdcXFxgZmYGMzMzVKhQAQcOHNBmSURERCQjak1PDgwMhLm5+b+u07Rp0+++PwcHB8yaNQv58+eHEALr169Hs2bNcPXqVRQtWlSd0oiIiCgDUiuo/NcxVNSd9dOkSROV69OnT4e3tzfOnTvHoEJERETqBZVXr17B1tY2XQpJSUnBtm3bEBcXhwoVKnx1ncTERCQmJkrX/+uYLkRERPR7++4xKl87doom3Lx5E1myZIGhoSF69+6NnTt3okiRIl9dd+bMmTA3N5cujo6O6VITERERycN3BxUhRLoUULBgQVy7dg3nz59Hnz594O7ujn/++eer644ePRpRUVHS5enTp+lSExEREcnDd+/6cXd3h7GxscYLMDAwgLOzMwCgTJkyuHjxIhYtWoQVK1akWdfQ0BCGhoYar4GIiIjk6buDytq1a9OzDolSqVQZh0JERESZl9pnT9ak0aNHo0GDBsiVKxdiYmKwceNGHDt2DIGBgdosi4iIiGRCq0ElPDwcnTt3xsuXL2Fubg4XFxcEBgaiTp062iyLiIiIZEKrQWX16tXafHgiIiKSuR8+hH5ISAgCAwMRHx8PIP1mBREREVHmpXZQeffuHWrXro0CBQqgYcOGePnyJQCge/fuGDp0qMYLJCIiosxL7aAyePBg6Onp4cmTJzAxMZHa27Rpg4MHD2q0OCIiIsrc1B6jcujQIQQGBsLBwUGlPX/+/AgLC9NYYURERERq96jExcWp9KSkioiI4MHYiIiISKPUDipVqlTBhg0bpOsKhQJKpRJz5sxBjRo1NFocERERZW5q7/qZM2cOatWqhUuXLiEpKQkjRozA7du3ERERgdOnT6dHjURERJRJqd2jUqxYMdy/fx+VK1dGs2bNEBcXh5YtW+Lq1avIly9fetRIREREmdQPHfDN3NwcY8eO1XQtRERERCrU7lE5ePAgTp06JV1ftmwZSpYsifbt2+P9+/caLY6IiIgyN7WDyvDhwxEdHQ0AuHnzJoYMGYKGDRvi8ePHGDJkiMYLJCIiosxL7V0/jx8/RpEiRQAAO3bsQJMmTTBjxgxcuXIFDRs21HiBRERElHmp3aNiYGCADx8+AAAOHz6MunXrAgCsrKyknhYiIiIiTVC7R6Vy5coYMmQIKlWqhAsXLmDLli0AgPv376c5Wi0RERHRz1C7R2Xp0qXQ09PD9u3b4e3tjZw5cwIADhw4gPr162u8QCIiIsq81O5RyZUrF/bt25emfeHChRopiIiIiCjVDx1HRalUIiQkBOHh4VAqlSrLqlatqpHCiIiIiNQOKufOnUP79u0RFhYGIYTKMoVCgZSUFI0VR0RERJmb2kGld+/eKFu2LPbv348cOXJAoVCkR11ERERE6geVBw8eYPv27XB2dk6PeoiIiIgkas/6KV++PEJCQtKjFiIiIiIVaveo9O/fH0OHDsWrV69QvHhx6Ovrqyx3cXHRWHFERESUuakdVFq1agUA6Natm9SmUCgghOBgWiIiItKoHzrXDxEREdGvoHZQyZ07d3rUQURERJTGDx3w7eHDh/Dy8sKdO3cAAEWKFMHAgQORL18+jRZHREREmZvaQSUwMBBNmzZFyZIlUalSJQDA6dOnUbRoUezduxd16tTReJHa4jRqv7ZLIC0LndVI2yUQEWVqageVUaNGYfDgwZg1a1aa9pEjR2aooEJERETapfZxVO7cuYPu3bunae/WrRv++ecfjRRFREREBPxAULGxscG1a9fStF+7dg22traaqImIiIgIwA/s+unZsyd69eqFR48eoWLFigA+jVGZPXs2hgwZovECiYiIKPNSO6iMHz8eWbNmxfz58zF69GgAgL29PSZNmoQBAwZovEAiIiLKvNQOKgqFAoMHD8bgwYMRExMDAMiaNavGCyMiIiL6oeOoAEB4eDju3bsHAChUqBBsbGw0VhQRERER8AODaWNiYtCpUyfY29ujWrVqqFatGuzt7dGxY0dERUWlR41ERESUSakdVHr06IHz589j//79iIyMRGRkJPbt24dLly7Bw8MjPWokIiKiTErtXT/79u1DYGAgKleuLLXVq1cPK1euRP369TVaHBEREWVuaveoZMuWDebm5mnazc3NYWlpqZGiiIiIiIAfCCrjxo3DkCFD8OrVK6nt1atXGD58OMaPH6/R4oiIiChzU3vXj7e3N0JCQpArVy7kypULAPDkyRMYGhrizZs3WLFihbTulStXNFcpERERZTpqB5XmzZunQxlEREREaakdVCZOnJgedRARERGlofYYladPn+LZs2fS9QsXLmDQoEHw9fXVaGFEREREageV9u3bIzg4GMCnQbS1a9fGhQsXMHbsWEyZMkXjBRIREVHmpXZQuXXrFv744w8AwNatW1G8eHGcOXMG/v7+WLdunabrIyIiokxM7aCSnJwMQ0NDAMDhw4fRtGlTAJ/O9/Py5UvNVkdERESZmtpBpWjRovDx8cHJkycRFBQkHY32xYsXyJYtm8YLJCIiosxL7aAye/ZsrFixAtWrV0e7du1QokQJAMCePXukXUJEREREmqD29OTq1avj7du3iI6OVjlkfq9evWBiYqLR4oiIiChzU7tHBQCEELh8+TJWrFiBmJgYAICBgQGDChEREWmU2j0qYWFhqF+/Pp48eYLExETUqVMHWbNmxezZs5GYmAgfH5/0qJOIiIgyIbV7VAYOHIiyZcvi/fv3MDY2ltpbtGiBI0eOaLQ4IiIiytzU7lE5efIkzpw5AwMDA5V2JycnPH/+XGOFEREREando6JUKpGSkpKm/dmzZ8iaNatGiiIiIiICfiCo1K1bF15eXtJ1hUKB2NhYTJw4EQ0bNtRkbURERJTJqb3rZ/78+ahXrx6KFCmChIQEtG/fHg8ePIC1tTU2bdqUHjUSERFRJqV2UHFwcMD169exZcsWXL9+HbGxsejevTs6dOigMriWiIiI6GepHVQAQE9PDx06dECHDh2ktpcvX2L48OFYunSpxoojIiKizE2toHL79m0EBwfDwMAAbm5usLCwwNu3bzF9+nT4+Pggb9686VUnERERZULfPZh2z549KFWqFAYMGIDevXujbNmyCA4ORuHChXHnzh3s3LkTt2/fTs9aiYiIKJP57qAybdo0eHp6Ijo6GgsWLMCjR48wYMAA/P333zh48KB0FmUiIiIiTfnuoHLv3j14enoiS5Ys6N+/P3R0dLBw4UKUK1cuPesjIiKiTOy7g0pMTAzMzMwAALq6ujA2NuaYFCIiIkpXag2mDQwMhLm5OYBPR6g9cuQIbt26pbJO06ZNNVcdERERZWpqBRV3d3eV6x4eHirXFQrFVw+vT0RERPQjvjuoKJXK9KyDiIiIKA21z/VDRERE9KtoNajMnDkT5cqVQ9asWWFra4vmzZvj3r172iyJiIiIZESrQeX48ePw9PTEuXPnEBQUhOTkZNStWxdxcXHaLIuIiIhk4ofO9aMpBw8eVLm+bt062Nra4vLly6hataqWqiIiIiK50GpQ+VJUVBQAwMrK6qvLExMTkZiYKF2Pjo7+JXURERGRdvzQrp/IyEisWrUKo0ePRkREBADgypUreP78+Q8XolQqMWjQIFSqVAnFihX76jozZ86Eubm5dHF0dPzhxyMiIiL5Uzuo3LhxAwUKFMDs2bMxb948REZGAgACAgIwevToHy7E09MTt27dwubNm7+5zujRoxEVFSVdnj59+sOPR0RERPKndlAZMmQIunTpggcPHsDIyEhqb9iwIU6cOPFDRfTr1w/79u1DcHAwHBwcvrmeoaEhzMzMVC5ERESUcak9RuXixYtYsWJFmvacOXPi1atXat2XEAL9+/fHzp07cezYMeTJk0fdcoiIiCgDUzuoGBoafnUQ6/3792FjY6PWfXl6emLjxo3YvXs3smbNKgUdc3NzGBsbq1saERERZTBq7/pp2rQppkyZguTkZACfzu/z5MkTjBw5Eq1atVLrvry9vREVFYXq1asjR44c0mXLli3qlkVEREQZkNpBZf78+YiNjYWtrS3i4+NRrVo1ODs7I2vWrJg+fbpa9yWE+OqlS5cu6pZFREREGZDau37Mzc0RFBSEU6dO4caNG4iNjUXp0qVRu3bt9KiPiIiIMrEfPuBb5cqVUblyZU3WQkRERKRC7aCyePHir7YrFAoYGRnB2dkZVatWha6u7k8XR0RERJmb2kFl4cKFePPmDT58+ABLS0sAwPv372FiYoIsWbIgPDwcefPmRXBwMI8cS0RERD9F7cG0M2bMQLly5fDgwQO8e/cO7969w/3791G+fHksWrQIT548gZ2dHQYPHpwe9RIREVEmonaPyrhx47Bjxw7ky5dPanN2dsa8efPQqlUrPHr0CHPmzFF7qjIRERHRl9TuUXn58iU+fvyYpv3jx4/SAdvs7e0RExPz89URERFRpqZ2UKlRowY8PDxw9epVqe3q1avo06cPatasCQC4efMmD4dPREREP03toLJ69WpYWVmhTJkyMDQ0hKGhIcqWLQsrKyusXr0aAJAlSxbMnz9f48USERFR5qL2GBU7OzsEBQXh7t27uH//PgCgYMGCKFiwoLROjRo1NFchERERZVo/fMC3QoUKoVChQpqshYiIiEjFDwWVZ8+eYc+ePXjy5AmSkpJUli1YsEAjhRERERGpHVSOHDmCpk2bIm/evLh79y6KFSuG0NBQCCFQunTp9KiRiIiIMim1B9OOHj0aw4YNw82bN2FkZIQdO3bg6dOnqFatGv7888/0qJGIiIgyKbWDyp07d9C5c2cAgJ6eHuLj45ElSxZMmTIFs2fP1niBRERElHmpHVRMTU2lcSk5cuTAw4cPpWVv377VXGVERESU6ak9RsXV1RWnTp1C4cKF0bBhQwwdOhQ3b95EQEAAXF1d06NGIiIiyqTUDioLFixAbGwsAGDy5MmIjY3Fli1bkD9/fs74ISIiIo1SK6ikpKTg2bNncHFxAfBpN5CPj0+6FEZERESk1hgVXV1d1K1bF+/fv0+veoiIiIgkag+mLVasGB49epQetRARERGpUDuoTJs2DcOGDcO+ffvw8uVLREdHq1yIiIiINEXtwbQNGzYEADRt2hQKhUJqF0JAoVAgJSVFc9URERFRpqZ2UAkODk6POoiIiIjSUDuoVKtWLT3qICIiIkpD7TEqAHDy5El07NgRFStWxPPnzwEAfn5+OHXqlEaLIyIiosxN7aCyY8cO1KtXD8bGxrhy5QoSExMBAFFRUZgxY4bGCyQiIqLM64dm/fj4+GDlypXQ19eX2itVqoQrV65otDgiIiLK3NQOKvfu3UPVqlXTtJubmyMyMlITNREREREB+IGgYmdnh5CQkDTtp06dQt68eTVSFBERERHwA0GlZ8+eGDhwIM6fPw+FQoEXL17A398fw4YNQ58+fdKjRiIiIsqk1J6ePGrUKCiVStSqVQsfPnxA1apVYWhoiGHDhqF///7pUSMRERFlUmoHFYVCgbFjx2L48OEICQlBbGwsihQpgixZsqRHfURERJSJqb3r56+//sKHDx9gYGCAIkWK4I8//mBIISIionShdlAZPHgwbG1t0b59e/z99988tw8RERGlG7WDysuXL7F582YoFAq4ubkhR44c8PT0xJkzZ9KjPiIiIsrE1A4qenp6aNy4Mfz9/REeHo6FCxciNDQUNWrUQL58+dKjRiIiIsqk1B5M+zkTExPUq1cP79+/R1hYGO7cuaOpuoiIiIh+7KSEHz58gL+/Pxo2bIicOXPCy8sLLVq0wO3btzVdHxEREWViaveotG3bFvv27YOJiQnc3Nwwfvx4VKhQIT1qIyIiokxO7aCiq6uLrVu3ol69etDV1VVZduvWLRQrVkxjxREREVHmpnZQ8ff3V7keExODTZs2YdWqVbh8+TKnKxMREZHG/NAYFQA4ceIE3N3dkSNHDsybNw81a9bEuXPnNFkbERERZXJq9ai8evUK69atw+rVqxEdHQ03NzckJiZi165dKFKkSHrVSERERJnUd/eoNGnSBAULFsSNGzfg5eWFFy9eYMmSJelZGxEREWVy392jcuDAAQwYMAB9+vRB/vz507MmIiIiIgBq9KicOnUKMTExKFOmDMqXL4+lS5fi7du36VkbERERZXLfHVRcXV2xcuVKvHz5Eh4eHti8eTPs7e2hVCoRFBSEmJiY9KyTiIiIMiG1Z/2YmpqiW7duOHXqFG7evImhQ4di1qxZsLW1RdOmTdOjRiIiIsqkfnh6MgAULFgQc+bMwbNnz7Bp0yZN1UREREQE4CeDSipdXV00b94ce/bs0cTdEREREQHQUFAhIiIiSg8MKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbWg0qJ06cQJMmTWBvbw+FQoFdu3ZpsxwiIiKSGa0Glbi4OJQoUQLLli3TZhlEREQkU3rafPAGDRqgQYMG2iyBiIiIZEyrQUVdiYmJSExMlK5HR0drsRoiIiJKb7/VYNqZM2fC3Nxcujg6Omq7JCIiIkpHv1VQGT16NKKioqTL06dPtV0SERERpaPfatePoaEhDA0NtV0GERER/SK/VY8KERERZS5a7VGJjY1FSEiIdP3x48e4du0arKyskCtXLi1WRkRERHKg1aBy6dIl1KhRQ7o+ZMgQAIC7uzvWrVunpaqIiIhILrQaVKpXrw4hhDZLICIiIhnjGBUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLVkElWXLlsHJyQlGRkYoX748Lly4oO2SiIiISAa0HlS2bNmCIUOGYOLEibhy5QpKlCiBevXqITw8XNulERERkZZpPagsWLAAPXv2RNeuXVGkSBH4+PjAxMQEa9as0XZpREREpGVaDSpJSUm4fPkyateuLbXp6Oigdu3aOHv2rBYrIyIiIjnQ0+aDv337FikpKciePbtKe/bs2XH37t006ycmJiIxMVG6HhUVBQCIjo5Ol/qUiR/S5X7p95Fe29b34jZI3AZJ29JjG0y9TyHEf66r1aCirpkzZ2Ly5Mlp2h0dHbVQDWUG5l7aroAyO26DpG3puQ3GxMTA3Nz8X9fRalCxtraGrq4uXr9+rdL++vVr2NnZpVl/9OjRGDJkiHRdqVQiIiIC2bJlg0KhSPd6M5Po6Gg4Ojri6dOnMDMz03Y5lAlxGyRt4zaYfoQQiImJgb29/X+uq9WgYmBggDJlyuDIkSNo3rw5gE/h48iRI+jXr1+a9Q0NDWFoaKjSZmFh8QsqzbzMzMz4BiWt4jZI2sZtMH38V09KKq3v+hkyZAjc3d1RtmxZ/PHHH/Dy8kJcXBy6du2q7dKIiIhIy7QeVNq0aYM3b95gwoQJePXqFUqWLImDBw+mGWBLREREmY/WgwoA9OvX76u7ekh7DA0NMXHixDS72oh+FW6DpG3cBuVBIb5nbhARERGRFmj9yLRERERE38KgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCvyWlUqntEoiI6BdgUKHfko7Op0337du3AACeCYJ+tS/DMrdB0oYvt8OM+COOQYV+W4sWLULz5s3x8OFDKBQKbZdDmYyOjg6ioqIQGBgIANwGSSt0dHQQGRmJuXPn4v3799KPuIwk4z0jyrC+/MWqr68PY2NjGBgYaKkiysyUSiXmz58PDw8P7Nu3T9vlUCZ26NAhLFiwAEuXLtV2KemCZ0+m3050dDTMzMwAAFFRUTA3N9dyRZRZKJVKlV+sd+7cwerVqzF79mzo6upqsTLKTFJSUlS2t+TkZGzZsgXt2rXLkNshgwr9VgYPHoyUlBSMHj0aOXLk0HY5lAlFRkYiMjISjo6OKl8KX355EP2ML0Pxl969e4fTp0+jYsWKsLa2ltoz4nbIXT8ka1/maAcHB2zYsCHDvRHp9yCEwKhRo1C+fHmEhoaqLOM2ST/j5cuXePHiBd68eQPg09iTf+tH2Lp1K5o3b47jx4+rtGfE7ZA9KiQbqb8EhBBQKBTf/EXx/v17WFpaaqFCymj+61fr19YJCwvDuHHjsG7dugz5pUC/3tq1a7Fs2TI8ffoU+fLlQ+XKlTFnzhyVdb7WU+Ll5YV+/fpBT0/vV5b7yzGokFakhhHg0xtQCAE9PT08f/4cO3fuRNeuXWFqagrg0+4eS0tLTJgwIc1tiX7U5wHk6NGjePLkCZydnZE3b17Y29urrBMVFQWlUpkmIGfEbnb6tfbt2wc3NzcsX74cJiYmePToEebMmYOKFSti/fr1yJYtm/SZ9/btW4SEhMDV1VXlPj5+/Jihwwp3/dAvkZqHo6OjER8fD4VCgUOHDiEkJAS6urrQ09NDWFgYSpUqhRcvXkghJS4uDvr6+li4cCEiIiIYUkgjhBBSSBk1ahS6dOmCefPmoVevXhg2bBguXrwI4FP3e2JiIiZMmIDSpUvj3bt3KvfDkEI/6+LFi2jUqBG6dOkCNzc3jBgxAoGBgbhx4wY6dOgA4NPU9+TkZPj5+aFixYo4deqUyn1k5JACMKjQL/Tq1SsUL14cx48fx8aNG1G/fn38888/AD7tzilatChatGiB6dOnS7cxNTXFiBEj8ODBA1hZWTGkkEakbkfz5s3DX3/9hU2bNuHWrVto2bIl9u7di3HjxuHs2bMAAAMDA5QqVQq1atWChYWFFqumjOjx48d4+fKlSlu5cuWwZ88eXL58GT179gTw6XAMjRs3xvTp09P0qGR4gugX6tq1qzAzMxM6Ojpi5cqVUntSUpLYsmWLSElJkdqUSqU2SqRM4vXr16Jly5ZizZo1Qggh9uzZI8zMzETv3r1FqVKlRK1atcS5c+eEEKrb4sePH7VSL2VMgYGBInv27GLz5s1SW+r25u/vL5ydncXFixfT3C45OfmX1aht7FGhXyL1sM6enp6IiYmBgYEB7OzskJCQAODTrwU3NzeVQYvsPaH0ZGtrixEjRqB+/fq4evUqPD09MW3aNHh7e6NVq1Y4d+4cPD09cfnyZZVtkbt7SJMKFy6M6tWrw8/PD0eOHAHwv8++kiVLIjw8XDpVyOcy+u6ezzGo0C+RGkAcHR1x6tQpuLu7o23btti9ezfi4+PTrJ8Rz1dB2vOt7alUqVLIkSMHDhw4ABcXF/Tq1QsAYGVlBVdXVzRp0gSlSpX6laVSJuPo6IjevXsjMjISCxcuxJ49e6RlOXLkQJ48ebRYnTxknkhGWiH+f/Dry5cvkZycjFy5csHW1hYVK1ZEQkICunfvjnXr1qFx48YwMjKCj48PateuDWdnZ22XThmE+Gzg7KpVqxAeHg4DAwMMGzZMOv1CYmIinj9/jtDQUBQsWBCHDh1C06ZN0b9//3+dKk/0M1JnjVWvXh3Lly/HmDFjMHLkSAQGBsLFxQVbt26FQqFAnTp1tF2qVnF6MqW7gIAATJo0Ca9fv0ajRo3QokULNGnSBADQtWtX7Ny5E0OHDsXr16/h7e2NmzdvokiRIlqumjKaiRMnwsvLC+XKlcOFCxdQvnx5+Pn5wc7ODnv37sW0adPw/v176OvrQwiBGzduQE9PjzPNKF2kblcBAQFYvnw5Dh06hLt37yI4OBhLly6Fo6MjLCws4O/vD319/Uw9FZ5BhdLV7du3Ua9ePQwePBgmJibYtGkTDA0N4e7ujo4dOwIABg4ciCtXriAxMRG+vr4oWbKkdoumDOHzXpCPHz/C3d0d/fv3R6lSpRAaGopGjRrBzs4OO3fuhI2NDfbv34+QkBDExsZi5MiR0NPTy9RfDqQZqYFEfHHsKF1dXQQEBKBz585YsGCBtNsR+LS96ujoqGy/mWlMypcYVCjd3L17F9u2bUN8fDxmzJgBALh58yYmTJiA6OhodO3aVQorr169gqmpKbJmzarNkimD+Dyk3LlzB9HR0VixYgUmTJgAJycnAJ+mhdapUwfZs2fHrl27YGNjo3IfDCn0sz7fDt++fQuFQoFs2bIB+PSZV7p0aUyYMAG9e/eWbvNlDx579BhUKB0IIfD+/Xs0btwY//zzD5o0aQI/Pz9p+Y0bNzBhwgTEx8ejbdu26Nq1qxarpYxs+PDhUtf569evERAQgAYNGkgf/I8fP0aDBg0ghMDp06dVTu5G9DM+DxhTp07Frl27EB0dDWtra0yfPh01a9bE8+fPkTNnTi1XKn8cHUYap1AoYGVlhZkzZ6Jo0aK4cuUKgoKCpOUuLi6YOnUqkpOTpTcvkSZ8Prtn3759OHjwIBYvXozly5cjT548GDt2LK5fvy4dKTlPnjzYt28fSpYsyfNHkUalhpQpU6Zg0aJF0vR3a2trdOjQAevXr0/Ti0dfxx4V0ohvdU8eP34cY8aMgZ2dHTw9PVGzZk1p2e3bt2Fubg4HB4dfWSplAgEBAThz5gyyZcuG0aNHAwBiY2NRunRpmJmZYdWqVShRokSabZa7e0iT3r17h7p168LT0xPdunWT2nv16oW9e/ciODgYhQoV4u6d/8AeFfppqW+yM2fOYMGCBRg/fjxOnz6N5ORkVKtWDVOmTMGrV6+wdOlSHDt2TLpd0aJFGVJI4+Lj4zF+/HgsWLAAt2/fltqzZMmCK1euICYmBh4eHtL5fD7HkEKa9PHjR7x9+1bqrUs9wKWvry/s7e2xcOFCADy45X9hUKGf8vkUuwYNGuD06dPYs2cPxowZg+nTpyMpKQm1atXClClT8O7dO0ydOhUnT57UdtmUgRkbG+PkyZOoXbs2Ll++jD179iAlJQXA/8LK3bt3sWLFCi1XShnJ13ZOZM+eHXZ2dlizZg0AwMjICElJSQAAZ2dnBpTvxKBCPyW1J2XAgAFYsGABduzYgW3btuHy5cvYsmULxo0bJ4WVUaNGQV9fn0daJI35fEyKEEL6srCyssLGjRthaWmJuXPnIjAwUFpmamqKV69ewdfXVys1U8ajVCql0PHixQuEh4fjw4cPAIBJkybh7t270sye1IMMPnv2jCe5/E4co0I/JPWNqVAosHz5cly7dg2+vr54/PgxateujcqVK8PMzAzbtm2Dh4cHxowZA0NDQ3z48AEmJibaLp8ygM+nfi5ZsgTXr1/Ho0ePMGjQIJQuXRoODg548+YNmjVrBl1dXYwZMwb16tVTOcIsx6TQz/D394erqyvy5csHABg9ejQCAwMRFhaG2rVro2nTpujQoQNWrlyJqVOnIlu2bChWrBgePnyIyMhI6aCC9O8YVOi7pH4pfB40rl27hpIlSyI6OhpPnz6Fs7Mz6tevjzx58mDNmjWIioqSjjDbpUsXTJ8+nYPG6Kd9uQ2NHj0aq1evRq9evfDs2TOcPXsWzZo1Q69eveDs7Iw3b96gZcuWePPmDdatWwdXV1ctVk8ZxYEDB9C4cWOMHDkSgwYNwoEDBzBixAh4eXnh3bt3uHLlCgIDAzF+/Hj07t0bN2/ehJeXF3R0dGBpaYkZM2bwoILfK13PzUwZyqNHj0S7du3EP//8I7Zu3SoUCoW4cOGCdErymzdvikKFConz588LIYR4+PChaNy4sRgzZox48uSJNkunDCYlJUUIIYSfn5/IkyePuHz5shBCiJMnTwqFQiHy588vBg4cKB49eiSEEOLly5eiV69e4uPHj1qrmTKepUuXCgcHBzF16lTRr18/sXLlSmnZ06dPxZQpU4STk5M4ePDgV2+fnJz8q0r9rbHPib5bQkICTp48iS5duuDatWtYu3YtypUrJ+0GEkLg48ePOHv2LIoWLYoNGzYAAIYNG8ZjVNBP69SpE2xsbLBgwQLo6OggOTkZBgYG6N27N0qXLo1du3aha9euWLVqFV69eoVp06ZBR0cHPXv2ROHChaXBs/wFSz8rKSkJBgYG8PT0hImJCUaPHo2YmBhMmzZNWsfBwQGdO3fGoUOHcOnSJdSrVy/NyS252+c7aTsp0e8h9Resj4+P0NHRESVKlBBXr15VWScqKkp06dJF5MuXTzg5OQkbGxvply7Rz4iKihKTJ08WVlZWYtKkSVL78+fPxevXr8XLly9F2bJlxfz586X17e3tRY4cOcSiRYuEEELq+SPSlJkzZ4rw8HDh7+8vTExMRMOGDcX9+/dV1mnTpo1o2bKllirMGDjrh/6TEAI6OjoQQsDe3h7z58/Hx48fMW7cOJw6dUpaz8zMDPPmzcPy5csxceJEnD9/HqVLl9Zi5ZQRxMTEwMzMDH369MG4cePg5eWFiRMnAgDs7e1ha2uLly9f4v3799L4k+fPn6Nu3bqYMGECPD09AfBYFfTzxGdDOtevX4+pU6fiwYMHaN++PRYuXIgrV67Ax8cH9+7dAwBER0fj8ePHyJUrl7ZKzhDY70T/Svz/wMWjR4/i+PHjGDRoEJo0aYLatWvDzc0Ns2bNwpgxY1CxYkUAn046WLduXS1XTRnFiBEjsGLFCjx8+BA2Njbo2LEjhBCYOnUqAGDy5MkAPoUZXV1dnD59GkIIzJo1CyYmJtKUUO7uIU1IDbtHjhzB1atX4evrK3329erVC8nJyZg8eTIOHjyI0qVLIy4uDklJSZgzZ442y/79abM7h+Qttat8+/btwtzcXIwePVpcvHhRWn7jxg1RpEgR0bhxY/HXX3+JSZMmCYVCIZ4+fcpudtKI69evi6pVq4qCBQuKN2/eCCGECA8PF/PnzxcWFhZiwoQJ0rr9+vUT+fLlEw4ODsLV1VUkJSUJIbjLhzTr2LFjonjx4iJbtmxi165dQgghEhMTpeWrV68WWbJkEaVLlxYbNmyQBnBz4OyP4/Rk+lcXLlxA/fr1MXv2bPTs2VNqj46OhpmZGe7cuYOePXsiPj4eUVFR2Lp1K3f3kEacPXsWb968QZEiRdCmTRvExsZKZzh+8+YN/Pz8MHXqVOlkb8CnKfMKhQLFixeHjo4OPn78yAGL9FPEF9PhY2NjMXfuXPj6+qJ8+fLYtGkTjI2NkZycDH19fQDAggULcObMGWzbtg0KhYI9ej+JQYX+1dKlS7Fz504cOXIEUVFROHr0KP766y/cuXMHw4YNQ7du3RAeHo6oqCiYm5vD1tZW2yVTBtG5c2e8ePEChw8fRmhoKFq3bo2YmJg0YWXatGno168fpkyZonJ7fjmQJi1btgwODg5o1qwZ4uPjMW/ePOzcuRPVq1fHjBkzYGRkpBJWUgPOl0GH1MfBtPSv7OzscPnyZcycOROtW7fG2rVrYWRkhEaNGqFHjx64f/8+bG1tkT9/foYU0qhly5bh2bNnWLp0KZycnLBp0yaYm5ujUqVKePv2LWxsbNCpUydMmDAB06ZNw+rVq1Vuz5BCmvLmzRscPXoUffv2xcGDB2FsbIwhQ4agcePGOHPmDMaOHYuEhATo6+vj48ePAMCQokHsUSFJ6psqNjYWWbJkAQC8fv0aS5YswdatW1GzZk106dIFf/zxB16/fo2mTZti3bp1KFq0qJYrp4wmtTdk8eLFuHr1KhYsWABLS0vcvXsXnTt3RlRUlNSz8urVKxw/fhytWrXibh7SiC+PdwIA169fx+LFi3H48GH4+PigQYMGiIuLw5w5c3D48GEULlwYy5cvl87lQ5rDHhWSKBQK7N+/H+3atUP16tWxbt066OnpYdq0aTh//jx8fHzg6uoKHR0dLFmyBHFxcexFoXSR2htSvXp1nDhxAvv37wcAFCxYEH5+frC0tETVqlXx+vVr2NnZoU2bNtDT05N+zRL9jNSQ8urVK6mtRIkSGDhwIGrUqIHevXvj4MGDMDU1xYgRI/DHH39AR0dH2u1DGqalQbwkQ6dPnxZGRkZi+PDhon79+sLFxUV4eHiIkJAQaZ3g4GDRq1cvYWVlleaAb0Q/KvWAgl/j4+MjChQoIO7duye13bt3Tzg5OYm2bdv+ivIok/h8O9y8ebPImzevykxHIYS4du2aaNasmciVK5c4duyYEEKI+Ph4aXbZv23L9GPYo0IAgLCwMAQFBWH69OmYM2cODhw4gF69euHGjRuYOXMmHj16hLi4OJw9exbh4eE4fvw4SpYsqe2yKQP4vJv9woULOHPmDI4fPy4tb9q0KcqXL4/g4GCprUCBAjhx4gT++uuvX14vZUyJiYnSdpiUlIR8+fKhUKFC8PT0xOXLl6X1SpQogebNm+Pp06eoW7cuzpw5AyMjI2lMype7jOjn8S+aCS1duhR///23dP3evXto06YN1qxZAyMjI6nd09MTHTp0wO3btzFnzhxERkZi+PDhWL9+PYoVK6aN0imD+fyDfcyYMejSpQu6desGd3d3tGnTBtHR0ciRI4e0/z85OVm6raOjI3R1dZGSkqKt8imDOHDgAPz8/AAAPXv2RM2aNVG2bFkMHToUdnZ28PDwwKVLl6T1c+XKhbZt22L+/PkoX7681M6Bs+lE21069Gs9fvxYtG/fXjx48EClfdSoUcLW1la0bNlSOrBWKm9vb1GwYEExYMAAHrSI0sW8efNEtmzZxPnz50VKSoqYMWOGUCgU4tSpU9I6lSpVEh4eHlqskjKqdu3aCScnJ1GvXj1hbW0trl+/Li07evSoaN68uShWrJg4cOCAePz4sWjevLkYOnSotA7Pyp2+GFQyobi4OCGEEOfOnRPbt2+X2idMmCCKFy8uxo0bJ16/fq1ym5UrV4rHjx//yjIpk1AqlcLd3V34+voKIYTYsWOHsLCwED4+PkIIIWJiYoQQQhw4cEA0bdpU3LhxQ2u1UsZVsmRJoVAoVE56merkyZOiU6dOQqFQiAIFCggXFxfpRxuPfJz+OJcvEzI2NkZkZCRmzpyJ58+fQ1dXF82bN8fkyZORnJyM/fv3QwiBgQMHwsbGBgDQo0cPLVdNGVVCQgLOnz+P6tWr49ixY3B3d8fcuXPh4eGBjx8/Ys6cOahQoQJcXV0xZcoUXLhwAcWLF9d22ZRBJCUlISEhAc7OzsiVKxe2bNmCnDlzom3bttJhGipXrozy5cujZ8+eSE5ORrVq1aCrq8sjH/8iHKOSCSkUClhYWGDo0KHIkycPvLy8EBAQAACYMWMG6tevj6CgIMyYMQNv377VcrWUkdy4cQPPnj0DAAwePBjHjx+HsbEx2rdvj7/++gsNGzbEwoULpZMJvn//HpcuXcK9e/dgaWkJPz8/5M6dW5tPgTIYAwMDmJmZYdu2bdi9ezfKlSuHOXPmYPPmzYiJiZHWS0hIQJUqVVCzZk1pbBRDyq/BoJIJiU+7/FClShUMHjwYlpaWWLx4sUpYcXV1xdWrV1VOa070o4QQuH//PmrUqIE1a9agd+/eWLRoESwtLQEArq6uCAsLQ/ny5VGhQgUAwIsXL9ClSxdERkaiX79+AIB8+fKhdu3aWnselPEIIaBUKqXr69evR8WKFbFw4UJs2LABT548Qc2aNfHnn39K6wM88vGvxCPTZkKpR/2MioqCiYkJbty4genTp+P9+/cYOHAgmjdvDuDTYaNTd/0QacLKlSsxYsQIJCQkYPfu3ahbt650ROQtW7ZgypQpEEJAT08PxsbGUCqVOHPmDPT19XnuHvppERERsLKyUmlL3f62bduGoKAg+Pr6AgB69eqFY8eOISUlBVZWVjh9+jSPOqsl7FHJZD5+/AhdXV2EhoaievXqOHToEMqUKYNhw4bBxsYGkydPxr59+wCAIYU0JvUXq6OjIwwNDWFmZoZz584hNDRUmtLZpk0bbNiwAVOmTIGbmxtGjhyJc+fOSedPYUihn7Fo0SKUK1dOZXcOACmkdOnSBSVKlJDafX19sWLFCixZsgTnzp2DgYEBj3ysLdoZw0u/wrdGo4eEhIjs2bOLHj16qEyrO3bsmOjUqZMIDQ39VSVSBvflNpiUlCTi4+OFt7e3yJkzpxgzZsx/bm+c+kk/a8WKFcLQ0FBs3LgxzbInT56I4sWLi6VLl0ptX9vmuB1qD3f9ZFDi/7szz549izt37iAkJASdO3dGjhw5sH79ely6dAnr169Pc4bPhIQElYO+Ef2oz484GxERgZiYGJWBsF5eXpg3bx66d++Orl27wsnJCU2aNMHYsWPh6uqqrbIpg1m5ciX69+8PPz8//Pnnn4iMjERcXBwSEhJga2uLrFmz4sGDB8ifP7+2S6VvYFDJwHbs2IFevXpJJ2978+YN2rRpg5EjRyJr1qzaLo8ysM9DypQpU3Do0CHcunULbm5uaNGiBRo0aADgU1jx8vJCsWLF8O7dOzx58gShoaE8uRtpxKNHj+Ds7Aw3Nzds3rwZt27dQt++ffHmzRuEhYWhRo0a6NOnDxo3bqztUulfcG5VBnXr1i0MHjwY8+fPR5cuXRAdHQ0LCwsYGxszpFC6Sw0pEyZMgK+vL+bOnQsnJyf07t0bDx48QGRkJNq1a4dBgwbB2toa169fR0JCAk6ePCmdBZlTP+ln2djYYPbs2ZgwYQKGDRuGQ4cOoUqVKmjWrBmio6Oxfft2jBs3DtbW1uzFkzNt7ncizTh69Kh4+PBhmrYKFSoIIYS4c+eOyJ07t+jRo4e0/OHDh9znSunq6NGjomjRouLEiRNCCCHOnDkjDAwMRJEiRUT58uXFtm3bpHU/PzUDT9NAmpSQkCDmzZsndHR0RLdu3URSUpK07NKlS6JgwYJi2bJlWqyQ/gtn/fzGhBC4evUqGjRoAG9vb4SFhUnLnj9/DiEEYmNjUb9+fdStWxcrVqwAAAQFBcHb2xvv37/XVumUAYkv9iLnzJkTffr0QZUqVXDo0CE0btwYvr6+CAoKwsOHD7F48WKsXr0aAFR6T9iTQppkaGiI3r17Y8eOHejRowf09fWlbbVMmTIwMjLC06dPtVwl/RsGld+YQqFAqVKlMH/+fGzduhXe3t549OgRAKBRo0Z4/fo1zMzM0KhRI/j6+krd8YGBgbhx4wane5LGKJVKaUD2o0ePEBcXh/z586Ndu3ZISEjAokWLMGDAAHTq1An29vYoWrQoQkJCcOfOHS1XTpmBqakpGjRoIB1MMHVbDQ8Ph7GxMYoWLarN8ug/8KfLbyx1P76npycAYO7cudDV1UWPHj2QJ08ejB8/HjNmzMDHjx/x4cMHhISEYNOmTVi1ahVOnTolHRWU6Gd8PnB2woQJOHv2LIYPH44aNWrAysoKcXFxePnyJUxMTKCjo4PExEQ4OTlhxIgRqF+/vparp4xIfDaTMZWhoaH0/5SUFLx9+xY9e/aEQqFAu3btfnWJpAYGld9Yao/IoUOHoKOjg+TkZHh5eSEhIQEjR46Em5sb4uPjMWPGDGzfvh3Zs2eHgYEBgoODUaxYMS1XTxnF5yFlxYoV8PX1RalSpaSZO4mJibCyssKpU6ekAbPv3r3DmjVroKOjoxJ0iH5EWFgYIiIikC1bNtjZ2f3rEWSTk5Ph5+eHTZs2ISIiAufOnZPO3cNeZnni9OTfXGBgoHQiN1NTUzx48ACLFy9G3759MXLkSNjY2CAmJgbHjx+Hk5MTbG1tYWtrq+2y6Tf3Zbi4f/8+mjdvjtmzZ6NJkyZp1rt48SLGjRuH2NhYWFlZISAgAPr6+gwp9NM2bNiA+fPnIzw8HNbW1ujfv7/UU5Lqy+0sKCgIt2/fRr9+/TjL7DfAoPIbUyqV6NChAxQKBTZu3Ci1L1myBCNGjICnpyf69u2LvHnzarFKymhatmyJMWPGoGzZslLbtWvXUL9+fRw/fhwFCxb86kEEExISIISAkZERFAoFvxzop23YsAGenp7S4fFnzJiBR48e4fTp09K2lRpSIiMjcejQIbi5uancB3tS5I8/ZX5jqb8QUrvYk5KSAAD9+/eHh4cH1q5di8WLF6vMBiL6Webm5nBxcVFpMzIywvv373Hr1i2pLfX8PmfPnsWOHTugo6MDY2NjKBQKKJVKhhT6KZcuXcLUqVOxdOlSdOvWDcWLF8fgwYPh7OyMM2fO4Pbt24iOjpZ2i69fvx59+/bFX3/9pXI/DCnyx6DyG3rx4oX0/4IFC2Lv3r0IDw+HgYEBkpOTAQAODg4wMTFBcHAwjI2NtVUqZSDPnz8HAKxduxYGBgZYvHgxDh06hKSkJDg7O6NNmzaYO3cuDh8+DIVCAR0dHaSkpGD69OkIDg5WGTfA3T30sxITEzFo0CA0atRIaps0aRKOHDmCdu3aoXPnzmjbti0iIiKgr6+Phg0bYtiwYRw4+xvirp/fzPXr19GvXz+0b98effr0QVJSEmrWrIm3b9/i2LFjsLOzAwCMHDkSRYsWRePGjdOc1pxIXT179gQAjB49WtqV6OLigrdv32Lz5s2oWrUqTp48iYULF+LmzZvo0KEDDAwMcOTIEbx58wZXrlxhDwpplFKpxJs3b5A9e3YAQOfOnXH48GHs2bMHjo6OOH78OKZNm4aRI0eiffv2KmNWuLvn98KfNb8ZExMTWFhYYPv27Vi3bh0MDAywYsUK2NjYoHDhwmjevDnq1q2LRYsWoWzZsgwppBEuLi44ePAgvL29ERISAgC4ceMGChYsiA4dOuDEiROoUqUKpkyZgs6dO8PPzw9Hjx5Frly5cPnyZWnAIpGm6OjoSCEFAIYNG4bz58+jbNmyyJ49Oxo0aICIiAi8fv06zVRlhpTfC3tUfkMhISEYM2YMXr16hZ49e6JTp05ISUnBvHnzEBYWBiEE+vfvjyJFimi7VMpA1qxZgwkTJqBt27bo2bMnChYsCACoWrUqHj9+DH9/f1StWhUA8OHDB5iYmEi35cBZ+tWePXuGjh07YtiwYTzp4G+OQeU3cOXKFbx8+VJlX2xISAjGjRuH0NBQ9O/fHx06dNBihZSRfT61c/Xq1ZgwYQLatWuXJqyEhYVhw4YNqFChgsp4lK8dfItIHZ9vQ6n/T/33zZs3sLGxUVk/Li4O7dq1Q1RUFI4ePcoelN8cg4rMxcTEoFGjRtDV1cWIESPQoEEDaVloaCjq168PExMT9OjRA3379tVipZTRfOsYJytXrsTkyZPRpk0b9OrVSworNWvWxOnTp3Hu3DmUKlXqV5dLGdTXtsPUtoCAAGzatAmLFi2Cvb094uPjsXv3bvj5+eH58+e4ePEi9PX1OSblN8cxKjKVmh+zZs2KOXPmQE9PD0uXLsX+/fuldZycnFCjRg28evUKR44cQWRkpJaqpYzm8y+HM2fOIDg4GNevXwfwaWDt+PHjsXnzZvj6+uLevXsAgKNHj6JHjx5ppi4T/ahTp05JJwwcMmQIZs2aBeDT+JQtW7agc+fOqF27Nuzt7QF8OqHl48ePkTdvXly6dAn6+vr4+PEjQ8pvjj0qMpPanZn6CyD1C+P8+fMYNWoUTE1N0adPH2k30NChQ5E3b160bNkSOXLk0HL1lBF83s0+ZMgQbNmyBbGxsXBwcECuXLlw4MABAMCKFSswbdo0tG3bFu7u7iqnZeAvWPoZQghERUXB1tYWDRo0gLW1NQICAnDy5EkUK1YMkZGRcHV1haenJ/r37y/d5vPPToDbYUbBoCIjqW+04OBg7NmzBxEREahcuTL+/PNPWFhY4Ny5cxg/fjwSExORN29emJiYYMuWLbh+/TocHBy0XT5lAJ+HlEOHDmHQoEHw9fWFhYUF/vnnH0ycOBGmpqa4dOkSgE9jVjw8PODl5YV+/fpps3TKgMLDw5E3b16kpKRgx44daNiwobTsa2NTvjaWhX5/3PUjIwqFAjt37kSTJk3w4cMHfPjwAX5+fujTpw8iIiLg6uqKefPmoVq1aggJCcGjR49w9OhRhhTSmNQP9j179mDz5s2oXbs2KleujGLFiqF169bYsGEDYmNj0adPHwBA9+7dsXv3buk6kaYkJibi1atXMDExga6uLtasWSNNjQcAa2tr6f+pR0H+PJgwpGQc7FGRkUuXLqFt27YYNWoUevTogbCwMJQuXRrGxsYoWbIkNmzYACsrK+ncKV9OASXShIiICDRu3BjXr19HjRo1sG/fPpXlY8aMwenTp/H333/D1NRUamc3O/2sbw3gDg0NhYuLC2rUqIEFCxYgX758WqiOtIU9Kloyc+ZMjB07VvolAHw6RLmrqyt69OiB0NBQ1KpVC82bN8e4ceNw8eJF9O3bFxERETAyMgIAhhTSiM+3QQCwsrLC+vXrUadOHVy9ehVr165VWZ4/f368e/cO8fHxKu0MKfQzPg8px44dw8aNG3H9+nU8f/4cTk5OOH36NIKDgzFixAhpAHeLFi2wZMkSbZZNvwB7VLRkyZIlGDhwIGbMmIERI0ZIb9A7d+6gYMGCaNasmfSFoVQqUbJkSYSEhKBRo0bYsmULz5VCGvH5l8PDhw+hUChgYmICOzs7PH78GJ6enoiLi8Off/4JDw8PvH79Gu7u7jAyMsK+ffvYvU4aN2zYMKxfvx56enrIkiUL7OzssHDhQpQtWxY3b95EjRo14OTkhKSkJHz8+BHXr1+XTsxKGZSgX06pVAohhFi5cqXQ0dERU6dOFcnJydLyp0+fisKFC4t9+/YJIYSIiIgQ7dq1E0uWLBHPnj3TSs2U8aRuh0IIMXHiRFG8eHFRqFAhkSNHDuHr6yuEECIkJEQ0bNhQGBkZiYIFC4oWLVqIevXqifj4eCGEECkpKVqpnTKOz7fDoKAgUaJECXHy5EkREREhdu/eLVq0aCGcnZ3FlStXhBBCPHjwQEyZMkVMnz5d+tz8/POTMh4GlV9MqVRKb0ylUin++usvoaOjI6ZNmyZ96IeHh4uSJUsKDw8PERoaKsaMGSPKlSsnXr9+rc3SKYOaMmWKsLGxEYGBgSI2Nla0aNFCWFhYiNu3bwshhHj06JFo1KiRKFmypFi4cKF0u4SEBC1VTBnR+vXrRb9+/USvXr1U2i9evCjq168v3N3dRWxsrBBCNdwwpGR83H+gBQqFAocPH8bQoUNRpkwZ6Rwqs2bNghAClpaW6NChA44fPw5XV1ds2LABPj4+sLW11XbplAF8PiZFqVTiwoULWLhwIerWrYugoCAcO3YMM2bMQJEiRZCcnIw8efJg/vz5yJ49O/bv34+AgAAAgKGhobaeAmUA4otRB7t27cKyZctw7do1JCYmSu1ly5ZFlSpVcOrUKaSkpABQndHDc0hlAtpOSpnRjh07hLGxsZg6daq4ePGiEEIIX19faTeQEEIkJiaK27dvi6CgIPH06VNtlksZ1IQJE8SsWbNEzpw5xb1790RwcLDIkiWL8Pb2FkII8eHDBzF27FgRGhoqhBDi/v37onHjxqJs2bIiICBAm6XTb+7zHhF/f3+xYcMGIYQQ/fr1ExYWFmLZsmUiKipKWicwMFAUKlRI2hYpc2FQ+cXu3bsn8uTJI5YvX55m2YoVK6TdQESa9vl4ks2bNwtHR0dx69Yt0bFjR1GvXj1hYmIiVq9eLa3z/PlzUaVKFbFhwwbptnfu3BGtW7cWYWFhv7x+yhg+3w5v3bolSpUqJUqUKCF2794thBDC3d1d5M+fX0yfPl2EhISIkJAQUatWLVGtWjWVgEOZB/vMfrEnT55AX19f5QiLqTMvevXqBVNTU3Tq1AmGhoYYNmyYFiuljCZ1ds/x48dx7NgxDB06FEWLFpUOJFirVi1069YNwKeTYfbo0QO6urpo3749dHR0oFQqUahQIWzcuJGzLOiHpW6Hw4cPx+PHj2FsbIy7d+9i8ODB+PjxI9atW4du3bph3LhxWLJkCSpVqoQsWbJgy5YtUCgU3zzWCmVcDCq/WGxsrMrxJ5RKpbS/9dixYyhTpgy2bNmict4UIk159eoVunfvjvDwcIwZMwYA0Lt3bzx8+BBHjx5FqVKlkD9/fjx58gQJCQm4ePEidHV1VQ7mxjEB9LPWrVuHVatW4ciRI8iTJw8SExPh7u6OmTNnQkdHB2vWrIGJiQm2bt2K+vXro23btjA0NERSUhIMDAy0XT79Yoylv1iJEiXw9u1b+Pr6Avj06yI1qOzevRsbN25Ey5YtUbhwYW2WSRmUnZ0dAgICkD17duzduxeXL1+Grq4u5s6diylTpqBmzZqws7NDmzZtvnn2WR47hX5WSEgIihUrhpIlS8Lc3Bx2dnZYs2YNdHV1MXjwYOzcuRNLly5F7dq1sWDBAuzZswcxMTEMKZkUfxr9Ynny5MHSpUvRu3dvJCcno3PnztDV1cW6deuwbt06nD17lkf4pHTl4uKCHTt2wN3dHT4+Pujfvz9cXFzQtGlTNG3aVGXdlJQU9qCQxoj/P1GgoaEhEhISkJSUBCMjIyQnJyNnzpyYOXMmGjduDC8vLxgbG2Pjxo1o3749hg0bBj09Pbi5uWn7KZAW8Mi0WqBUKrFjxw54eHjA1NQURkZG0NXVxaZNm1CqVCltl0eZxNWrV9GjRw+UKVMGAwcORNGiRbVdEmUSN2/eRKlSpTB+/HhMnDhRag8MDMTKlSvx/v17pKSk4NixYwCArl27Yvz48cibN6+WKiZtYlDRohcvXiAsLAwKhQJ58uRB9uzZtV0SZTJXr16Fh4cHcufOjTlz5iBPnjzaLokyiXXr1qFXr14YNGgQ2rRpA0tLSwwYMAAVK1ZEixYtULRoUezfvx8NGjTQdqmkZQwqRJnchQsX4OPjg1WrVnE2Bf1SO3bsQN++fWFgYAAhBGxtbXHmzBm8fv0aderUwfbt2+Hi4qLtMknLGFSISBo7wKmf9Ks9f/4cT58+RXJyMipVqgQdHR2MHj0au3btQnBwMOzs7LRdImkZgwoRAfhfWCHSltu3b2P27Nn4+++/cfjwYZQsWVLbJZEMcDg/EQHgtGPSro8fPyIpKQm2trY4fvw4B3eThD0qREQkG8nJyTzyMalgUCEiIiLZ4qg5IiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSL6rRw7dgwKhQKRkZHffRsnJyd4eXmlW01ElH4YVIhIo7p06QKFQoHevXunWebp6QmFQoEuXbr8+sKI6LfEoEJEGufo6IjNmzcjPj5eaktISMDGjRuRK1cuLVZGRL8bBhUi0rjSpUvD0dERAQEBUltAQABy5cqFUqVKSW2JiYkYMGAAbG1tYWRkhMqVK+PixYsq9/X333+jQIECMDY2Ro0aNRAaGprm8U6dOoUqVarA2NgYjo6OGDBgAOLi4tLt+RHRr8OgQkTpolu3bli7dq10fc2aNejatavKOiNGjMCOHTuwfv16XLlyBc7OzqhXrx4iIiIAAE+fPkXLli3RpEkTXLt2DT169MCoUaNU7uPhw4eoX78+WrVqhRs3bmDLli04deoU+vXrl/5PkojSHYMKEaWLjh074tSpUwgLC0NYWBhOnz6Njh07Ssvj4uLg7e2NuXPnokGDBihSpAhWrlwJY2NjrF69GgDg7e2NfPnyYf78+ShYsCA6dOiQZnzLzJkz0aFDBwwaNAj58+dHxYoVsXjxYmzYsAEJCQm/8ikTUTrgSQmJKF3Y2NigUaNGWLduHYQQaNSoEaytraXlDx8+RHJyMipVqiS16evr448//sCdO3cAAHfu3EH58uVV7rdChQoq169fv44bN27A399fahNCQKlU4vHjxyhcuHB6PD0i+kUYVIgo3XTr1k3aBbNs2bJ0eYzY2Fh4eHhgwIABaZZx4C7R749BhYjSTf369ZGUlASFQoF69eqpLMuXLx8MDAxw+vRp5M6dG8CnM+devHgRgwYNAgAULlwYe/bsUbnduXPnVK6XLl0a//zzD5ydndPviRCR1nCMChGlG11dXdy5cwf//PMPdHV1VZaZmpqiT58+GD58OA4ePIh//vkHPXv2xIcPH9C9e3cAQO/evfHgwQMMHz4c9+7dw8aNG7Fu3TqV+xk5ciTOnDmDfv364dq1a3jw4AF2797NwbREGQSDChGlKzMzM5iZmX112axZs9CqVSt06tQJpUuXRkhICAIDA2FpaQng066bHTt2YNeuXShRogR8fHwwY8YMlftwcXHB8ePHcf/+fVSpUgWlSpXChAkTYG9vn+7PjYjSn0IIIbRdBBEREdHXsEeFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhk6/8AHoK08GWUizwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Model Nameclaude-instant-1gpt-3.5-turbo-0613gpt-3.5-turbo-16k-0613gpt-4-0613replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781
Prompt
\\nIs paul graham a writer?Yes, Paul Graham is considered a writer in ad...Yes, Paul Graham is a writer. He has written s...Yes, Paul Graham is a writer. He has authored ...Yes, Paul Graham is a writer. He is an essayis...Yes, Paul Graham is an author. According to t...
\\nWhat has Paul Graham done?Paul Graham has made significant contribution...Paul Graham has achieved several notable accom...Paul Graham has made significant contributions...Paul Graham is known for his work on the progr...Paul Graham has had a diverse career in compu...
\\nWhat is Paul Graham known for?Paul Graham is known for several things:\\n\\n-...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for many things, includi...
\\nWhere does Paul Graham live?Based on the information provided:\\n\\n- Paul ...According to the given information, Paul Graha...Paul Graham currently lives in England, where ...The text does not provide a current place of r...Based on the information provided, Paul Graha...
\\nWho is Paul Graham?Paul Graham is an influential computer scient...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist,...
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "## calculate avg response time\n", - "unique_models = set(result[\"response\"]['model'] for result in result[\"results\"])\n", - "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", - "for completion_result in result[\"results\"]:\n", - " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", - "\n", - "avg_response_time = {}\n", - "for model, data in model_dict.items():\n", - " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", - "\n", - "models = list(avg_response_time.keys())\n", - "response_times = list(avg_response_time.values())\n", - "\n", - "plt.bar(models, response_times)\n", - "plt.xlabel('Model', fontsize=10)\n", - "plt.ylabel('Average Response Time')\n", - "plt.title('Average Response Times for each Model')\n", - "\n", - "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "inSDIE3_IRds" - }, - "source": [ - "# Duration Test endpoint\n", - "\n", - "Run load testing for 2 mins. Hitting endpoints with 100+ queries every 15 seconds." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "id": "ePIqDx2EIURH" - }, - "outputs": [], - "source": [ - "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompt = \"Where does Paul Graham live?\"\n", - "final_prompt = context + prompt\n", - "result = load_test_model(models=models, prompt=final_prompt, num_calls=100, interval=15, duration=120)" + "text/plain": [ + "Model Name claude-instant-1 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is considered a writer in ad... \n", + "\\nWhat has Paul Graham done? Paul Graham has made significant contribution... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for several things:\\n\\n-... \n", + "\\nWhere does Paul Graham live? Based on the information provided:\\n\\n- Paul ... \n", + "\\nWho is Paul Graham? Paul Graham is an influential computer scient... \n", + "\n", + "Model Name gpt-3.5-turbo-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has written s... \n", + "\\nWhat has Paul Graham done? Paul Graham has achieved several notable accom... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? According to the given information, Paul Graha... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name gpt-3.5-turbo-16k-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has authored ... \n", + "\\nWhat has Paul Graham done? Paul Graham has made significant contributions... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? Paul Graham currently lives in England, where ... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name gpt-4-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He is an essayis... \n", + "\\nWhat has Paul Graham done? Paul Graham is known for his work on the progr... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? The text does not provide a current place of r... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781 \n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is an author. According to t... \n", + "\\nWhat has Paul Graham done? Paul Graham has had a diverse career in compu... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for many things, includi... \n", + "\\nWhere does Paul Graham live? Based on the information provided, Paul Graha... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist,... " ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Create an empty list to store the row data\n", + "table_data = []\n", + "\n", + "# Iterate through the list and extract the required data\n", + "for item in result:\n", + " prompt = item['prompt'][0]['content'].replace(context, \"\") # clean the prompt for easy comparison\n", + " model = item['response']['model']\n", + " response = item['response']['choices'][0]['message']['content']\n", + " table_data.append([prompt, model, response])\n", + "\n", + "# Create a DataFrame from the table data\n", + "df = pd.DataFrame(table_data, columns=['Prompt', 'Model Name', 'Response'])\n", + "\n", + "# Pivot the DataFrame to get the desired table format\n", + "table = df.pivot(index='Prompt', columns='Model Name', values='Response')\n", + "table" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "zOxUM40PINDC" + }, + "source": [ + "# Load Test endpoint\n", + "\n", + "Run 100+ simultaneous queries across multiple providers to see when they fail + impact on latency" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZkQf_wbcIRQ9" + }, + "outputs": [], + "source": [ + "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompt = \"Where does Paul Graham live?\"\n", + "final_prompt = context + prompt\n", + "result = load_test_model(models=models, prompt=final_prompt, num_calls=5)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "8vSNBFC06aXY" + }, + "source": [ + "## Visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 552 }, + "id": "SZfiKjLV3-n8", + "outputId": "00f7f589-b3da-43ed-e982-f9420f074b8d" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 552 - }, - "id": "k6rJoELM6t1K", - "outputId": "f4968b59-3bca-4f78-a88b-149ad55e3cf7" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIXCAYAAABghH+YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwdUlEQVR4nO3dd1QU198G8GfpoNKUooKCYuwIaiL2GrGLJnYFOxrsNZbYFTsYG2JDjV2xRKOIir33EhsWLBGwUaXJ3vcPX+bnCiYsLi6Oz+ecPbp37ux+lx3YZ+/cmVEIIQSIiIiIZEJH2wUQERERaRLDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNEcmSg4MDunfvru0y1DZnzhyUKFECurq6cHFx0XY5GnfkyBEoFAps27ZN26WoTaFQYNKkSWqv9+jRIygUCgQFBWm8Jsoaww19tiVLlkChUKBatWraLiXPcXBwgEKhkG758uXDDz/8gLVr12q7tK9Oxodidm5fqwMHDmDUqFGoWbMmVq9ejRkzZmi7pDwnKChIep9PnDiRabkQAvb29lAoFGjRooUWKqS8QE/bBdDXb/369XBwcMC5c+cQHh4OJycnbZeUp7i4uGD48OEAgOfPn2PFihXw8vJCSkoK+vTpo+Xqvh5ly5bFunXrVNrGjBmD/PnzY9y4cZn637lzBzo6X9f3t8OHD0NHRwcrV66EgYGBtsvJ04yMjLBhwwbUqlVLpf3o0aN4+vQpDA0NtVQZ5QUMN/RZHj58iFOnTiE4OBje3t5Yv349Jk6c+EVrUCqVSE1NhZGR0Rd93uwqWrQounbtKt3v3r07SpQoAT8/P4YbNdjY2Kj8HAFg5syZKFSoUKZ2AF/lh1t0dDSMjY01FmyEEEhOToaxsbFGHi8vadasGbZu3Yrff/8denr/+yjbsGEDqlSpgpcvX2qxOtK2r+trDeU569evh4WFBZo3b46ff/4Z69evl5alpaXB0tISPXr0yLReXFwcjIyMMGLECKktJSUFEydOhJOTEwwNDWFvb49Ro0YhJSVFZV2FQoEBAwZg/fr1KF++PAwNDbF//34AwNy5c1GjRg0ULFgQxsbGqFKlSpb79pOSkjBo0CAUKlQIBQoUQKtWrfDs2bMs96k/e/YMPXv2hI2NDQwNDVG+fHmsWrUqxz8zKysrlClTBvfv31dpVyqV8Pf3R/ny5WFkZAQbGxt4e3vjzZs3Kv0uXLgAd3d3FCpUCMbGxnB0dETPnj2l5Rn79+fOnQs/Pz8UL14cxsbGqFu3Lm7cuJGpnsOHD6N27drIly8fzM3N0bp1a9y6dUulz6RJk6BQKBAeHo7u3bvD3NwcZmZm6NGjB96+favSNzQ0FLVq1YK5uTny58+P0qVLY+zYsSp9svtef46P59xk7M44ceIEBg0aBCsrK5ibm8Pb2xupqamIiYmBp6cnLCwsYGFhgVGjRkEIofKYmnqPsqJQKLB69WokJiZKu10y5mi8e/cOU6dORcmSJWFoaAgHBweMHTs208/LwcEBLVq0QEhICKpWrQpjY2MsW7bsX5/37NmzaNKkCczMzGBiYoK6devi5MmTKn0iIiLwyy+/oHTp0jA2NkbBggXRrl07PHr0KNPjxcTEYOjQoXBwcIChoSHs7Ozg6emZKWwolUpMnz4ddnZ2MDIyQsOGDREeHv6vtX6oU6dOePXqFUJDQ6W21NRUbNu2DZ07d85yncTERAwfPhz29vYwNDRE6dKlMXfu3Ezvc0pKCoYOHQorKyvp78PTp0+zfExN/30gDRFEn6FMmTKiV69eQgghjh07JgCIc+fOSct79uwpzM3NRUpKisp6a9asEQDE+fPnhRBCpKeni8aNGwsTExMxZMgQsWzZMjFgwAChp6cnWrdurbIuAFG2bFlhZWUlJk+eLBYvXiwuX74shBDCzs5O/PLLL2LRokVi/vz54ocffhAAxJ49e1Qeo3379gKA6Natm1i8eLFo3769qFSpkgAgJk6cKPWLjIwUdnZ2wt7eXkyZMkUsXbpUtGrVSgAQfn5+//nzKV68uGjevLlKW1pamrC1tRU2NjYq7b179xZ6enqiT58+IiAgQIwePVrky5dPfP/99yI1NVUIIURUVJSwsLAQ3333nZgzZ45Yvny5GDdunChbtqz0OA8fPhQARMWKFYWDg4OYNWuWmDx5srC0tBRWVlYiMjJS6hsaGir09PTEd999J2bPni0mT54sChUqJCwsLMTDhw+lfhMnThQAhKurq2jbtq1YsmSJ6N27twAgRo0aJfW7ceOGMDAwEFWrVhULFiwQAQEBYsSIEaJOnTpSH3Xe6/9Svnx5Ubdu3U/+7L28vKT7q1evFgCEi4uLaNKkiVi8eLHo1q2b9Bpq1aolOnfuLJYsWSJatGghAIg1a9bkynuUlXXr1onatWsLQ0NDsW7dOrFu3Tpx//59IYQQXl5eAoD4+eefxeLFi4Wnp6cAIDw8PDK9ZicnJ2FhYSF+/fVXERAQIMLCwj75nIcOHRIGBgaievXqYt68ecLPz084OzsLAwMDcfbsWanf1q1bRaVKlcSECRNEYGCgGDt2rLCwsBDFixcXiYmJUr/4+HhRoUIFoaurK/r06SOWLl0qpk6dKr7//nvpdzQsLEzalqpUqSL8/PzEpEmThImJifjhhx/+9Wf04ft4/vx5UaNGDdGtWzdp2c6dO4WOjo549uxZpt89pVIpGjRoIBQKhejdu7dYtGiRaNmypQAghgwZovIcXbt2FQBE586dxaJFi0Tbtm2Fs7Nzjv8+ZPxOrl69+j9fH2kGww3l2IULFwQAERoaKoR4/8fDzs5ODB48WOoTEhIiAIg///xTZd1mzZqJEiVKSPfXrVsndHR0xPHjx1X6BQQECADi5MmTUhsAoaOjI27evJmpprdv36rcT01NFRUqVBANGjSQ2i5evJjlH7Tu3btn+uPVq1cvUbhwYfHy5UuVvh07dhRmZmaZnu9jxYsXF40bNxYvXrwQL168ENevX5c+UH18fKR+x48fFwDE+vXrVdbfv3+/SvuOHTtUQmFWMv6QGhsbi6dPn0rtZ8+eFQDE0KFDpTYXFxdhbW0tXr16JbVdvXpV6OjoCE9PT6ktI9z07NlT5bnatGkjChYsKN338/MTAMSLFy8+WZ867/V/yUm4cXd3F0qlUmqvXr26UCgUol+/flLbu3fvhJ2dncpja/I9+hQvLy+RL18+lbYrV64IAKJ3794q7SNGjBAAxOHDh1VeMwCxf//+/3wupVIpSpUqlenn8fbtW+Ho6Ch+/PFHlbaPnT59WgAQa9euldomTJggAIjg4OAsn0+I/4WbsmXLqnzpWbBggQAgrl+//q91fxhuFi1aJAoUKCDV165dO1G/fn3pZ/FhuNm5c6cAIKZNm6byeD///LNQKBQiPDxcCPG/n/cvv/yi0q9z5845/vvAcPPlcbcU5dj69ethY2OD+vXrA3g/rN6hQwds2rQJ6enpAIAGDRqgUKFC2Lx5s7TemzdvEBoaig4dOkhtW7duRdmyZVGmTBm8fPlSujVo0AAAEBYWpvLcdevWRbly5TLV9OHcgjdv3iA2Nha1a9fGpUuXpPaMXVi//PKLyroDBw5UuS+EwPbt29GyZUsIIVTqcnd3R2xsrMrjfsqBAwdgZWUFKysrVKxYEevWrUOPHj0wZ84clddvZmaGH3/8UeV5qlSpgvz580uv39zcHACwZ88epKWl/evzenh4oGjRotL9H374AdWqVcNff/0F4P3k5itXrqB79+6wtLSU+jk7O+PHH3+U+n2oX79+Kvdr166NV69eIS4uTqW+Xbt2QalUZlmXuu+1pvXq1UvliKpq1apBCIFevXpJbbq6uqhatSoePHigUrem36PsyHgfhg0bptKeMUl97969Ku2Ojo5wd3f/z8e9cuUK7t27h86dO+PVq1fS60lMTETDhg1x7Ngx6T388PcqLS0Nr169gpOTE8zNzVV+B7Zv345KlSqhTZs2mZ7v46PYevTooTK3qHbt2gCg8jP/L+3bt0dSUhL27NmD+Ph47Nmz55O7pP766y/o6upi0KBBKu3Dhw+HEAL79u2T+gHI1G/IkCEq9zX194Fyxzcdbo4dO4aWLVuiSJEiUCgU2LlzZ64/57Nnz9C1a1dpTkjFihVx4cKFXH9eTUtPT8emTZtQv359PHz4EOHh4QgPD0e1atUQFRWFQ4cOAQD09PTw008/YdeuXdL8gODgYKSlpamEm3v37uHmzZtSCMi4fffddwDeT7T8kKOjY5Z17dmzB25ubjAyMoKlpSWsrKywdOlSxMbGSn0iIiKgo6OT6TE+PsrrxYsXiImJQWBgYKa6MuYRfVxXVqpVq4bQ0FDs378fc+fOhbm5Od68eaPyh/3evXuIjY2FtbV1pudKSEiQnqdu3br46aefMHnyZBQqVAitW7fG6tWrs5yrUqpUqUxt3333nTRPIiIiAgBQunTpTP3Kli0rfdB9qFixYir3LSwsAECac9KhQwfUrFkTvXv3ho2NDTp27IgtW7aoBB1132tN+/g1mJmZAQDs7e0ztX84lyY33qPsyNheP94+bW1tYW5uLr2PGT71u/Gxe/fuAQC8vLwyvZ4VK1YgJSVF+r1JSkrChAkTpLkqhQoVgpWVFWJiYlR+t+7fv48KFSpk6/n/a1vKDisrKzRq1AgbNmxAcHAw0tPT8fPPP2fZNyIiAkWKFEGBAgVU2suWLSstz/hXR0cHJUuWVOn38e+Jpv4+UO74po+WSkxMRKVKldCzZ0+0bds215/vzZs3qFmzJurXr499+/bBysoK9+7dk36pvyaHDx/G8+fPsWnTJmzatCnT8vXr16Nx48YAgI4dO2LZsmXYt28fPDw8sGXLFpQpUwaVKlWS+iuVSlSsWBHz58/P8vk+/uDJ6uiP48ePo1WrVqhTpw6WLFmCwoULQ19fH6tXr8aGDRvUfo0ZH8hdu3aFl5dXln2cnZ3/83EKFSqERo0aAQDc3d1RpkwZtGjRAgsWLJC+jSuVSlhbW6tMyP6QlZUVAEgnPztz5gz+/PNPhISEoGfPnpg3bx7OnDmD/Pnzq/061aGrq5tlu/j/CZnGxsY4duwYwsLCsHfvXuzfvx+bN29GgwYNcODAAejq6qr9Xmvap15DVu3ig4mm2n6Psnv+nuweGZWxfc+ZM+eTJwvMqHXgwIFYvXo1hgwZgurVq8PMzAwKhQIdO3b85Ajdf/mvbSm7OnfujD59+iAyMhJNmzaVRs5ym6b+PlDu+KbDTdOmTdG0adNPLk9JScG4ceOwceNGxMTEoEKFCpg1axbq1auXo+ebNWsW7O3tsXr1aqktu9+y8pr169fD2toaixcvzrQsODgYO3bsQEBAAIyNjVGnTh0ULlwYmzdvRq1atXD48OFM5yUpWbIkrl69ioYNG+b4JGzbt2+HkZERQkJCVA4D/vDnDQDFixeHUqnEw4cPVUY3Pj5SI+NIifT0dCmcaELz5s1Rt25dzJgxA97e3siXLx9KliyJgwcPombNmtn6cHJzc4ObmxumT5+ODRs2oEuXLti0aRN69+4t9cn4Zv6hu3fvwsHBAcD7nwPw/nwwH7t9+zYKFSqEfPnyqf36dHR00LBhQzRs2BDz58/HjBkzMG7cOISFhaFRo0Yaea+1ITfeo+zI2F7v3bsnjTIAQFRUFGJiYqT3UV0ZIxOmpqb/uX1v27YNXl5emDdvntSWnJyMmJiYTI+Z1RF5ualNmzbw9vbGmTNnVHZ/f6x48eI4ePAg4uPjVUZvbt++LS3P+FepVOL+/fsqozUf/57k1t8H0oxverfUfxkwYABOnz6NTZs24dq1a2jXrh2aNGmS5YdGduzevRtVq1ZFu3btYG1tDVdXVyxfvlzDVee+pKQkBAcHo0WLFvj5558z3QYMGID4+Hjs3r0bwPsPu59//hl//vkn1q1bh3fv3qnskgLe7zt/9uxZlj+PpKSkTLtHsqKrqwuFQiHN9wHeHxb98e7GjPkIS5YsUWlfuHBhpsf76aefsH379iz/YL948eI/a/qU0aNH49WrV9Lrbd++PdLT0zF16tRMfd+9eyd9iLx58ybTN9uMb90f7/bYuXMnnj17Jt0/d+4czp49KwX6woULw8XFBWvWrFH5kLpx4wYOHDiAZs2aqf26Xr9+nant4/o08V5rQ268R9mR8T74+/urtGeMfDVv3lztxwSAKlWqoGTJkpg7dy4SEhIyLf9w+9bV1c30mhYuXKjyuwYAP/30E65evYodO3Zkejx1R2SyK3/+/Fi6dCkmTZqEli1bfrJfs2bNkJ6ejkWLFqm0+/n5QaFQSL8XGf/+/vvvKv0+/vnn5t8H+nzf9MjNv3n8+DFWr16Nx48fo0iRIgCAESNGYP/+/Tk+LfqDBw+wdOlSDBs2DGPHjsX58+cxaNAgGBgYfHJYMy/avXs34uPj0apVqyyXu7m5wcrKCuvXr5dCTIcOHbBw4UJMnDgRFStWVPkGCgDdunXDli1b0K9fP4SFhaFmzZpIT0/H7du3sWXLFum8Hf+mefPmmD9/Ppo0aYLOnTsjOjoaixcvhpOTE65duyb1q1KlCn766Sf4+/vj1atXcHNzw9GjR3H37l0AqsP/M2fORFhYGKpVq4Y+ffqgXLlyeP36NS5duoSDBw9m+WGeHU2bNkWFChUwf/58+Pj4oG7duvD29oavry+uXLmCxo0bQ19fH/fu3cPWrVuxYMEC/Pzzz1izZg2WLFmCNm3aoGTJkoiPj8fy5cthamqaKYw4OTmhVq1a6N+/P1JSUuDv74+CBQti1KhRUp85c+agadOmqF69Onr16oWkpCQsXLgQZmZmObqGzpQpU3Ds2DE0b94cxYsXR3R0NJYsWQI7OzvpTLKaeK+1ITfeo+yoVKkSvLy8EBgYiJiYGNStWxfnzp3DmjVr4OHhIU3oV5eOjg5WrFiBpk2bonz58ujRoweKFi2KZ8+eISwsDKampvjzzz8BAC1atMC6detgZmaGcuXK4fTp0zh48CAKFiyo8pgjR47Etm3b0K5dO/Ts2RNVqlTB69evsXv3bgQEBKjsitak7Pz9bNmyJerXr49x48bh0aNHqFSpEg4cOIBdu3ZhyJAh0kiWi4sLOnXqhCVLliA2NhY1atTAoUOHsjwHT279fSAN0MoxWnkQALFjxw7p/p49ewQAkS9fPpWbnp6eaN++vRBCiFu3bgkA/3obPXq09Jj6+vqievXqKs87cOBA4ebm9kVeo6a0bNlSGBkZqZzf4mPdu3cX+vr60iGSSqVS2NvbZ3koZobU1FQxa9YsUb58eWFoaCgsLCxElSpVxOTJk0VsbKzUDx8dRv2hlStXilKlSglDQ0NRpkwZsXr1aukw5g8lJiYKHx8fYWlpKfLnzy88PDzEnTt3BAAxc+ZMlb5RUVHCx8dH2NvbC319fWFraysaNmwoAgMD//NnldV5bjIEBQVlOjw0MDBQVKlSRRgbG4sCBQqIihUrilGjRol//vlHCCHEpUuXRKdOnUSxYsWEoaGhsLa2Fi1atBAXLlyQHiPjsNM5c+aIefPmCXt7e2FoaChq164trl69mqmOgwcPipo1awpjY2NhamoqWrZsKf7++2+VPhk/w48P8c44LDfjnDiHDh0SrVu3FkWKFBEGBgaiSJEiolOnTuLu3bsq62X3vf4vOTkU/ONDtD/12rI6LFsIzbxHn/Kp50xLSxOTJ08Wjo6OQl9fX9jb24sxY8aI5OTkTK/5U9vbp1y+fFm0bdtWFCxYUBgaGorixYuL9u3bi0OHDkl93rx5I3r06CEKFSok8ufPL9zd3cXt27cz/YyFEOLVq1diwIABomjRosLAwEDY2dkJLy8v6W9BxqHgW7duVVkvu4dLf+p9/FhWP4v4+HgxdOhQUaRIEaGvry9KlSol5syZo3IovBBCJCUliUGDBomCBQuKfPnyiZYtW4onT55kOhRciOz9feCh4F+eQohcGiv8yigUCuzYsQMeHh4AgM2bN6NLly64efNmpolv+fPnh62tLVJTU//zsMWCBQtKEw2LFy+OH3/8EStWrJCWL126FNOmTVPZfUDaceXKFbi6uuKPP/5Aly5dtF1Ojj169AiOjo6YM2eOyhmgiYi+Fdwt9Qmurq5IT09HdHS0dP6FjxkYGKBMmTLZfsyaNWtmmpR29+7dHE8IpJxLSkrKNCnU398fOjo6qFOnjpaqIiIiTfimw01CQoLKftSHDx/iypUrsLS0xHfffYcuXbrA09MT8+bNg6urK168eIFDhw7B2dk5R5P4hg4diho1amDGjBlo3749zp07h8DAQAQGBmryZVE2zJ49GxcvXkT9+vWhp6eHffv2Yd++fejbt2+uH4pMRES5TNv7xbQpY9/vx7eMfcipqaliwoQJwsHBQejr64vChQuLNm3aiGvXruX4Of/8809RoUIFaU5IduZtkOYdOHBA1KxZU1hYWAh9fX1RsmRJMWnSJJGWlqbt0j7bh3NuiIi+RZxzQ0RERLLC89wQERGRrDDcEBERkax8cxOKlUol/vnnHxQoUOCrOvU7ERHRt0wIgfj4eBQpUgQ6Ov8+NvPNhZt//vmHR8MQERF9pZ48eQI7O7t/7fPNhZuMC6Y9efIEpqamWq6GiIiIsiMuLg729vYqFz79lG8u3GTsijI1NWW4ISIi+spkZ0oJJxQTERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs6Gm7ACLSLIdf92q7BNKyRzOba/X5uQ2StrdBjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrGg13CxduhTOzs4wNTWFqakpqlevjn379v3rOlu3bkWZMmVgZGSEihUr4q+//vpC1RIREdHXQKvhxs7ODjNnzsTFixdx4cIFNGjQAK1bt8bNmzez7H/q1Cl06tQJvXr1wuXLl+Hh4QEPDw/cuHHjC1dOREREeZVCCCG0XcSHLC0tMWfOHPTq1SvTsg4dOiAxMRF79uyR2tzc3ODi4oKAgIBsPX5cXBzMzMwQGxsLU1NTjdVNlFfwooWk7YsWchuk3NgG1fn8zjNzbtLT07Fp0yYkJiaievXqWfY5ffo0GjVqpNLm7u6O06dPf/JxU1JSEBcXp3IjIiIi+dJ6uLl+/Try588PQ0ND9OvXDzt27EC5cuWy7BsZGQkbGxuVNhsbG0RGRn7y8X19fWFmZibd7O3tNVo/ERER5S1aDzelS5fGlStXcPbsWfTv3x9eXl74+++/Nfb4Y8aMQWxsrHR78uSJxh6biIiI8h49bRdgYGAAJycnAECVKlVw/vx5LFiwAMuWLcvU19bWFlFRUSptUVFRsLW1/eTjGxoawtDQULNFExERUZ6l9ZGbjymVSqSkpGS5rHr16jh06JBKW2ho6Cfn6BAREdG3R6sjN2PGjEHTpk1RrFgxxMfHY8OGDThy5AhCQkIAAJ6enihatCh8fX0BAIMHD0bdunUxb948NG/eHJs2bcKFCxcQGBiozZdBREREeYhWw010dDQ8PT3x/PlzmJmZwdnZGSEhIfjxxx8BAI8fP4aOzv8Gl2rUqIENGzZg/PjxGDt2LEqVKoWdO3eiQoUK2noJRERElMdoNdysXLnyX5cfOXIkU1u7du3Qrl27XKqIiIiIvnZ5bs4NERER0edguCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWdFquPH19cX333+PAgUKwNraGh4eHrhz586/rhMUFASFQqFyMzIy+kIVExERUV6n1XBz9OhR+Pj44MyZMwgNDUVaWhoaN26MxMTEf13P1NQUz58/l24RERFfqGIiIiLK6/S0+eT79+9XuR8UFARra2tcvHgRderU+eR6CoUCtra2uV0eERERfYXy1Jyb2NhYAIClpeW/9ktISEDx4sVhb2+P1q1b4+bNm5/sm5KSgri4OJUbERERyVeeCTdKpRJDhgxBzZo1UaFChU/2K126NFatWoVdu3bhjz/+gFKpRI0aNfD06dMs+/v6+sLMzEy62dvb59ZLICIiojwgz4QbHx8f3LhxA5s2bfrXftWrV4enpydcXFxQt25dBAcHw8rKCsuWLcuy/5gxYxAbGyvdnjx5khvlExERUR6h1Tk3GQYMGIA9e/bg2LFjsLOzU2tdfX19uLq6Ijw8PMvlhoaGMDQ01ESZRERE9BXQ6siNEAIDBgzAjh07cPjwYTg6Oqr9GOnp6bh+/ToKFy6cCxUSERHR10arIzc+Pj7YsGEDdu3ahQIFCiAyMhIAYGZmBmNjYwCAp6cnihYtCl9fXwDAlClT4ObmBicnJ8TExGDOnDmIiIhA7969tfY6iIiIKO/QarhZunQpAKBevXoq7atXr0b37t0BAI8fP4aOzv8GmN68eYM+ffogMjISFhYWqFKlCk6dOoVy5cp9qbKJiIgoD9NquBFC/GefI0eOqNz38/ODn59fLlVEREREX7s8MaFYThx+3avtEkjLHs1sru0SiIi+aXnmUHAiIiIiTWC4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZyVG4uX//PsaPH49OnTohOjoaALBv3z7cvHlTo8URERERqUvtcHP06FFUrFgRZ8+eRXBwMBISEgAAV69excSJEzVeIBEREZE61A43v/76K6ZNm4bQ0FAYGBhI7Q0aNMCZM2c0WhwRERGRutQON9evX0ebNm0ytVtbW+Ply5caKYqIiIgop9QON+bm5nj+/Hmm9suXL6No0aIaKYqIiIgop9QONx07dsTo0aMRGRkJhUIBpVKJkydPYsSIEfD09MyNGomIiIiyTe1wM2PGDJQpUwb29vZISEhAuXLlUKdOHdSoUQPjx4/PjRqJiIiIsk3tq4IbGBhg+fLl+O2333Djxg0kJCTA1dUVpUqVyo36iIiIiNSidrjJUKxYMRQrVkyTtRARERF9NrXDjRAC27ZtQ1hYGKKjo6FUKlWWBwcHa6w4IiIiInWpHW6GDBmCZcuWoX79+rCxsYFCociNuoiIiIhyRO1ws27dOgQHB6NZs2a5UQ8RERHRZ1H7aCkzMzOUKFEiN2ohIiIi+mxqh5tJkyZh8uTJSEpKyo16iIiIiD6L2rul2rdvj40bN8La2hoODg7Q19dXWX7p0iWNFUdERESkLrXDjZeXFy5evIiuXbtyQjERERHlOWqHm7179yIkJAS1atXKjXqIiIiIPovac27s7e1hamqaG7UQERERfTa1w828efMwatQoPHr0KBfKISIiIvo8au+W6tq1K96+fYuSJUvCxMQk04Ti169fa6w4IiIiInWpHW78/f1zoQwiIiIizcjR0VJEREREeVW2wk1cXJw0iTguLu5f+3KyMREREWlTtsKNhYUFnj9/Dmtra5ibm2d5bhshBBQKBdLT0zVeJBEREVF2ZSvcHD58GJaWlgCAsLCwXC2IiIiI6HNkK9zUrVsXJUqUwPnz51G3bt3cromIiIgox7J9nptHjx5xlxMRERHleWqfxI+IiIgoL1PrUPCQkBCYmZn9a59WrVp9VkFEREREn0OtcPNf57jh0VJERESkbWrtloqMjIRSqfzkjcGGiIiItC3b4Sarc9sQERER5TXZDjdCiNysg4iIiEgjsh1uvLy8YGxsnJu1EBEREX22bE8oXr16dW7WQURERKQRPM8NERERyQrDDREREckKww0RERHJSo7DTXh4OEJCQpCUlAQgZ0dT+fr64vvvv0eBAgVgbW0NDw8P3Llz5z/X27p1K8qUKQMjIyNUrFgRf/31l9rPTURERPKkdrh59eoVGjVqhO+++w7NmjXD8+fPAQC9evXC8OHD1Xqso0ePwsfHB2fOnEFoaCjS0tLQuHFjJCYmfnKdU6dOoVOnTujVqxcuX74MDw8PeHh44MaNG+q+FCIiIpIhtcPN0KFDoaenh8ePH8PExERq79ChA/bv36/WY+3fvx/du3dH+fLlUalSJQQFBeHx48e4ePHiJ9dZsGABmjRpgpEjR6Js2bKYOnUqKleujEWLFqn7UoiIiEiG1Lq2FAAcOHAAISEhsLOzU2kvVaoUIiIiPquY2NhYAIClpeUn+5w+fRrDhg1TaXN3d8fOnTuz7J+SkoKUlBTpflxc3GfVSERERHmb2iM3iYmJKiM2GV6/fg1DQ8McF6JUKjFkyBDUrFkTFSpU+GS/yMhI2NjYqLTZ2NggMjIyy/6+vr4wMzOTbvb29jmukYiIiPI+tcNN7dq1sXbtWum+QqGAUqnE7NmzUb9+/RwX4uPjgxs3bmDTpk05foysjBkzBrGxsdLtyZMnGn18IiIiylvU3i01e/ZsNGzYEBcuXEBqaipGjRqFmzdv4vXr1zh58mSOihgwYAD27NmDY8eOZdrd9TFbW1tERUWptEVFRcHW1jbL/oaGhp81okRERERfF7VHbipUqIC7d++iVq1aaN26NRITE9G2bVtcvnwZJUuWVOuxhBAYMGAAduzYgcOHD8PR0fE/16levToOHTqk0hYaGorq1aur9dxEREQkT2qP3ACAmZkZxo0b99lP7uPjgw0bNmDXrl0oUKCANG/GzMxMukinp6cnihYtCl9fXwDA4MGDUbduXcybNw/NmzfHpk2bcOHCBQQGBn52PURERPT1U3vkZv/+/Thx4oR0f/HixXBxcUHnzp3x5s0btR5r6dKliI2NRb169VC4cGHptnnzZqnP48ePpXPpAECNGjWwYcMGBAYGolKlSti2bRt27tz5r5OQiYiI6Nuh9sjNyJEjMWvWLADA9evXMWzYMAwfPhxhYWEYNmyYWlcPz85ZjY8cOZKprV27dmjXrl22n4eIiIi+HWqHm4cPH6JcuXIAgO3bt6Nly5aYMWMGLl26hGbNmmm8QCIiIiJ1qL1bysDAAG/fvgUAHDx4EI0bNwbw/sR7PEEeERERaZvaIze1atXCsGHDULNmTZw7d06aH3P37t3/PIybiIiIKLepPXKzaNEi6OnpYdu2bVi6dCmKFi0KANi3bx+aNGmi8QKJiIiI1KH2yE2xYsWwZ8+eTO1+fn4aKYiIiIjoc+ToPDdKpRLh4eGIjo6GUqlUWVanTh2NFEZERESUE2qHmzNnzqBz586IiIjIdCi3QqFAenq6xoojIiIiUpfa4aZfv36oWrUq9u7di8KFC0OhUORGXUREREQ5ona4uXfvHrZt2wYnJ6fcqIeIiIjos6h9tFS1atUQHh6eG7UQERERfTa1R24GDhyI4cOHIzIyEhUrVoS+vr7KcmdnZ40VR0RERKQutcPNTz/9BADo2bOn1KZQKCCE4IRiIiIi0rocXVuKiIiIKK9SO9wUL148N+ogIiIi0ogcncTv/v378Pf3x61btwAA5cqVw+DBg1GyZEmNFkdERESkLrWPlgoJCUG5cuVw7tw5ODs7w9nZGWfPnkX58uURGhqaGzUSERERZZvaIze//vorhg4dipkzZ2ZqHz16NH788UeNFUdERESkLrVHbm7duoVevXplau/Zsyf+/vtvjRRFRERElFNqhxsrKytcuXIlU/uVK1dgbW2tiZqIiIiIckzt3VJ9+vRB37598eDBA9SoUQMAcPLkScyaNQvDhg3TeIFERERE6lA73Pz2228oUKAA5s2bhzFjxgAAihQpgkmTJmHQoEEaL5CIiIhIHWqHG4VCgaFDh2Lo0KGIj48HABQoUEDjhRERERHlRI7OcwMA0dHRuHPnDgCgTJkysLKy0lhRRERERDml9oTi+Ph4dOvWDUWKFEHdunVRt25dFClSBF27dkVsbGxu1EhERESUbWqHm969e+Ps2bPYu3cvYmJiEBMTgz179uDChQvw9vbOjRqJiIiIsk3t3VJ79uxBSEgIatWqJbW5u7tj+fLlaNKkiUaLIyIiIlKX2iM3BQsWhJmZWaZ2MzMzWFhYaKQoIiIiopxSO9yMHz8ew4YNQ2RkpNQWGRmJkSNH4rffftNocURERETqUnu31NKlSxEeHo5ixYqhWLFiAIDHjx/D0NAQL168wLJly6S+ly5d0lylRERERNmgdrjx8PDIhTKIiIiINEPtcDNx4sTcqIOIiIhII9Sec/PkyRM8ffpUun/u3DkMGTIEgYGBGi2MiIiIKCfUDjedO3dGWFgYgPcTiRs1aoRz585h3LhxmDJlisYLJCIiIlKH2uHmxo0b+OGHHwAAW7ZsQcWKFXHq1CmsX78eQUFBmq6PiIiISC1qh5u0tDQYGhoCAA4ePIhWrVoBeH99qefPn2u2OiIiIiI1qR1uypcvj4CAABw/fhyhoaHSWYn/+ecfFCxYUOMFEhEREalD7XAza9YsLFu2DPXq1UOnTp1QqVIlAMDu3bul3VVERERE2qL2oeD16tXDy5cvERcXp3K5hb59+8LExESjxRERERGpS+2RGwAQQuDixYtYtmwZ4uPjAQAGBgYMN0RERKR1ao/cREREoEmTJnj8+DFSUlLw448/okCBApg1axZSUlIQEBCQG3USERERZYvaIzeDBw9G1apV8ebNGxgbG0vtbdq0waFDhzRaHBEREZG61B65OX78OE6dOgUDAwOVdgcHBzx79kxjhRERERHlhNojN0qlEunp6Znanz59igIFCmikKCIiIqKcUjvcNG7cGP7+/tJ9hUKBhIQETJw4Ec2aNdNkbURERERqU3u31Lx58+Du7o5y5cohOTkZnTt3xr1791CoUCFs3LgxN2okIiIiyja1R27s7Oxw9epVjBs3DkOHDoWrqytmzpyJy5cvw9raWq3HOnbsGFq2bIkiRYpAoVBg586d/9r/yJEjUCgUmW6RkZHqvgwiIiKSKbVHbgBAT08PXbp0QZcuXaS258+fY+TIkVi0aFG2HycxMRGVKlVCz5490bZt22yvd+fOHZiamkr31Q1VREREJF9qhZubN28iLCwMBgYGaN++PczNzfHy5UtMnz4dAQEBKFGihFpP3rRpUzRt2lStdYD3Ycbc3Fzt9YiIiEj+sr1bavfu3XB1dcWgQYPQr18/VK1aFWFhYShbtixu3bqFHTt24ObNm7lZq8TFxQWFCxfGjz/+iJMnT/5r35SUFMTFxanciIiISL6yHW6mTZsGHx8fxMXFYf78+Xjw4AEGDRqEv/76C/v375euDp6bChcujICAAGzfvh3bt2+Hvb096tWrh0uXLn1yHV9fX5iZmUk3e3v7XK+TiIiItCfb4ebOnTvw8fFB/vz5MXDgQOjo6MDPzw/ff/99btanonTp0vD29kaVKlVQo0YNrFq1CjVq1ICfn98n1xkzZgxiY2Ol25MnT75YvURERPTlZXvOTXx8vDSJV1dXF8bGxmrPsckNP/zwA06cOPHJ5YaGhjA0NPyCFREREZE2qTWhOCQkBGZmZgDen6n40KFDuHHjhkqfVq1aaa66bLhy5QoKFy78RZ+TiIiI8i61wo2Xl5fKfW9vb5X7CoUiy0szfEpCQgLCw8Ol+w8fPsSVK1dgaWmJYsWKYcyYMXj27BnWrl0LAPD394ejoyPKly+P5ORkrFixAocPH8aBAwfUeRlEREQkY9kON0qlUuNPfuHCBdSvX1+6P2zYMADvQ1RQUBCeP3+Ox48fS8tTU1MxfPhwPHv2DCYmJnB2dsbBgwdVHoOIiIi+bTk6iZ+m1KtXD0KITy4PCgpSuT9q1CiMGjUql6siIiKir5nal18gIiIiyssYboiIiEhWGG6IiIhIVhhuiIiISFZyFG5iYmKwYsUKjBkzBq9fvwYAXLp0Cc+ePdNocURERETqUvtoqWvXrqFRo0YwMzPDo0eP0KdPH1haWiI4OBiPHz+WzklDREREpA1qj9wMGzYM3bt3x71792BkZCS1N2vWDMeOHdNocURERETqUjvcnD9/PtOZiQGgaNGiiIyM1EhRRERERDmldrgxNDREXFxcpva7d+/CyspKI0URERER5ZTa4aZVq1aYMmUK0tLSALy/ntTjx48xevRo/PTTTxovkIiIiEgdaoebefPmISEhAdbW1khKSkLdunXh5OSEAgUKYPr06blRIxEREVG2qX20lJmZGUJDQ3HixAlcu3YNCQkJqFy5Mho1apQb9RERERGpJccXzqxVqxZq1aqlyVqIiIiIPpva4eb333/Psl2hUMDIyAhOTk6oU6cOdHV1P7s4IiIiInWpHW78/Pzw4sULvH37FhYWFgCAN2/ewMTEBPnz50d0dDRKlCiBsLAw2Nvba7xgIiIion+j9oTiGTNm4Pvvv8e9e/fw6tUrvHr1Cnfv3kW1atWwYMECPH78GLa2thg6dGhu1EtERET0r9QeuRk/fjy2b9+OkiVLSm1OTk6YO3cufvrpJzx48ACzZ8/mYeFERESkFWqP3Dx//hzv3r3L1P7u3TvpDMVFihRBfHz851dHREREpCa1w039+vXh7e2Ny5cvS22XL19G//790aBBAwDA9evX4ejoqLkqiYiIiLJJ7XCzcuVKWFpaokqVKjA0NIShoSGqVq0KS0tLrFy5EgCQP39+zJs3T+PFEhEREf0Xtefc2NraIjQ0FLdv38bdu3cBAKVLl0bp0qWlPvXr19dchURERERqyPFJ/MqUKYMyZcposhYiIiKiz5ajcPP06VPs3r0bjx8/Rmpqqsqy+fPna6QwIiIiopxQO9wcOnQIrVq1QokSJXD79m1UqFABjx49ghAClStXzo0aiYiIiLJN7QnFY8aMwYgRI3D9+nUYGRlh+/btePLkCerWrYt27drlRo1ERERE2aZ2uLl16xY8PT0BAHp6ekhKSkL+/PkxZcoUzJo1S+MFEhEREalD7XCTL18+aZ5N4cKFcf/+fWnZy5cvNVcZERERUQ6oPefGzc0NJ06cQNmyZdGsWTMMHz4c169fR3BwMNzc3HKjRiIiIqJsUzvczJ8/HwkJCQCAyZMnIyEhAZs3b0apUqV4pBQRERFpnVrhJj09HU+fPoWzszOA97uoAgICcqUwIiIiopxQa86Nrq4uGjdujDdv3uRWPURERESfRe0JxRUqVMCDBw9yoxYiIiKiz6Z2uJk2bRpGjBiBPXv24Pnz54iLi1O5EREREWmT2hOKmzVrBgBo1aoVFAqF1C6EgEKhQHp6uuaqIyIiIlKT2uEmLCwsN+ogIiIi0gi1w03dunVzow4iIiIijVB7zg0AHD9+HF27dkWNGjXw7NkzAMC6detw4sQJjRZHREREpC61w8327dvh7u4OY2NjXLp0CSkpKQCA2NhYzJgxQ+MFEhEREakjR0dLBQQEYPny5dDX15faa9asiUuXLmm0OCIiIiJ1qR1u7ty5gzp16mRqNzMzQ0xMjCZqIiIiIsoxtcONra0twsPDM7WfOHECJUqU0EhRRERERDmldrjp06cPBg8ejLNnz0KhUOCff/7B+vXrMWLECPTv3z83aiQiIiLKNrUPBf/111+hVCrRsGFDvH37FnXq1IGhoSFGjBiBgQMH5kaNRERERNmmdrhRKBQYN24cRo4cifDwcCQkJKBcuXLInz9/btRHREREpBa1d0v98ccfePv2LQwMDFCuXDn88MMPDDZERESUZ6gdboYOHQpra2t07twZf/3112ddS+rYsWNo2bIlihQpAoVCgZ07d/7nOkeOHEHlypVhaGgIJycnBAUF5fj5iYiISH7UDjfPnz/Hpk2boFAo0L59exQuXBg+Pj44deqU2k+emJiISpUqYfHixdnq//DhQzRv3hz169fHlStXMGTIEPTu3RshISFqPzcRERHJk9pzbvT09NCiRQu0aNECb9++xY4dO7BhwwbUr18fdnZ2uH//frYfq2nTpmjatGm2+wcEBMDR0RHz5s0DAJQtWxYnTpyAn58f3N3d1X0pREREJENqh5sPmZiYwN3dHW/evEFERARu3bqlqbqydPr0aTRq1Eilzd3dHUOGDPnkOikpKdIlIgAgLi4ut8ojIiKiPCBHF858+/Yt1q9fj2bNmqFo0aLw9/dHmzZtcPPmTU3XpyIyMhI2NjYqbTY2NoiLi0NSUlKW6/j6+sLMzEy62dvb52qNREREpF1qh5uOHTvC2toaQ4cORYkSJXDkyBGEh4dj6tSpKFOmTG7U+FnGjBmD2NhY6fbkyRNtl0RERES5SO3dUrq6utiyZQvc3d2hq6ursuzGjRuoUKGCxor7mK2tLaKiolTaoqKiYGpqCmNj4yzXMTQ0hKGhYa7VRERERHmL2uFm/fr1Kvfj4+OxceNGrFixAhcvXvysQ8P/S/Xq1fHXX3+ptIWGhqJ69eq59pxERET0dcnRnBvg/TlqvLy8ULhwYcydOxcNGjTAmTNn1HqMhIQEXLlyBVeuXAHw/lDvK1eu4PHjxwDe71Ly9PSU+vfr1w8PHjzAqFGjcPv2bSxZsgRbtmzB0KFDc/oyiIiISGbUGrmJjIxEUFAQVq5cibi4OLRv3x4pKSnYuXMnypUrp/aTX7hwAfXr15fuDxs2DADg5eWFoKAgPH/+XAo6AODo6Ii9e/di6NChWLBgAezs7LBixQoeBk5ERESSbIebli1b4tixY2jevDn8/f3RpEkT6OrqIiAgIMdPXq9ePQghPrk8q7MP16tXD5cvX87xcxIREZG8ZTvc7Nu3D4MGDUL//v1RqlSp3KyJiIiIKMeyPefmxIkTiI+PR5UqVVCtWjUsWrQIL1++zM3aiIiIiNSW7XDj5uaG5cuX4/nz5/D29samTZtQpEgRKJVKhIaGIj4+PjfrJCIiIsoWtY+WypcvH3r27IkTJ07g+vXrGD58OGbOnAlra2u0atUqN2okIiIiyrYcHwoOAKVLl8bs2bPx9OlTbNy4UVM1EREREeXYZ4WbDLq6uvDw8MDu3bs18XBEREREOaaRcENERESUVzDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs5Ilws3jxYjg4OMDIyAjVqlXDuXPnPtk3KCgICoVC5WZkZPQFqyUiIqK8TOvhZvPmzRg2bBgmTpyIS5cuoVKlSnB3d0d0dPQn1zE1NcXz58+lW0RExBesmIiIiPIyrYeb+fPno0+fPujRowfKlSuHgIAAmJiYYNWqVZ9cR6FQwNbWVrrZ2Nh8wYqJiIgoL9NquElNTcXFixfRqFEjqU1HRweNGjXC6dOnP7leQkICihcvDnt7e7Ru3Ro3b978ZN+UlBTExcWp3IiIiEi+tBpuXr58ifT09EwjLzY2NoiMjMxyndKlS2PVqlXYtWsX/vjjDyiVStSoUQNPnz7Nsr+vry/MzMykm729vcZfBxEREeUdWt8tpa7q1avD09MTLi4uqFu3LoKDg2FlZYVly5Zl2X/MmDGIjY2Vbk+ePPnCFRMREdGXpKfNJy9UqBB0dXURFRWl0h4VFQVbW9tsPYa+vj5cXV0RHh6e5XJDQ0MYGhp+dq1ERET0ddDqyI2BgQGqVKmCQ4cOSW1KpRKHDh1C9erVs/UY6enpuH79OgoXLpxbZRIREdFXRKsjNwAwbNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwZcoUuLm5wcnJCTExMZgzZw4iIiLQu3dvbb4MIiIiyiO0Hm46dOiAFy9eYMKECYiMjISLiwv2798vTTJ+/PgxdHT+N8D05s0b9OnTB5GRkbCwsECVKlVw6tQplCtXTlsvgYiIiPIQrYcbABgwYAAGDBiQ5bIjR46o3Pfz84Ofn98XqIqIiIi+Rl/d0VJERERE/4bhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkJU+Em8WLF8PBwQFGRkaoVq0azp0796/9t27dijJlysDIyAgVK1bEX3/99YUqJSIiorxO6+Fm8+bNGDZsGCZOnIhLly6hUqVKcHd3R3R0dJb9T506hU6dOqFXr164fPkyPDw84OHhgRs3bnzhyomIiCgv0nq4mT9/Pvr06YMePXqgXLlyCAgIgImJCVatWpVl/wULFqBJkyYYOXIkypYti6lTp6Jy5cpYtGjRF66ciIiI8iKthpvU1FRcvHgRjRo1ktp0dHTQqFEjnD59Ost1Tp8+rdIfANzd3T/Zn4iIiL4tetp88pcvXyI9PR02NjYq7TY2Nrh9+3aW60RGRmbZPzIyMsv+KSkpSElJke7HxsYCAOLi4j6n9E9SprzNlcelr0dubVvZxW2QuA2StuXGNpjxmEKI/+yr1XDzJfj6+mLy5MmZ2u3t7bVQDX0LzPy1XQF967gNkrbl5jYYHx8PMzOzf+2j1XBTqFAh6OrqIioqSqU9KioKtra2Wa5ja2urVv8xY8Zg2LBh0n2lUonXr1+jYMGCUCgUn/kK6ENxcXGwt7fHkydPYGpqqu1y6BvEbZC0jdtg7hFCID4+HkWKFPnPvloNNwYGBqhSpQoOHToEDw8PAO/Dx6FDhzBgwIAs16levToOHTqEIUOGSG2hoaGoXr16lv0NDQ1haGio0mZubq6J8ukTTE1N+UtNWsVtkLSN22Du+K8Rmwxa3y01bNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwePBg1K1bF/PmzUPz5s2xadMmXLhwAYGBgdp8GURERJRHaD3cdOjQAS9evMCECRMQGRkJFxcX7N+/X5o0/PjxY+jo/O+grho1amDDhg0YP348xo4di1KlSmHnzp2oUKGCtl4CERER5SEKkZ1px0TZkJKSAl9fX4wZMybTrkCiL4HbIGkbt8G8geGGiIiIZEXrZygmIiIi0iSGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYb+mYolUptl0BERF8Aww19MzIuwPry5UsAAK88Ql/axwGb2yBpw8fboRy/+DHc0DdlwYIF8PDwwP3796FQKLRdDn1jdHR0EBsbi5CQEADgNkhaoaOjg5iYGMyZMwdv3ryRvvjJifxeEdEHPv5mrK+vD2NjYxgYGGipIvqWKZVKzJs3D97e3tizZ4+2y6Fv2IEDBzB//nwsWrRI26XkCl4VnL4JcXFxMDU1BQDExsbCzMxMyxXRt0KpVKp8M7516xZWrlyJWbNmQVdXV4uV0bckPT1dZXtLS0vD5s2b0alTJ1luhww3JHtDhw5Feno6xowZg8KFC2u7HPoGxcTEICYmBvb29iofJB9/4BB9jo+D9MdevXqFkydPokaNGihUqJDULsftkLulSHY+zut2dnZYu3at7H556esghMCvv/6KatWq4dGjRyrLuE3S53j+/Dn++ecfvHjxAsD7uTT/Nl6xZcsWeHh44OjRoyrtctwOOXJDX7WMbxxCCCgUik9+c3nz5g0sLCy0UCHJzX99O86qT0REBMaPH4+goCBZfpDQl7d69WosXrwYT548QcmSJVGrVi3Mnj1bpU9WIzL+/v4YMGAA9PT0vmS5XxzDDX01MgIM8P6XVggBPT09PHv2DDt27ECPHj2QL18+AO93RVlYWGDChAmZ1iXKqQ9Dy+HDh/H48WM4OTmhRIkSKFKkiEqf2NhYKJXKTKFajrsA6Mvas2cP2rdvjyVLlsDExAQPHjzA7NmzUaNGDaxZswYFCxaU/ua9fPkS4eHhcHNzU3mMd+/eyTrgcLcU5VkZuTsuLg5JSUlQKBQ4cOAAwsPDoaurCz09PURERMDV1RX//POPFGwSExOhr68PPz8/vH79msGGNEIIIQWbX3/9Fd27d8fcuXPRt29fjBgxAufPnwfwftdASkoKJkyYgMqVK+PVq1cqj8NgQ5/r/PnzaN68Obp374727dtj1KhRCAkJwbVr19ClSxcA708zkJaWhnXr1qFGjRo4ceKEymPIOdgADDeUx0VGRqJixYo4evQoNmzYgCZNmuDvv/8G8H5XU/ny5dGmTRtMnz5dWidfvnwYNWoU7t27B0tLSwYb0oiM7Wju3Ln4448/sHHjRty4cQNt27bFn3/+ifHjx+P06dMAAAMDA7i6uqJhw4YwNzfXYtUkRw8fPsTz589V2r7//nvs3r0bFy9eRJ8+fQC8P/VFixYtMH369EwjN7IniPK4Hj16CFNTU6GjoyOWL18utaemporNmzeL9PR0qU2pVGqjRPpGREVFibZt24pVq1YJIYTYvXu3MDU1Ff369ROurq6iYcOG4syZM0II1W3x3bt3WqmX5CkkJETY2NiITZs2SW0Z29v69euFk5OTOH/+fKb10tLSvliN2saRG8qzMk4J7uPjg/j4eBgYGMDW1hbJyckA3n8rad++vcrETY7SUG6ytrbGqFGj0KRJE1y+fBk+Pj6YNm0ali5dip9++glnzpyBj48PLl68qLItclcUaVLZsmVRr149rFu3DocOHQLwv799Li4uiI6Oli4z8yG574r6EMMN5VkZocXe3h4nTpyAl5cXOnbsiF27diEpKSlTfzleH4W051Pbk6urKwoXLox9+/bB2dkZffv2BQBYWlrCzc0NLVu2hKur65cslb4x9vb26NevH2JiYuDn54fdu3dLywoXLgxHR0ctVpc3fDsxjr4a4v8nAD9//hxpaWkoVqwYrK2tUaNGDSQnJ6NXr14ICgpCixYtYGRkhICAADRq1AhOTk7aLp1kQnwweXjFihWIjo6GgYEBRowYIV26IyUlBc+ePcOjR49QunRpHDhwAK1atcLAgQP/9bQERJ8j42i7evXqYcmSJRg7dixGjx6NkJAQODs7Y8uWLVAoFPjxxx+1XapW8VBwypOCg4MxadIkREVFoXnz5mjTpg1atmwJAOjRowd27NiB4cOHIyoqCkuXLsX169dRrlw5LVdNcjNx4kT4+/vj+++/x7lz51CtWjWsW7cOtra2+PPPPzFt2jS8efMG+vr6EELg2rVr0NPT4xF6lCsytqvg4GAsWbIEBw4cwO3btxEWFoZFixbB3t4e5ubmWL9+PfT19b/p0w4w3FCec/PmTbi7u2Po0KEwMTHBxo0bYWhoCC8vL3Tt2hUAMHjwYFy6dAkpKSkIDAyEi4uLdosmWfhwtOXdu3fw8vLCwIED4erqikePHqF58+awtbXFjh07YGVlhb179yI8PBwJCQkYPXo09PT0vukPFNKMjBAjPjq3l66uLoKDg+Hp6Yn58+dLu0SB99urjo6Oyvb7Lc2x+RjDDeUpt2/fxtatW5GUlIQZM2YAAK5fv44JEyYgLi4OPXr0kAJOZGQk8uXLhwIFCmizZJKJD4PNrVu3EBcXh2XLlmHChAlwcHAA8P4Q3B9//BE2NjbYuXMnrKysVB6DwYY+14fb4cuXL6FQKFCwYEEA7//mVa5cGRMmTEC/fv2kdT4eKeTIIcMN5RFCCLx58wYtWrTA33//jZYtW2LdunXS8mvXrmHChAlISkpCx44d0aNHDy1WS3I2cuRIaVg/KioKwcHBaNq0qfRh8fDhQzRt2hRCCJw8eVLlAoREn+PDUDJ16lTs3LkTcXFxKFSoEKZPn44GDRrg2bNnKFq0qJYrzfs4243yBIVCAUtLS/j6+qJ8+fK4dOkSQkNDpeXOzs6YOnUq0tLSpF94Ik348KioPXv2YP/+/fj999+xZMkSODo6Yty4cbh69ap0xmxHR0fs2bMHLi4uvF4ZaVRGsJkyZQoWLFggnWqgUKFC6NKlC9asWZNptJCyxpEb0ppPDZ0ePXoUY8eOha2tLXx8fNCgQQNp2c2bN2FmZgY7O7svWSp9A4KDg3Hq1CkULFgQY8aMAQAkJCSgcuXKMDU1xYoVK1CpUqVM2yx3RZEmvXr1Co0bN4aPjw969uwptfft2xd//vknwsLCUKZMGe56+g8cuSGtyPjFPHXqFObPn4/ffvsNJ0+eRFpaGurWrYspU6YgMjISixYtwpEjR6T1ypcvz2BDGpeUlITffvsN8+fPx82bN6X2/Pnz49KlS4iPj4e3t7d0/agPMdiQJr179w4vX76URgUzTloaGBiIIkWKwM/PDwBPWPpfGG7oi/vwcMamTZvi5MmT2L17N8aOHYvp06cjNTUVDRs2xJQpU/Dq1StMnToVx48f13bZJGPGxsY4fvw4GjVqhIsXL2L37t1IT08H8L+Ac/v2bSxbtkzLlZKcZLXjxMbGBra2tli1ahUAwMjICKmpqQAAJycnhppsYrihLy5jxGbQoEGYP38+tm/fjq1bt+LixYvYvHkzxo8fLwWcX3/9Ffr6+jzjJmnMh3NshBDSB4ylpSU2bNgACwsLzJkzByEhIdKyfPnyITIyEoGBgVqpmeRHqVRKQeWff/5BdHQ03r59CwCYNGkSbt++LR0RlXHiyKdPn/JCrNnEOTf0xWT8MisUCixZsgRXrlxBYGAgHj58iEaNGqFWrVowNTXF1q1b4e3tjbFjx8LQ0BBv376FiYmJtssnGfjwMNuFCxfi6tWrePDgAYYMGYLKlSvDzs4OL168QOvWraGrq4uxY8fC3d1d5UzDnGNDn2P9+vVwc3NDyZIlAQBjxoxBSEgIIiIi0KhRI7Rq1QpdunTB8uXLMXXqVBQsWBAVKlTA/fv3ERMTI50okv4dww3lmowPkg/DyZUrV+Di4oK4uDg8efIETk5OaNKkCRwdHbFq1SrExsZKZxru3r07pk+fzolz9Nk+3obGjBmDlStXom/fvnj69ClOnz6N1q1bo2/fvnBycsKLFy/Qtm1bvHjxAkFBQXBzc9Ni9SQX+/btQ4sWLTB69GgMGTIE+/btw6hRo+Dv749Xr17h0qVLCAkJwW+//YZ+/frh+vXr8Pf3h46ODiwsLDBjxgyeKDK7cvWa4/TNe/DggejUqZP4+++/xZYtW4RCoRDnzp0TSqVSCCHE9evXRZkyZcTZs2eFEELcv39ftGjRQowdO1Y8fvxYm6WTzKSnpwshhFi3bp1wdHQUFy9eFEIIcfz4caFQKESpUqXE4MGDxYMHD4QQQjx//lz07dtXvHv3Tms1k/wsWrRI2NnZialTp4oBAwaI5cuXS8uePHkipkyZIhwcHMT+/fuzXD8tLe1LlfpV49gW5ark5GQcP34c3bt3x5UrV7B69Wp8//330i4qIQTevXuH06dPo3z58li7di0AYMSIETyHCH22bt26wcrKCvPnz4eOjg7S0tJgYGCAfv36oXLlyti5cyd69OiBFStWIDIyEtOmTYOOjg769OmDsmXLShOI+U2ZPldqaioMDAzg4+MDExMTjBkzBvHx8Zg2bZrUx87ODp6enjhw4AAuXLgAd3f3TBdg5S6pbNJ2uiL5yvimHBAQIHR0dESlSpXE5cuXVfrExsaK7t27i5IlSwoHBwdhZWUlfaMm+hyxsbFi8uTJwtLSUkyaNElqf/bsmYiKihLPnz8XVatWFfPmzZP6FylSRBQuXFgsWLBACCGkEUYiTfH19RXR0dFi/fr1wsTERDRr1kzcvXtXpU+HDh1E27ZttVShPPBoKcoVQgjo6OhACIEiRYpg3rx5ePfuHcaPH48TJ05I/UxNTTF37lwsWbIEEydOxNmzZ1G5cmUtVk5yEB8fD1NTU/Tv3x/jx4+Hv78/Jk6cCAAoUqQIrK2t8fz5c7x580aaT/Ps2TM0btwYEyZMgI+PDwCeS4Q+n/hgWuuaNWswdepU3Lt3D507d4afnx8uXbqEgIAA3LlzBwAQFxeHhw8folixYtoqWRY4vkUaJ/5/8ubhw4dx9OhRDBkyBC1btkSjRo3Qvn17zJw5E2PHjkWNGjUAvL8wZuPGjbVcNcnFqFGjsGzZMty/fx9WVlbo2rUrhBCYOnUqAGDy5MkA3gcgXV1dnDx5EkIIzJw5EyYmJtLht9wVRZqQEZAPHTqEy5cvIzAwUPrb17dvX6SlpWHy5MnYv38/KleujMTERKSmpmL27NnaLPvrp81hI5KfjGH8bdu2CTMzMzFmzBhx/vx5afm1a9dEuXLlRIsWLcQff/whJk2aJBQKhXjy5Al3AZBGXL16VdSpU0eULl1avHjxQgghRHR0tJg3b54wNzcXEyZMkPoOGDBAlCxZUtjZ2Qk3NzeRmpoqhODuKNKsI0eOiIoVK4qCBQuKnTt3CiGESElJkZavXLlS5M+fX1SuXFmsXbtWmsTOycM5x0PBSePOnTuHJk2aYNasWejTp4/UHhcXB1NTU9y6dQt9+vRBUlISYmNjsWXLFu6KIo04ffo0Xrx4gXLlyqFDhw5ISEiQrtz94sULrFu3DlOnTpUuSAi8Pz2BQqFAxYoVoaOjg3fv3nHSJn0W8dGpBxISEjBnzhwEBgaiWrVq2LhxI4yNjZGWlgZ9fX0AwPz583Hq1Cls3boVCoWCI4efieGGNG7RokXYsWMHDh06hNjYWBw+fBh//PEHbt26hREjRqBnz56Ijo5GbGwszMzMYG1tre2SSSY8PT3xzz//4ODBg3j06BF+/vlnxMfHZwo406ZNw4ABAzBlyhSV9fmBQpq0ePFi2NnZoXXr1khKSsLcuXOxY8cO1KtXDzNmzICRkZFKwMkIRR+HI1IfJxSTxtna2uLixYvw9fXFzz//jNWrV8PIyAjNmzdH7969cffuXVhbW6NUqVIMNqRRixcvxtOnT7Fo0SI4ODhg48aNMDMzQ82aNfHy5UtYWVmhW7dumDBhAqZNm4aVK1eqrM9gQ5ry4sULHD58GL/88gv2798PY2NjDBs2DC1atMCpU6cwbtw4JCcnQ19fH+/evQMABhsN4sgNfZaMX8SEhATkz58fABAVFYWFCxdiy5YtaNCgAbp3744ffvgBUVFRaNWqFYKCglC+fHktV05ykzHq8vvvv+Py5cuYP38+LCwscPv2bXh6eiI2NlYawYmMjMTRo0fx008/cRcUacTH56MBgKtXr+L333/HwYMHERAQgKZNmyIxMRGzZ8/GwYMHUbZsWSxZskS6dhRpDkdu6LMoFArs3bsXnTp1Qr169RAUFAQ9PT1MmzYNZ8+eRUBAANzc3KCjo4OFCxciMTGRozWUKzJGXerVq4djx45h7969AIDSpUtj3bp1sLCwQJ06dRAVFQVbW1t06NABenp60rdmos+REWwiIyOltkqVKmHw4MGoX78++vXrh/379yNfvnwYNWoUfvjhB+jo6Ei7pEjDtDSRmWTi5MmTwsjISIwcOVI0adJEODs7C29vbxEeHi71CQsLE3379hWWlpaZTuJHlFMZJ4nMSkBAgPjuu+/EnTt3pLY7d+4IBwcH0bFjxy9RHn0jPtwON23aJEqUKKFyhKgQQly5ckW0bt1aFCtWTBw5ckQIIURSUpJ0VN6/bcuUMxy5oRyLiIhAaGgopk+fjtmzZ2Pfvn3o27cvrl27Bl9fXzx48ACJiYk4ffo0oqOjcfToUbi4uGi7bJKBD3cBnDt3DqdOncLRo0el5a1atUK1atUQFhYmtX333Xc4duwY/vjjjy9eL8lTSkqKtB2mpqaiZMmSKFOmDHx8fHDx4kWpX6VKleDh4YEnT56gcePGOHXqFIyMjKQ5Nh/vzqLPx58oZcuiRYvw119/Sffv3LmDDh06YNWqVTAyMpLafXx80KVLF9y8eROzZ89GTEwMRo4ciTVr1qBChQraKJ1k5sMPg7Fjx6J79+7o2bMnvLy80KFDB8TFxaFw4cLSfIa0tDRpXXt7e+jq6iI9PV1b5ZNM7Nu3D+vWrQMA9OnTBw0aNEDVqlUxfPhw2NrawtvbGxcuXJD6FytWDB07dsS8efNQrVo1qZ2Th3OJtoeOKO97+PCh6Ny5s7h3755K+6+//iqsra1F27ZtpZOlZVi6dKkoXbq0GDRoEE9ERbli7ty5omDBguLs2bMiPT1dzJgxQygUCnHixAmpT82aNYW3t7cWqyS56tSpk3BwcBDu7u6iUKFC4urVq9Kyw4cPCw8PD1GhQgWxb98+8fDhQ+Hh4SGGDx8u9eHV5nMXww1lS2JiohBCiDNnzoht27ZJ7RMmTBAVK1YU48ePF1FRUSrrLF++XDx8+PBLlknfCKVSKby8vERgYKAQQojt27cLc3NzERAQIIQQIj4+XgghxL59+0SrVq3EtWvXtFYryZeLi4tQKBQqF2bNcPz4cdGtWzehUCjEd999J5ydnaUvejwDdu7jMZCULcbGxoiJiYGvry+ePXsGXV1deHh4YPLkyUhLS8PevXshhMDgwYNhZWUFAOjdu7eWqya5Sk5OxtmzZ1GvXj0cOXIEXl5emDNnDry9vfHu3TvMnj0b1atXh5ubG6ZMmYJz586hYsWK2i6bZCI1NRXJyclwcnJCsWLFsHnzZhQtWhQdO3aUTolRq1YtVKtWDX369EFaWhrq1q0LXV1dngH7C+GcG8oWhUIBc3NzDB8+HI6OjvD390dwcDAAYMaMGWjSpAlCQ0MxY8YMvHz5UsvVkpxcu3YNT58+BQAMHToUR48ehbGxMTp37ow//vgDzZo1g5+fn3TByzdv3uDChQu4c+cOLCwssG7dOhQvXlybL4FkxsDAAKampti6dSt27dqF77//HrNnz8amTZsQHx8v9UtOTkbt2rXRoEEDaa4Xg82XwXBD2SLe78JE7dq1MXToUFhYWOD3339XCThubm64fPkyBM8LSRoghMDdu3dRv359rFq1Cv369cOCBQtgYWEBAHBzc0NERASqVauG6tWrAwD++ecfdO/eHTExMRgwYAAAoGTJkmjUqJHWXgfJjxACSqVSur9mzRrUqFEDfn5+WLt2LR4/fowGDRqgXbt2Un+AZ8D+kniGYsqWjLO/xsbGwsTEBNeuXcP06dPx5s0bDB48GB4eHgDen3I8Y7cUkSYsX74co0aNQnJyMnbt2oXGjRtLZ8bevHkzpkyZAiEE9PT0YGxsDKVSiVOnTkFfX5/XiqLP9vr1a1haWqq0ZWx/W7duRWhoKAIDAwEAffv2xZEjR5Ceng5LS0ucPHmSZx/WEo7c0H969+4ddHV18ejRI9SrVw8HDhxAlSpVMGLECFhZWWHy5MnYs2cPADDYkMZkfDO2t7eHoaEhTE1NcebMGTx69Eg6fLZDhw5Yu3YtpkyZgvbt22P06NE4c+aMdL0eBhv6HAsWLMD333+vsqsJgBRsunfvjkqVKkntgYGBWLZsGRYuXIgzZ87AwMCAZ8DWFu3MY6a86lOz+MPDw4WNjY3o3bu3yiGMR44cEd26dROPHj36UiWSzH28DaampoqkpCSxdOlSUbRoUTF27Nj/3N54mC19rmXLlglDQ0OxYcOGTMseP34sKlasKBYtWiS1ZbXNcTvUHu6WIon4/6HW06dP49atWwgPD4enpycKFy6MNWvW4MKFC1izZk2mK9cmJyernMiPKKc+PPPw69evER8frzIZ2N/fH3PnzkWvXr3Qo0cPODg4oGXLlhg3bhzc3Ny0VTbJzPLlyzFw4ECsW7cO7dq1Q0xMDBITE5GcnAxra2sUKFAA9+7dQ6lSpbRdKn0Cww2p2L59O/r27StdYPDFixfo0KEDRo8ejQIFCmi7PJKxD4PNlClTcODAAdy4cQPt27dHmzZt0LRpUwDvA46/vz8qVKiAV69e4fHjx3j06BEvQEga8eDBAzg5OaF9+/bYtGkTbty4gV9++QUvXrxAREQE6tevj/79+6NFixbaLpX+BY9JI8mNGzcwdOhQzJs3D927d0dcXBzMzc1hbGzMYEO5LiPYTJgwAYGBgZgzZw4cHBzQr18/3Lt3DzExMejUqROGDBmCQoUK4erVq0hOTsbx48elq3vzMFv6XFZWVpg1axYmTJiAESNG4MCBA6hduzZat26NuLg4bNu2DePHj0ehQoU4WpiXaXOfGGnP4cOHxf379zO1Va9eXQghxK1bt0Tx4sVF7969peX379/nPmTKVYcPHxbly5cXx44dE0IIcerUKWFgYCDKlSsnqlWrJrZu3Sr1/fCyHrzEB2lScnKymDt3rtDR0RE9e/YUqamp0rILFy6I0qVLi8WLF2uxQvovPFrqGyOEwOXLl9G0aVMsXboUERER0rJnz55BCIGEhAQ0adIEjRs3xrJlywAAoaGhWLp0Kd68eaOt0kmGxEd7xYsWLYr+/fujdu3aOHDgAFq0aIHAwECEhobi/v37+P3337Fy5UoAUBml4YgNaZKhoSH69euH7du3o3fv3tDX15e21SpVqsDIyAhPnjzRcpX0bxhuvjEKhQKurq6YN28etmzZgqVLl+LBgwcAgObNmyMqKgqmpqZo3rw5AgMDpV0FISEhuHbtGg+tJY1RKpXSpPQHDx4gMTERpUqVQqdOnZCcnIwFCxZg0KBB6NatG4oUKYLy5csjPDwct27d0nLl9C3Ily8fmjZtKp0gMmNbjY6OhrGxMcqXL6/N8ug/8OvONyZjXoKPjw8AYM6cOdDV1UXv3r3h6OiI3377DTNmzMC7d+/w9u1bhIeHY+PGjVixYgVOnDghnR2W6HN8OHl4woQJOH36NEaOHIn69evD0tISiYmJeP78OUxMTKCjo4OUlBQ4ODhg1KhRaNKkiZarJzkSHxwBmsHQ0FD6f3p6Ol6+fIk+ffpAoVCgU6dOX7pEUgPDzTcmY+TlwIED0NHRQVpaGvz9/ZGcnIzRo0ejffv2SEpKwowZM7Bt2zbY2NjAwMAAYWFhqFChgparJ7n4MNgsW7YMgYGBcHV1lY54SklJgaWlJU6cOCFNGn716hVWrVoFHR0dlXBElBMRERF4/fo1ChYsCFtb2389k3BaWhrWrVuHjRs34vXr1zhz5ox0rSiOZudNPBT8GxQSEiJdbDBfvny4d+8efv/9d/zyyy8YPXo0rKysEB8fj6NHj8LBwQHW1tawtrbWdtn0lfs4kNy9exceHh6YNWsWWrZsmanf+fPnMX78eCQkJMDS0hLBwcHQ19dnsKHPtnbtWsybNw/R0dEoVKgQBg4cKI3IZPh4OwsNDcXNmzcxYMAAHp33FWC4+cYolUp06dIFCoUCGzZskNoXLlyIUaNGwcfHB7/88gtKlCihxSpJbtq2bYuxY8eiatWqUtuVK1fQpEkTHD16FKVLl87yxJDJyckQQsDIyAgKhYIfKPTZ1q5dCx8fH+nSCjNmzMCDBw9w8uRJadvKCDYxMTE4cOAA2rdvr/IYHLHJ+/j15xuT8U0kY/g/NTUVADBw4EB4e3tj9erV+P3331WOoiL6XGZmZnB2dlZpMzIywps3b3Djxg2pLeN6UqdPn8b27duho6MDY2NjKBQKKJVKBhv6LBcuXMDUqVOxaNEi9OzZExUrVsTQoUPh5OSEU6dO4ebNm4iLi5N22a9Zswa//PIL/vjjD5XHYbDJ+xhuvhH//POP9P/SpUvjzz//RHR0NAwMDJCWlgYAsLOzg4mJCcLCwmBsbKytUklGnj17BgBYvXo1DAwM8Pvvv+PAgQNITU2Fk5MTOnTogDlz5uDgwYNQKBTQ0dFBeno6pk+fjrCwMJV5ENwVRZ8rJSUFQ4YMQfPmzaW2SZMm4dChQ+jUqRM8PT3RsWNHvH79Gvr6+mjWrBlGjBjBycNfIe6W+gZcvXoVAwYMQOfOndG/f3+kpqaiQYMGePnyJY4cOQJbW1sAwOjRo1G+fHm0aNEClpaWWq6avnZ9+vQBAIwZM0bazens7IyXL19i06ZNqFOnDo4fPw4/Pz9cv34dXbp0gYGBAQ4dOoQXL17g0qVLHKkhjVIqlXjx4gVsbGwAAJ6enjh48CB2794Ne3t7HD16FNOmTcPo0aPRuXNnlTk43BX1deFXoW+AiYkJzM3NsW3bNgQFBcHAwADLli2DlZUVypYtCw8PDzRu3BgLFixA1apVGWxII5ydnbF//34sXboU4eHhAIBr166hdOnS6NKlC44dO4batWtjypQp8PT0xLp163D48GEUK1YMFy9elCZtEmmKjo6OFGwAYMSIETh79iyqVq0KGxsbNG3aFK9fv0ZUVFSmw8IZbL4uHLn5RoSHh2Ps2LGIjIxEnz590K1bN6Snp2Pu3LmIiIiAEAIDBw5EuXLltF0qyciqVaswYcIEdOzYEX369EHp0qUBAHXq1MHDhw+xfv161KlTBwDw9u1bmJiYSOty8jB9aU+fPkXXrl0xYsQIXhjzK8dwI1OXLl3C8+fPVfYth4eHY/z48Xj06BEGDhyILl26aLFCkrMPD6NduXIlJkyYgE6dOmUKOBEREVi7di2qV6+uMr8mqxOqEanjw20o4/8Z/7548QJWVlYq/RMTE9GpUyfExsbi8OHDHKn5yjHcyFB8fDyaN28OXV1djBo1Ck2bNpWWPXr0CE2aNIGJiQl69+6NX375RYuVktx86hw0y5cvx+TJk9GhQwf07dtXCjgNGjTAyZMncebMGbi6un7pckmmstoOM9qCg4OxceNGLFiwAEWKFEFSUhJ27dqFdevW4dmzZzh//jz09fU5x+Yrxzk3MpKRUwsUKIDZs2dDT08PixYtwt69e6U+Dg4OqF+/PiIjI3Ho0CHExMRoqVqSmw8/UE6dOoWwsDBcvXoVwPvJxb/99hs2bdqEwMBA3LlzBwBw+PBh9O7dO9Nh4kQ5deLECemilsOGDcPMmTMBvJ9vs3nzZnh6eqJRo0YoUqQIgPcXXX348CFKlCiBCxcuQF9fH+/evWOw+cpx5EYGMoZaM75pZHzInD17Fr/++ivy5cuH/v37S7uohg8fjhIlSqBt27YoXLiwlqsnOfhwF8CwYcOwefNmJCQkwM7ODsWKFcO+ffsAAMuWLcO0adPQsWNHeHl5qVzSg9+U6XMIIRAbGwtra2s0bdoUhQoVQnBwMI4fP44KFSogJiYGbm5u8PHxwcCBA6V1PvzbCXA7lAuGm69cxi9nWFgYdu/ejdevX6NWrVpo164dzM3NcebMGfz2229ISUlBiRIlYGJigs2bN+Pq1auws7PTdvkkAx8GmwMHDmDIkCEIDAyEubk5/v77b0ycOBH58uXDhQsXALyfg+Pt7Q1/f38MGDBAm6WTDEVHR6NEiRJIT0/H9u3b0axZM2lZVnNtspqbQ18/7pb6yikUCuzYsQMtW7bE27dv8fbtW6xbtw79+/fH69ev4ebmhrlz56Ju3boIDw/HgwcPcPjwYQYb0piMD4Pdu3dj06ZNaNSoEWrVqoUKFSrg559/xtq1a5GQkID+/fsDAHr16oVdu3ZJ94k0JSUlBZGRkTAxMYGuri5WrVolnYYAAAoVKiT9P+Ns2B+GGQYb+eDIzVfuwoUL6NixI3799Vf07t0bERERqFy5MoyNjeHi4oK1a9fC0tJSulbPx4fbEmnC69ev0aJFC1y9ehX169fHnj17VJaPHTsWJ0+exF9//YV8+fJJ7dwFQJ/rU5PYHz16BGdnZ9SvXx/z589HyZIltVAdaQtHbr4ivr6+GDdunPSNA3h/ens3Nzf07t0bjx49QsOGDeHh4YHx48fj/Pnz+OWXX/D69WsYGRkBAIMNacSH2yAAWFpaYs2aNfjxxx9x+fJlrF69WmV5qVKl8OrVKyQlJam0M9jQ5/gw2Bw5cgQbNmzA1atX8ezZMzg4OODkyZMICwvDqFGjpEnsbdq0wcKFC7VZNn0BHLn5iixcuBCDBw/GjBkzMGrUKOmX+tatWyhdujRat24tfcgolUq4uLggPDwczZs3x+bNm3ltHtKIDz9Q7t+/D4VCARMTE9ja2uLhw4fw8fFBYmIi2rVrB29vb0RFRcHLywtGRkbYs2cPh/5J40aMGIE1a9ZAT08P+fPnh62tLfz8/FC1alVcv34d9evXh4ODA1JTU/Hu3TtcvXpVungwyZSgr4JSqRRCCLF8+XKho6Mjpk6dKtLS0qTlT548EWXLlhV79uwRQgjx+vVr0alTJ7Fw4ULx9OlTrdRM8pOxHQohxMSJE0XFihVFmTJlROHChUVgYKAQQojw8HDRrFkzYWRkJEqXLi3atGkj3N3dRVJSkhBCiPT0dK3UTvLx4XYYGhoqKlWqJI4fPy5ev34tdu3aJdq0aSOcnJzEpUuXhBBC3Lt3T0yZMkVMnz5d+rv54d9Pkh+Gm6+AUqmUfpmVSqX4448/hI6Ojpg2bZr0QREdHS1cXFyEt7e3ePTokRg7dqz4/vvvRVRUlDZLJ5maMmWKsLKyEiEhISIhIUG0adNGmJubi5s3bwohhHjw4IFo3ry5cHFxEX5+ftJ6ycnJWqqY5GjNmjViwIABom/fvirt58+fF02aNBFeXl4iISFBCKEaiBhs5I/7Kb4SCoUCBw8exPDhw1GlShXpmj0zZ86EEAIWFhbo0qULjh49Cjc3N6xduxYBAQGwtrbWdukkAx/OsVEqlTh37hz8/PzQuHFjhIaG4siRI5gxYwbKlSuHtLQ0ODo6Yt68ebCxscHevXsRHBwMADA0NNTWSyAZEB/Noti5cycWL16MK1euICUlRWqvWrUqateujRMnTiA9PR2A6pFQvGbZN0Db6YqyZ/v27cLY2FhMnTpVnD9/XgghRGBgoLSLSgghUlJSxM2bN0VoaKh48uSJNsslmZowYYKYOXOmKFq0qLhz544ICwsT+fPnF0uXLhVCCPH27Vsxbtw48ejRIyGEEHfv3hUtWrQQVatWFcHBwdosnb5yH468rF+/Xqxdu1YIIcSAAQOEubm5WLx4sYiNjZX6hISEiDJlykjbIn1bGG6+Anfu3BGOjo5iyZIlmZYtW7ZM2kVFpGkfzo/ZtGmTsLe3Fzdu3BBdu3YV7u7uwsTERKxcuVLq8+zZM1G7dm2xdu1aad1bt26Jn3/+WURERHzx+kkePtwOb9y4IVxdXUWlSpXErl27hBBCeHl5iVKlSonp06eL8PBwER4eLho2bCjq1q2rEoro28Gxua/A48ePoa+vr3KmzYwjVvr27Yt8+fKhW7duMDQ0xIgRI7RYKclNxlFRR48exZEjRzB8+HCUL19eOjlkw4YN0bNnTwDvL9jau3dv6OrqonPnztDR0YFSqUSZMmWwYcMGHp1COZaxHY4cORIPHz6EsbExbt++jaFDh+Ldu3cICgpCz549MX78eCxcuBA1a9ZE/vz5sXnzZigUik+eC4fki+HmK5CQkKByfhClUintPz5y5AiqVKmCzZs3q1ynh0hTIiMj0atXL0RHR2Ps2LEAgH79+uH+/fs4fPgwXF1dUapUKTx+/BjJyck4f/48dHV1VU7QxzkO9LmCgoKwYsUKHDp0CI6OjkhJSYGXlxd8fX2ho6ODVatWwcTEBFu2bEGTJk3QsWNHGBoaIjU1FQYGBtoun74wRtmvQKVKlfDy5UsEBgYCeP8tJiPc7Nq1Cxs2bEDbtm1RtmxZbZZJMmVra4vg4GDY2Njgzz//xMWLF6Grq4s5c+ZgypQpaNCgAWxtbdGhQ4dPXlWZ57ahzxUeHo4KFSrAxcUFZmZmsLW1xapVq6Crq4uhQ4dix44dWLRoERo1aoT58+dj9+7diI+PZ7D5RvHr1FfA0dERixYtQr9+/ZCWlgZPT0/o6uoiKCgIQUFBOH36NM/0SrnK2dkZ27dvh5eXFwICAjBw4EA4OzujVatWaNWqlUrf9PR0jtSQxoj/v5iloaEhkpOTkZqaCiMjI6SlpaFo0aLw9fVFixYt4O/vD2NjY2zYsAGdO3fGiBEjoKenh/bt22v7JZAW8AzFXwmlUont27fD29sb+fLlg5GREXR1dbFx40a4urpquzz6Rly+fBm9e/dGlSpVMHjwYJQvX17bJdE34vr163B1dcVvv/2GiRMnSu0hISFYvnw53rx5g/T0dBw5cgQA0KNHD/z2228oUaKEliombWK4+cr8888/iIiIgEKhgKOjI2xsbLRdEn1jLl++DG9vbxQvXhyzZ8+Go6Ojtkuib0RQUBD69u2LIUOGoEOHDrCwsMCgQYNQo0YNtGnTBuXLl8fevXvRtGlTbZdKWsZwQ0RqO3fuHAICArBixQoehUJf1Pbt2/HLL7/AwMAAQghYW1vj1KlTiIqKwo8//oht27bB2dlZ22WSljHcEFGOZMyF4GG29KU9e/YMT548QVpaGmrWrAkdHR2MGTMGO3fuRFhYGGxtbbVdImkZww0R5VhGwCHSlps3b2LWrFn466+/cPDgQbi4uGi7JMoDeEgDEeUYgw1p07t375Camgpra2scPXqUE9xJwpEbIiL6qqWlpfEM2KSC4YaIiIhkhbMAiYiISFYYboiIiEhWGG6IiIhIVhhuiIiISFYYbohI9o4cOQKFQoGYmJhsr+Pg4AB/f/9cq4mIcg/DDRFpXffu3aFQKNCvX79My3x8fKBQKNC9e/cvXxgRfZUYbogoT7C3t8emTZuQlJQktSUnJ2PDhg0oVqyYFisjoq8Nww0R5QmVK1eGvb09goODpbbg4GAUK1YMrq6uUltKSgoGDRoEa2trGBkZoVatWjh//rzKY/3111/47rvvYGxsjPr16+PRo0eZnu/EiROoXbs2jI2NYW9vj0GDBiExMTHXXh8RfTkMN0SUZ/Ts2ROrV6+W7q9atQo9evRQ6TNq1Chs374da9aswaVLl+Dk5AR3d3e8fv0aAPDkyRO0bdsWLVu2xJUrV9C7d2/8+uuvKo9x//59NGnSBD/99BOuXbuGzZs348SJExgwYEDuv0giynUMN0SUZ3Tt2hUnTpxAREQEIiIicPLkSXTt2lVanpiYiKVLl2LOnDlo2rQpypUrh+XLl8PY2BgrV64EACxduhQlS5bEvHnzULp0aXTp0iXTfB1fX1906dIFQ4YMQalSpVCjRg38/vvvWLt2LZKTk7/kSyaiXMALZxJRnmFlZYXmzZsjKCgIQgg0b94chQoVkpbfv38faWlpqFmzptSmr6+PH374Abdu3QIA3Lp1C9WqVVN53OrVq6vcv3r1Kq5du4b169dLbUIIKJVKPHz4EGXLls2Nl0dEXwjDDRHlKT179pR2Dy1evDhXniMhIQHe3t4YNGhQpmWcvEz09WO4IaI8pUmTJkhNTYVCoYC7u7vKspIlS8LAwAAnT55E8eLFAby/IvT58+cxZMgQAEDZsmWxe/dulfXOnDmjcr9y5cr4+++/4eTklHsvhIi0hnNuiChP0dXVxa1bt/D3339DV1dXZVm+fPnQv39/jBw5Evv378fff/+NPn364O3bt+jVqxcAoF+/frh37x5GjhyJO3fuYMOGDQgKClJ5nNGjR+PUqVMYMGAArly5gnv37mHXrl2cUEwkEww3RJTnmJqawtTUNMtlM2fOxE8//YRu3bqhcuXKCA8PR0hICCwsLAC83620fft27Ny5E5UqVUJAQABmzJih8hjOzs44evQo7t69i9q1a8PV1RUTJkxAkSJFcv21EVHuUwghhLaLICIiItIUjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs/B+XLE52CERTBAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "## calculate avg response time\n", - "unique_models = set(unique_result[\"response\"]['model'] for unique_result in result[0][\"results\"])\n", - "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", - "for iteration in result:\n", - " for completion_result in iteration[\"results\"]:\n", - " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", - "\n", - "avg_response_time = {}\n", - "for model, data in model_dict.items():\n", - " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", - "\n", - "models = list(avg_response_time.keys())\n", - "response_times = list(avg_response_time.values())\n", - "\n", - "plt.bar(models, response_times)\n", - "plt.xlabel('Model', fontsize=10)\n", - "plt.ylabel('Average Response Time')\n", - "plt.title('Average Response Times for each Model')\n", - "\n", - "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", - "plt.show()" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIXCAYAAACy1HXAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABn5UlEQVR4nO3dd1QT2d8G8Cf0ojQBEUFRsSv2FXvvvSx2saNi7733ihXELotd7KuIir33sjZUsIuKVGmS+/7hy/yM6K7RYEZ4PufkaO5Mkm/IJHly594ZhRBCgIiIiEiGdLRdABEREdG3MKgQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBCR7Dk5OaFLly7aLkNtc+fORd68eaGrq4uSJUtquxyNO3bsGBQKBbZv367tUtSmUCgwadIktW8XGhoKhUKBdevWabwm+joGFVKxfPlyKBQKlC9fXtulyI6TkxMUCoV0MTU1xR9//IENGzZou7TfTuoX3PdcfleHDh3CiBEjUKlSJaxduxYzZszQdkmys27dOul1PnXqVJrlQgg4OjpCoVCgcePGWqiQ5EBP2wWQvPj7+8PJyQkXLlxASEgInJ2dtV2SrJQsWRJDhw4FALx8+RKrVq2Cu7s7EhMT0bNnTy1X9/soXLgw/Pz8VNpGjx6NLFmyYOzYsWnWv3fvHnR0fq/fVUePHoWOjg5Wr14NAwMDbZcja0ZGRti4cSMqV66s0n78+HE8e/YMhoaGWqqM5IBBhSSPHz/GmTNnEBAQAA8PD/j7+2PixIm/tAalUomkpCQYGRn90sf9Xjlz5kTHjh2l6126dEHevHmxcOFCBhU1ZM+eXeXvCACzZs2CtbV1mnYAv+UXVXh4OIyNjTUWUoQQSEhIgLGxsUbuT04aNmyIbdu2YfHixdDT+9/X0saNG1GmTBm8fftWi9WRtv1eP1EoXfn7+8PS0hKNGjVC69at4e/vLy1LTk6GlZUVunbtmuZ20dHRMDIywrBhw6S2xMRETJw4Ec7OzjA0NISjoyNGjBiBxMREldsqFAr069cP/v7+KFq0KAwNDXHw4EEAwLx581CxYkVky5YNxsbGKFOmzFf3hcfHx2PAgAGwtrZG1qxZ0bRpUzx//vyr+6CfP3+Obt26IXv27DA0NETRokWxZs2aH/6b2djYoFChQnj48KFKu1KphJeXF4oWLQojIyNkz54dHh4eeP/+vcp6ly5dQr169WBtbQ1jY2PkyZMH3bp1k5an7g+fN28eFi5ciNy5c8PY2BjVqlXDrVu30tRz9OhRVKlSBaamprCwsECzZs1w584dlXUmTZoEhUKBkJAQdOnSBRYWFjA3N0fXrl3x4cMHlXWDgoJQuXJlWFhYIEuWLChYsCDGjBmjss73vtY/48sxKqm7DE6dOoUBAwbAxsYGFhYW8PDwQFJSEiIjI9G5c2dYWlrC0tISI0aMwJcnitfUa/Q1CoUCa9euRVxcnLRrI3VMw8ePHzF16lTky5cPhoaGcHJywpgxY9L8vZycnNC4cWMEBgaibNmyMDY2xooVK/71cc+fP4/69evD3NwcJiYmqFatGk6fPq2yTlhYGPr27YuCBQvC2NgY2bJlw59//onQ0NA09xcZGYnBgwfDyckJhoaGcHBwQOfOndMEB6VSienTp8PBwQFGRkaoVasWQkJC/rXWz7Vr1w7v3r1DUFCQ1JaUlITt27ejffv2X71NXFwchg4dCkdHRxgaGqJgwYKYN29emtc5MTERgwcPho2NjfT58OzZs6/ep6Y/H0hDBNH/K1SokOjevbsQQogTJ04IAOLChQvS8m7dugkLCwuRmJiocrv169cLAOLixYtCCCFSUlJE3bp1hYmJiRg0aJBYsWKF6Nevn9DT0xPNmjVTuS0AUbhwYWFjYyMmT54sli1bJq5evSqEEMLBwUH07dtXLF26VCxYsED88ccfAoDYt2+fyn24ubkJAKJTp05i2bJlws3NTZQoUUIAEBMnTpTWe/XqlXBwcBCOjo5iypQpwtvbWzRt2lQAEAsXLvzPv0/u3LlFo0aNVNqSk5OFnZ2dyJ49u0p7jx49hJ6enujZs6fw8fERI0eOFKampqJcuXIiKSlJCCHE69evhaWlpShQoICYO3euWLlypRg7dqwoXLiwdD+PHz8WAETx4sWFk5OTmD17tpg8ebKwsrISNjY24tWrV9K6QUFBQk9PTxQoUEDMmTNHTJ48WVhbWwtLS0vx+PFjab2JEycKAKJUqVKiZcuWYvny5aJHjx4CgBgxYoS03q1bt4SBgYEoW7asWLRokfDx8RHDhg0TVatWldZR57X+L0WLFhXVqlX75t/e3d1dur527VoBQJQsWVLUr19fLFu2THTq1El6DpUrVxbt27cXy5cvF40bNxYAxPr169PlNfoaPz8/UaVKFWFoaCj8/PyEn5+fePjwoRBCCHd3dwFAtG7dWixbtkx07txZABDNmzdP85ydnZ2FpaWlGDVqlPDx8RHBwcHffMwjR44IAwMDUaFCBTF//nyxcOFC4eLiIgwMDMT58+el9bZt2yZKlCghJkyYIHx9fcWYMWOEpaWlyJ07t4iLi5PWi4mJEcWKFRO6urqiZ8+ewtvbW0ydOlWUK1dOeo8GBwdL21KZMmXEwoULxaRJk4SJiYn4448//vVv9PnrePHiRVGxYkXRqVMnadmuXbuEjo6OeP78eZr3nlKpFDVr1hQKhUL06NFDLF26VDRp0kQAEIMGDVJ5jI4dOwoAon379mLp0qWiZcuWwsXF5Yc/H1Lfk2vXrv3P50eawaBCQgghLl26JACIoKAgIcSnDwIHBwcxcOBAaZ3AwEABQOzdu1fltg0bNhR58+aVrvv5+QkdHR1x8uRJlfV8fHwEAHH69GmpDYDQ0dERt2/fTlPThw8fVK4nJSWJYsWKiZo1a0ptly9f/uqHU5cuXdJ8EHXv3l3kyJFDvH37VmXdtm3bCnNz8zSP96XcuXOLunXrijdv3og3b96ImzdvSl+Onp6e0nonT54UAIS/v7/K7Q8ePKjSvnPnTpWA9zWpH4rGxsbi2bNnUvv58+cFADF48GCprWTJksLW1la8e/dOart+/brQ0dERnTt3ltpSg0q3bt1UHqtFixYiW7Zs0vWFCxcKAOLNmzffrE+d1/q//EhQqVevnlAqlVJ7hQoVhEKhEL1795baPn78KBwcHFTuW5Ov0be4u7sLU1NTlbZr164JAKJHjx4q7cOGDRMAxNGjR1WeMwBx8ODB/3wspVIp8ufPn+bv8eHDB5EnTx5Rp04dlbYvnT17VgAQGzZskNomTJggAIiAgICvPp4Q/wsqhQsXVvkBs2jRIgFA3Lx581/r/jyoLF26VGTNmlWq788//xQ1atSQ/hafB5Vdu3YJAGLatGkq99e6dWuhUChESEiIEOJ/f+++ffuqrNe+ffsf/nxgUPn1uOuHAHza7ZM9e3bUqFEDwKeu6zZt2mDz5s1ISUkBANSsWRPW1tbYsmWLdLv3798jKCgIbdq0kdq2bduGwoULo1ChQnj79q10qVmzJgAgODhY5bGrVauGIkWKpKnp833x79+/R1RUFKpUqYIrV65I7am7ifr27aty2/79+6tcF0Jgx44daNKkCYQQKnXVq1cPUVFRKvf7LYcOHYKNjQ1sbGxQvHhx+Pn5oWvXrpg7d67K8zc3N0edOnVUHqdMmTLIkiWL9PwtLCwAAPv27UNycvK/Pm7z5s2RM2dO6foff/yB8uXL4++//wbwaWDvtWvX0KVLF1hZWUnrubi4oE6dOtJ6n+vdu7fK9SpVquDdu3eIjo5WqW/37t1QKpVfrUvd11rTunfvrjIzqHz58hBCoHv37lKbrq4uypYti0ePHqnUrenX6Hukvg5DhgxRaU8doL1//36V9jx58qBevXr/eb/Xrl3DgwcP0L59e7x79056PnFxcahVqxZOnDghvYafv6+Sk5Px7t07ODs7w8LCQuU9sGPHDpQoUQItWrRI83hfzsbq2rWrylicKlWqAIDK3/y/uLm5IT4+Hvv27UNMTAz27dv3zd0+f//9N3R1dTFgwACV9qFDh0IIgQMHDkjrAUiz3qBBg1Sua+rzgdJHhgkqJ06cQJMmTWBvbw+FQoFdu3al+2M+f/4cHTt2lMZQFC9eHJcuXUr3x9W0lJQUbN68GTVq1MDjx48REhKCkJAQlC9fHq9fv8aRI0cAAHp6emjVqhV2794t7U8PCAhAcnKySlB58OABbt++LX2hp14KFCgA4NMgw8/lyZPnq3Xt27cPrq6uMDIygpWVFWxsbODt7Y2oqChpnbCwMOjo6KS5jy9nK7158waRkZHw9fVNU1fquJsv6/qa8uXLIygoCAcPHsS8efNgYWGB9+/fq3xIP3jwAFFRUbC1tU3zWLGxsdLjVKtWDa1atcLkyZNhbW2NZs2aYe3atV8d25E/f/40bQUKFJDGFYSFhQEAChYsmGa9woULS19an8uVK5fKdUtLSwCQxmi0adMGlSpVQo8ePZA9e3a0bdsWW7duVQkt6r7WmvblczA3NwcAODo6pmn/fOxJerxG3yN1e/1y+7Szs4OFhYX0Oqb61nvjSw8ePAAAuLu7p3k+q1atQmJiovS+iY+Px4QJE6SxHdbW1rCxsUFkZKTKe+vhw4coVqzYdz3+f21L38PGxga1a9fGxo0bERAQgJSUFLRu3fqr64aFhcHe3h5Zs2ZVaS9cuLC0PPVfHR0d5MuXT2W9L98nmvp8oPSRYWb9xMXFoUSJEujWrRtatmyZ7o/3/v17VKpUCTVq1MCBAwdgY2ODBw8eSG/Q38nRo0fx8uVLbN68GZs3b06z3N/fH3Xr1gUAtG3bFitWrMCBAwfQvHlzbN26FYUKFUKJEiWk9ZVKJYoXL44FCxZ89fG+/BL52iyGkydPomnTpqhatSqWL1+OHDlyQF9fH2vXrsXGjRvVfo6pX64dO3aEu7v7V9dxcXH5z/uxtrZG7dq1AQD16tVDoUKF0LhxYyxatEj6laxUKmFra6syGPlzNjY2ACAdKOvcuXPYu3cvAgMD0a1bN8yfPx/nzp1DlixZ1H6e6tDV1f1qu/j/wYjGxsY4ceIEgoODsX//fhw8eBBbtmxBzZo1cejQIejq6qr9Wmvat57D19rFZ4Mstf0afe/xYb53hk/q9j137txvHlgutdb+/ftj7dq1GDRoECpUqABzc3MoFAq0bdv2mz1n/+W/tqXv1b59e/Ts2ROvXr1CgwYNpB6t9KapzwdKHxkmqDRo0AANGjT45vLExESMHTsWmzZtQmRkJIoVK4bZs2ejevXqP/R4s2fPhqOjI9auXSu1fe+vH7nx9/eHra0tli1blmZZQEAAdu7cCR8fHxgbG6Nq1arIkSMHtmzZgsqVK+Po0aNpjnuRL18+XL9+HbVq1frhA3bt2LEDRkZGCAwMVJma+vnfGwBy584NpVKJx48fq/Q6fDnjIHXEf0pKihQ0NKFRo0aoVq0aZsyYAQ8PD5iamiJfvnw4fPgwKlWq9F1fNK6urnB1dcX06dOxceNGdOjQAZs3b0aPHj2kdVJ/MX/u/v37cHJyAvDp7wB8Ot7Il+7evQtra2uYmpqq/fx0dHRQq1Yt1KpVCwsWLMCMGTMwduxYBAcHo3bt2hp5rbUhPV6j75G6vT548ED69Q8Ar1+/RmRkpPQ6qiu1x8DMzOw/t+/t27fD3d0d8+fPl9oSEhIQGRmZ5j6/NrMsPbVo0QIeHh44d+6cyi7mL+XOnRuHDx9GTEyMSq/K3bt3peWp/yqVSjx8+FClF+XL90l6fT6QZmSYXT//pV+/fjh79iw2b96MGzdu4M8//0T9+vW/+gXwPfbs2YOyZcvizz//hK2tLUqVKoWVK1dquOr0Fx8fj4CAADRu3BitW7dOc+nXrx9iYmKwZ88eAJ++uFq3bo29e/fCz88PHz9+VNntA3za1/z8+fOv/j3i4+PT7IL4Gl1dXSgUCml8DPBpqu6Xu/RS998vX75cpX3JkiVp7q9Vq1bYsWPHVz9837x58581fcvIkSPx7t076fm6ubkhJSUFU6dOTbPux48fpS+E9+/fp/nFmfpr+MtdC7t27cLz58+l6xcuXMD58+elcJ4jRw6ULFkS69evV/nCuXXrFg4dOoSGDRuq/bwiIiLStH1ZnyZea21Ij9foe6S+Dl5eXirtqT1SjRo1Uvs+AaBMmTLIly8f5s2bh9jY2DTLP9++dXV10zynJUuWqLzXAKBVq1a4fv06du7cmeb+1O0p+V5ZsmSBt7c3Jk2ahCZNmnxzvYYNGyIlJQVLly5VaV+4cCEUCoX0vkj9d/HixSrrffn3T8/PB/p5GaZH5d88efIEa9euxZMnT2Bvbw8AGDZsGA4ePPjDh7Z+9OgRvL29MWTIEIwZMwYXL17EgAEDYGBg8M2uQznas2cPYmJi0LRp068ud3V1hY2NDfz9/aVA0qZNGyxZsgQTJ05E8eLFVX4ZAkCnTp2wdetW9O7dG8HBwahUqRJSUlJw9+5dbN26VTouxL9p1KgRFixYgPr166N9+/YIDw/HsmXL4OzsjBs3bkjrlSlTBq1atYKXlxfevXsHV1dXHD9+HPfv3weg2sU+a9YsBAcHo3z58ujZsyeKFCmCiIgIXLlyBYcPH/7qF/P3aNCgAYoVK4YFCxbA09MT1apVg4eHB2bOnIlr166hbt260NfXx4MHD7Bt2zYsWrQIrVu3xvr167F8+XK0aNEC+fLlQ0xMDFauXAkzM7M0wcLZ2RmVK1dGnz59kJiYCC8vL2TLlg0jRoyQ1pk7dy4aNGiAChUqoHv37oiPj8eSJUtgbm7+Q+c0mTJlCk6cOIFGjRohd+7cCA8Px/Lly+Hg4CAdQVQTr7U2pMdr9D1KlCgBd3d3+Pr6IjIyEtWqVcOFCxewfv16NG/eXBrMri4dHR2sWrUKDRo0QNGiRdG1a1fkzJkTz58/R3BwMMzMzLB3714AQOPGjeHn5wdzc3MUKVIEZ8+exeHDh5EtWzaV+xw+fDi2b9+OP//8E926dUOZMmUQERGBPXv2wMfHR2V3ryZ9z+dnkyZNUKNGDYwdOxahoaEoUaIEDh06hN27d2PQoEFSD1PJkiXRrl07LF++HFFRUahYsSKOHDny1WO8pNfnA2mAVuYapTMAYufOndL1ffv2CQDC1NRU5aKnpyfc3NyEEELcuXNHAPjXy8iRI6X71NfXFxUqVFB53P79+wtXV9df8hw1pUmTJsLIyEjl+Alf6tKli9DX15em7SmVSuHo6PjV6YGpkpKSxOzZs0XRokWFoaGhsLS0FGXKlBGTJ08WUVFR0nr4Ymrv51avXi3y588vDA0NRaFChcTatWulqbWfi4uLE56ensLKykpkyZJFNG/eXNy7d08AELNmzVJZ9/Xr18LT01M4OjoKfX19YWdnJ2rVqiV8fX3/82/1teOopFq3bl2aKYu+vr6iTJkywtjYWGTNmlUUL15cjBgxQrx48UIIIcSVK1dEu3btRK5cuYShoaGwtbUVjRs3FpcuXZLuI3Uq5Ny5c8X8+fOFo6OjMDQ0FFWqVBHXr19PU8fhw4dFpUqVhLGxsTAzMxNNmjQR//zzj8o6qX/DL6cdp04VTT3mypEjR0SzZs2Evb29MDAwEPb29qJdu3bi/v37Krf73tf6v/zI9OQvpw1/67l9baqwEJp5jb7lW4+ZnJwsJk+eLPLkySP09fWFo6OjGD16tEhISEjznL+1vX3L1atXRcuWLUW2bNmEoaGhyJ07t3BzcxNHjhyR1nn//r3o2rWrsLa2FlmyZBH16tUTd+/eTfM3FkKId+/eiX79+omcOXMKAwMD4eDgINzd3aXPgtTpydu2bVO53fdO4f3W6/ilr/0tYmJixODBg4W9vb3Q19cX+fPnF3PnzlWZni2EEPHx8WLAgAEiW7ZswtTUVDRp0kQ8ffo0zfRkIb7v84HTk389hRDp1IenRQqFAjt37kTz5s0BAFu2bEGHDh1w+/btNIO+smTJAjs7OyQlJf3nVLps2bJJg+xy586NOnXqYNWqVdJyb29vTJs2TaWLnrTj2rVrKFWqFP766y906NBB2+X8sNDQUOTJkwdz585VOfIvEVFmkSl2/ZQqVQopKSkIDw+X5vd/ycDAAIUKFfru+6xUqVKaAVn379//4cFw9OPi4+PTDIj08vKCjo4OqlatqqWqiIhIEzJMUImNjVXZ7/j48WNcu3YNVlZWKFCgADp06IDOnTtj/vz5KFWqFN68eYMjR47AxcXlhwawDR48GBUrVsSMGTPg5uaGCxcuwNfXF76+vpp8WvQd5syZg8uXL6NGjRrQ09PDgQMHcODAAfTq1Svdp8cSEVE60/a+J01J3Vf65SV1n2tSUpKYMGGCcHJyEvr6+iJHjhyiRYsW4saNGz/8mHv37hXFihWTxlB8zzgH0rxDhw6JSpUqCUtLS6Gvry/y5csnJk2aJJKTk7Vd2k/7fIwKEVFmlCHHqBAREVHGkGmOo0JERES/HwYVIiIikq3fejCtUqnEixcvkDVr1t/q8N1ERESZmRACMTExsLe3h47Ov/eZ/NZB5cWLF5zVQURE9Jt6+vQpHBwc/nWd3zqopJ6M6unTpzAzM9NyNURERPQ9oqOj4ejoqHJSyW/5rYNK6u4eMzMzBhUiIqLfzPcM2+BgWiIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki09bRdARETy5TRqv7ZLIC0LndVIq4/PHhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki3ZBJVZs2ZBoVBg0KBB2i6FiIiIZEIWQeXixYtYsWIFXFxctF0KERERyYjWg0psbCw6dOiAlStXwtLSUtvlEBERkYxoPah4enqiUaNGqF279n+um5iYiOjoaJULERERZVx62nzwzZs348qVK7h48eJ3rT9z5kxMnjw5nasiIiIiudBaj8rTp08xcOBA+Pv7w8jI6LtuM3r0aERFRUmXp0+fpnOVREREpE1a61G5fPkywsPDUbp0aaktJSUFJ06cwNKlS5GYmAhdXV2V2xgaGsLQ0PBXl0pERERaorWgUqtWLdy8eVOlrWvXrihUqBBGjhyZJqQQERFR5qO1oJI1a1YUK1ZMpc3U1BTZsmVL005ERESZk9Zn/RARERF9i1Zn/Xzp2LFj2i6BiIiIZIQ9KkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWz8UVB4+fIhx48ahXbt2CA8PBwAcOHAAt2/f1mhxRERElLmpHVSOHz+O4sWL4/z58wgICEBsbCwA4Pr165g4caLGCyQiIqLMS+2gMmrUKEybNg1BQUEwMDCQ2mvWrIlz585ptDgiIiLK3NQOKjdv3kSLFi3StNva2uLt27caKYqIiIgI+IGgYmFhgZcvX6Zpv3r1KnLmzKmRooiIiIiAHwgqbdu2xciRI/Hq1SsoFAoolUqcPn0aw4YNQ+fOndOjRiIiIsqk1A4qM2bMQKFCheDo6IjY2FgUKVIEVatWRcWKFTFu3Lj0qJGIiIgyKT11b2BgYICVK1di/PjxuHXrFmJjY1GqVCnkz58/PeojIiKiTEztoJIqV65cyJUrlyZrISIiIlKhdlARQmD79u0IDg5GeHg4lEqlyvKAgACNFUdERESZm9pBZdCgQVixYgVq1KiB7NmzQ6FQpEddREREROoHFT8/PwQEBKBhw4bpUQ8RERGRRO1ZP+bm5sibN2961EJERESkQu2gMmnSJEyePBnx8fHpUQ8RERGRRO1dP25ubti0aRNsbW3h5OQEfX19leVXrlzRWHFERESUuakdVNzd3XH58mV07NiRg2mJiIgoXakdVPbv34/AwEBUrlw5PeohIiIikqg9RsXR0RFmZmbpUQsRERGRCrWDyvz58zFixAiEhoamQzlERERE/6P2rp+OHTviw4cPyJcvH0xMTNIMpo2IiNBYcUSZndOo/dougbQsdFYjbZdApFVqBxUvL690KIOIiIgorR+a9UNERET0K3xXUImOjpYG0EZHR//ruhxoS0RERJryXUHF0tISL1++hK2tLSwsLL567BQhBBQKBVJSUjReJBEREWVO3xVUjh49CisrKwBAcHBwuhZERERElOq7gkq1atWQN29eXLx4EdWqVUvvmoiIiIgAqHEcldDQUO7WISIiol9K7QO+aZK3tzdcXFxgZmYGMzMzVKhQAQcOHNBmSURERCQjak1PDgwMhLm5+b+u07Rp0+++PwcHB8yaNQv58+eHEALr169Hs2bNcPXqVRQtWlSd0oiIiCgDUiuo/NcxVNSd9dOkSROV69OnT4e3tzfOnTvHoEJERETqBZVXr17B1tY2XQpJSUnBtm3bEBcXhwoVKnx1ncTERCQmJkrX/+uYLkRERPR7++4xKl87doom3Lx5E1myZIGhoSF69+6NnTt3okiRIl9dd+bMmTA3N5cujo6O6VITERERycN3BxUhRLoUULBgQVy7dg3nz59Hnz594O7ujn/++eer644ePRpRUVHS5enTp+lSExEREcnDd+/6cXd3h7GxscYLMDAwgLOzMwCgTJkyuHjxIhYtWoQVK1akWdfQ0BCGhoYar4GIiIjk6buDytq1a9OzDolSqVQZh0JERESZl9pnT9ak0aNHo0GDBsiVKxdiYmKwceNGHDt2DIGBgdosi4iIiGRCq0ElPDwcnTt3xsuXL2Fubg4XFxcEBgaiTp062iyLiIiIZEKrQWX16tXafHgiIiKSuR8+hH5ISAgCAwMRHx8PIP1mBREREVHmpXZQeffuHWrXro0CBQqgYcOGePnyJQCge/fuGDp0qMYLJCIiosxL7aAyePBg6Onp4cmTJzAxMZHa27Rpg4MHD2q0OCIiIsrc1B6jcujQIQQGBsLBwUGlPX/+/AgLC9NYYURERERq96jExcWp9KSkioiI4MHYiIiISKPUDipVqlTBhg0bpOsKhQJKpRJz5sxBjRo1NFocERERZW5q7/qZM2cOatWqhUuXLiEpKQkjRozA7du3ERERgdOnT6dHjURERJRJqd2jUqxYMdy/fx+VK1dGs2bNEBcXh5YtW+Lq1avIly9fetRIREREmdQPHfDN3NwcY8eO1XQtRERERCrU7lE5ePAgTp06JV1ftmwZSpYsifbt2+P9+/caLY6IiIgyN7WDyvDhwxEdHQ0AuHnzJoYMGYKGDRvi8ePHGDJkiMYLJCIiosxL7V0/jx8/RpEiRQAAO3bsQJMmTTBjxgxcuXIFDRs21HiBRERElHmp3aNiYGCADx8+AAAOHz6MunXrAgCsrKyknhYiIiIiTVC7R6Vy5coYMmQIKlWqhAsXLmDLli0AgPv376c5Wi0RERHRz1C7R2Xp0qXQ09PD9u3b4e3tjZw5cwIADhw4gPr162u8QCIiIsq81O5RyZUrF/bt25emfeHChRopiIiIiCjVDx1HRalUIiQkBOHh4VAqlSrLqlatqpHCiIiIiNQOKufOnUP79u0RFhYGIYTKMoVCgZSUFI0VR0RERJmb2kGld+/eKFu2LPbv348cOXJAoVCkR11ERERE6geVBw8eYPv27XB2dk6PeoiIiIgkas/6KV++PEJCQtKjFiIiIiIVaveo9O/fH0OHDsWrV69QvHhx6Ovrqyx3cXHRWHFERESUuakdVFq1agUA6Natm9SmUCgghOBgWiIiItKoHzrXDxEREdGvoHZQyZ07d3rUQURERJTGDx3w7eHDh/Dy8sKdO3cAAEWKFMHAgQORL18+jRZHREREmZvaQSUwMBBNmzZFyZIlUalSJQDA6dOnUbRoUezduxd16tTReJHa4jRqv7ZLIC0LndVI2yUQEWVqageVUaNGYfDgwZg1a1aa9pEjR2aooEJERETapfZxVO7cuYPu3bunae/WrRv++ecfjRRFREREBPxAULGxscG1a9fStF+7dg22traaqImIiIgIwA/s+unZsyd69eqFR48eoWLFigA+jVGZPXs2hgwZovECiYiIKPNSO6iMHz8eWbNmxfz58zF69GgAgL29PSZNmoQBAwZovEAiIiLKvNQOKgqFAoMHD8bgwYMRExMDAMiaNavGCyMiIiL6oeOoAEB4eDju3bsHAChUqBBsbGw0VhQRERER8AODaWNiYtCpUyfY29ujWrVqqFatGuzt7dGxY0dERUWlR41ERESUSakdVHr06IHz589j//79iIyMRGRkJPbt24dLly7Bw8MjPWokIiKiTErtXT/79u1DYGAgKleuLLXVq1cPK1euRP369TVaHBEREWVuaveoZMuWDebm5mnazc3NYWlpqZGiiIiIiIAfCCrjxo3DkCFD8OrVK6nt1atXGD58OMaPH6/R4oiIiChzU3vXj7e3N0JCQpArVy7kypULAPDkyRMYGhrizZs3WLFihbTulStXNFcpERERZTpqB5XmzZunQxlEREREaakdVCZOnJgedRARERGlofYYladPn+LZs2fS9QsXLmDQoEHw9fXVaGFEREREageV9u3bIzg4GMCnQbS1a9fGhQsXMHbsWEyZMkXjBRIREVHmpXZQuXXrFv744w8AwNatW1G8eHGcOXMG/v7+WLdunabrIyIiokxM7aCSnJwMQ0NDAMDhw4fRtGlTAJ/O9/Py5UvNVkdERESZmtpBpWjRovDx8cHJkycRFBQkHY32xYsXyJYtm8YLJCIiosxL7aAye/ZsrFixAtWrV0e7du1QokQJAMCePXukXUJEREREmqD29OTq1avj7du3iI6OVjlkfq9evWBiYqLR4oiIiChzU7tHBQCEELh8+TJWrFiBmJgYAICBgQGDChEREWmU2j0qYWFhqF+/Pp48eYLExETUqVMHWbNmxezZs5GYmAgfH5/0qJOIiIgyIbV7VAYOHIiyZcvi/fv3MDY2ltpbtGiBI0eOaLQ4IiIiytzU7lE5efIkzpw5AwMDA5V2JycnPH/+XGOFEREREando6JUKpGSkpKm/dmzZ8iaNatGiiIiIiICfiCo1K1bF15eXtJ1hUKB2NhYTJw4EQ0bNtRkbURERJTJqb3rZ/78+ahXrx6KFCmChIQEtG/fHg8ePIC1tTU2bdqUHjUSERFRJqV2UHFwcMD169exZcsWXL9+HbGxsejevTs6dOigMriWiIiI6GepHVQAQE9PDx06dECHDh2ktpcvX2L48OFYunSpxoojIiKizE2toHL79m0EBwfDwMAAbm5usLCwwNu3bzF9+nT4+Pggb9686VUnERERZULfPZh2z549KFWqFAYMGIDevXujbNmyCA4ORuHChXHnzh3s3LkTt2/fTs9aiYiIKJP57qAybdo0eHp6Ijo6GgsWLMCjR48wYMAA/P333zh48KB0FmUiIiIiTfnuoHLv3j14enoiS5Ys6N+/P3R0dLBw4UKUK1cuPesjIiKiTOy7g0pMTAzMzMwAALq6ujA2NuaYFCIiIkpXag2mDQwMhLm5OYBPR6g9cuQIbt26pbJO06ZNNVcdERERZWpqBRV3d3eV6x4eHirXFQrFVw+vT0RERPQjvjuoKJXK9KyDiIiIKA21z/VDRERE9KtoNajMnDkT5cqVQ9asWWFra4vmzZvj3r172iyJiIiIZESrQeX48ePw9PTEuXPnEBQUhOTkZNStWxdxcXHaLIuIiIhk4ofO9aMpBw8eVLm+bt062Nra4vLly6hataqWqiIiIiK50GpQ+VJUVBQAwMrK6qvLExMTkZiYKF2Pjo7+JXURERGRdvzQrp/IyEisWrUKo0ePRkREBADgypUreP78+Q8XolQqMWjQIFSqVAnFihX76jozZ86Eubm5dHF0dPzhxyMiIiL5Uzuo3LhxAwUKFMDs2bMxb948REZGAgACAgIwevToHy7E09MTt27dwubNm7+5zujRoxEVFSVdnj59+sOPR0RERPKndlAZMmQIunTpggcPHsDIyEhqb9iwIU6cOPFDRfTr1w/79u1DcHAwHBwcvrmeoaEhzMzMVC5ERESUcak9RuXixYtYsWJFmvacOXPi1atXat2XEAL9+/fHzp07cezYMeTJk0fdcoiIiCgDUzuoGBoafnUQ6/3792FjY6PWfXl6emLjxo3YvXs3smbNKgUdc3NzGBsbq1saERERZTBq7/pp2rQppkyZguTkZACfzu/z5MkTjBw5Eq1atVLrvry9vREVFYXq1asjR44c0mXLli3qlkVEREQZkNpBZf78+YiNjYWtrS3i4+NRrVo1ODs7I2vWrJg+fbpa9yWE+OqlS5cu6pZFREREGZDau37Mzc0RFBSEU6dO4caNG4iNjUXp0qVRu3bt9KiPiIiIMrEfPuBb5cqVUblyZU3WQkRERKRC7aCyePHir7YrFAoYGRnB2dkZVatWha6u7k8XR0RERJmb2kFl4cKFePPmDT58+ABLS0sAwPv372FiYoIsWbIgPDwcefPmRXBwMI8cS0RERD9F7cG0M2bMQLly5fDgwQO8e/cO7969w/3791G+fHksWrQIT548gZ2dHQYPHpwe9RIREVEmonaPyrhx47Bjxw7ky5dPanN2dsa8efPQqlUrPHr0CHPmzFF7qjIRERHRl9TuUXn58iU+fvyYpv3jx4/SAdvs7e0RExPz89URERFRpqZ2UKlRowY8PDxw9epVqe3q1avo06cPatasCQC4efMmD4dPREREP03toLJ69WpYWVmhTJkyMDQ0hKGhIcqWLQsrKyusXr0aAJAlSxbMnz9f48USERFR5qL2GBU7OzsEBQXh7t27uH//PgCgYMGCKFiwoLROjRo1NFchERERZVo/fMC3QoUKoVChQpqshYiIiEjFDwWVZ8+eYc+ePXjy5AmSkpJUli1YsEAjhRERERGpHVSOHDmCpk2bIm/evLh79y6KFSuG0NBQCCFQunTp9KiRiIiIMim1B9OOHj0aw4YNw82bN2FkZIQdO3bg6dOnqFatGv7888/0qJGIiIgyKbWDyp07d9C5c2cAgJ6eHuLj45ElSxZMmTIFs2fP1niBRERElHmpHVRMTU2lcSk5cuTAw4cPpWVv377VXGVERESU6ak9RsXV1RWnTp1C4cKF0bBhQwwdOhQ3b95EQEAAXF1d06NGIiIiyqTUDioLFixAbGwsAGDy5MmIjY3Fli1bkD9/fs74ISIiIo1SK6ikpKTg2bNncHFxAfBpN5CPj0+6FEZERESk1hgVXV1d1K1bF+/fv0+veoiIiIgkag+mLVasGB49epQetRARERGpUDuoTJs2DcOGDcO+ffvw8uVLREdHq1yIiIiINEXtwbQNGzYEADRt2hQKhUJqF0JAoVAgJSVFc9URERFRpqZ2UAkODk6POoiIiIjSUDuoVKtWLT3qICIiIkpD7TEqAHDy5El07NgRFStWxPPnzwEAfn5+OHXqlEaLIyIiosxN7aCyY8cO1KtXD8bGxrhy5QoSExMBAFFRUZgxY4bGCyQiIqLM64dm/fj4+GDlypXQ19eX2itVqoQrV65otDgiIiLK3NQOKvfu3UPVqlXTtJubmyMyMlITNREREREB+IGgYmdnh5CQkDTtp06dQt68eTVSFBERERHwA0GlZ8+eGDhwIM6fPw+FQoEXL17A398fw4YNQ58+fdKjRiIiIsqk1J6ePGrUKCiVStSqVQsfPnxA1apVYWhoiGHDhqF///7pUSMRERFlUmoHFYVCgbFjx2L48OEICQlBbGwsihQpgixZsqRHfURERJSJqb3r56+//sKHDx9gYGCAIkWK4I8//mBIISIionShdlAZPHgwbG1t0b59e/z99988tw8RERGlG7WDysuXL7F582YoFAq4ubkhR44c8PT0xJkzZ9KjPiIiIsrE1A4qenp6aNy4Mfz9/REeHo6FCxciNDQUNWrUQL58+dKjRiIiIsqk1B5M+zkTExPUq1cP79+/R1hYGO7cuaOpuoiIiIh+7KSEHz58gL+/Pxo2bIicOXPCy8sLLVq0wO3btzVdHxEREWViaveotG3bFvv27YOJiQnc3Nwwfvx4VKhQIT1qIyIiokxO7aCiq6uLrVu3ol69etDV1VVZduvWLRQrVkxjxREREVHmpnZQ8ff3V7keExODTZs2YdWqVbh8+TKnKxMREZHG/NAYFQA4ceIE3N3dkSNHDsybNw81a9bEuXPnNFkbERERZXJq9ai8evUK69atw+rVqxEdHQ03NzckJiZi165dKFKkSHrVSERERJnUd/eoNGnSBAULFsSNGzfg5eWFFy9eYMmSJelZGxEREWVy392jcuDAAQwYMAB9+vRB/vz507MmIiIiIgBq9KicOnUKMTExKFOmDMqXL4+lS5fi7du36VkbERERZXLfHVRcXV2xcuVKvHz5Eh4eHti8eTPs7e2hVCoRFBSEmJiY9KyTiIiIMiG1Z/2YmpqiW7duOHXqFG7evImhQ4di1qxZsLW1RdOmTdOjRiIiIsqkfnh6MgAULFgQc+bMwbNnz7Bp0yZN1UREREQE4CeDSipdXV00b94ce/bs0cTdEREREQHQUFAhIiIiSg8MKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbWg0qJ06cQJMmTWBvbw+FQoFdu3ZpsxwiIiKSGa0Glbi4OJQoUQLLli3TZhlEREQkU3rafPAGDRqgQYMG2iyBiIiIZEyrQUVdiYmJSExMlK5HR0drsRoiIiJKb7/VYNqZM2fC3Nxcujg6Omq7JCIiIkpHv1VQGT16NKKioqTL06dPtV0SERERpaPfatePoaEhDA0NtV0GERER/SK/VY8KERERZS5a7VGJjY1FSEiIdP3x48e4du0arKyskCtXLi1WRkRERHKg1aBy6dIl1KhRQ7o+ZMgQAIC7uzvWrVunpaqIiIhILrQaVKpXrw4hhDZLICIiIhnjGBUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLVkElWXLlsHJyQlGRkYoX748Lly4oO2SiIiISAa0HlS2bNmCIUOGYOLEibhy5QpKlCiBevXqITw8XNulERERkZZpPagsWLAAPXv2RNeuXVGkSBH4+PjAxMQEa9as0XZpREREpGVaDSpJSUm4fPkyateuLbXp6Oigdu3aOHv2rBYrIyIiIjnQ0+aDv337FikpKciePbtKe/bs2XH37t006ycmJiIxMVG6HhUVBQCIjo5Ol/qUiR/S5X7p95Fe29b34jZI3AZJ29JjG0y9TyHEf66r1aCirpkzZ2Ly5Mlp2h0dHbVQDWUG5l7aroAyO26DpG3puQ3GxMTA3Nz8X9fRalCxtraGrq4uXr9+rdL++vVr2NnZpVl/9OjRGDJkiHRdqVQiIiIC2bJlg0KhSPd6M5Po6Gg4Ojri6dOnMDMz03Y5lAlxGyRt4zaYfoQQiImJgb29/X+uq9WgYmBggDJlyuDIkSNo3rw5gE/h48iRI+jXr1+a9Q0NDWFoaKjSZmFh8QsqzbzMzMz4BiWt4jZI2sZtMH38V09KKq3v+hkyZAjc3d1RtmxZ/PHHH/Dy8kJcXBy6du2q7dKIiIhIy7QeVNq0aYM3b95gwoQJePXqFUqWLImDBw+mGWBLREREmY/WgwoA9OvX76u7ekh7DA0NMXHixDS72oh+FW6DpG3cBuVBIb5nbhARERGRFmj9yLRERERE38KgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCvyWlUqntEoiI6BdgUKHfko7Op0337du3AACeCYJ+tS/DMrdB0oYvt8OM+COOQYV+W4sWLULz5s3x8OFDKBQKbZdDmYyOjg6ioqIQGBgIANwGSSt0dHQQGRmJuXPn4v3799KPuIwk4z0jyrC+/MWqr68PY2NjGBgYaKkiysyUSiXmz58PDw8P7Nu3T9vlUCZ26NAhLFiwAEuXLtV2KemCZ0+m3050dDTMzMwAAFFRUTA3N9dyRZRZKJVKlV+sd+7cwerVqzF79mzo6upqsTLKTFJSUlS2t+TkZGzZsgXt2rXLkNshgwr9VgYPHoyUlBSMHj0aOXLk0HY5lAlFRkYiMjISjo6OKl8KX355EP2ML0Pxl969e4fTp0+jYsWKsLa2ltoz4nbIXT8ka1/maAcHB2zYsCHDvRHp9yCEwKhRo1C+fHmEhoaqLOM2ST/j5cuXePHiBd68eQPg09iTf+tH2Lp1K5o3b47jx4+rtGfE7ZA9KiQbqb8EhBBQKBTf/EXx/v17WFpaaqFCymj+61fr19YJCwvDuHHjsG7dugz5pUC/3tq1a7Fs2TI8ffoU+fLlQ+XKlTFnzhyVdb7WU+Ll5YV+/fpBT0/vV5b7yzGokFakhhHg0xtQCAE9PT08f/4cO3fuRNeuXWFqagrg0+4eS0tLTJgwIc1tiX7U5wHk6NGjePLkCZydnZE3b17Y29urrBMVFQWlUpkmIGfEbnb6tfbt2wc3NzcsX74cJiYmePToEebMmYOKFSti/fr1yJYtm/SZ9/btW4SEhMDV1VXlPj5+/Jihwwp3/dAvkZqHo6OjER8fD4VCgUOHDiEkJAS6urrQ09NDWFgYSpUqhRcvXkghJS4uDvr6+li4cCEiIiIYUkgjhBBSSBk1ahS6dOmCefPmoVevXhg2bBguXrwI4FP3e2JiIiZMmIDSpUvj3bt3KvfDkEI/6+LFi2jUqBG6dOkCNzc3jBgxAoGBgbhx4wY6dOgA4NPU9+TkZPj5+aFixYo4deqUyn1k5JACMKjQL/Tq1SsUL14cx48fx8aNG1G/fn38888/AD7tzilatChatGiB6dOnS7cxNTXFiBEj8ODBA1hZWTGkkEakbkfz5s3DX3/9hU2bNuHWrVto2bIl9u7di3HjxuHs2bMAAAMDA5QqVQq1atWChYWFFqumjOjx48d4+fKlSlu5cuWwZ88eXL58GT179gTw6XAMjRs3xvTp09P0qGR4gugX6tq1qzAzMxM6Ojpi5cqVUntSUpLYsmWLSElJkdqUSqU2SqRM4vXr16Jly5ZizZo1Qggh9uzZI8zMzETv3r1FqVKlRK1atcS5c+eEEKrb4sePH7VSL2VMgYGBInv27GLz5s1SW+r25u/vL5ydncXFixfT3C45OfmX1aht7FGhXyL1sM6enp6IiYmBgYEB7OzskJCQAODTrwU3NzeVQYvsPaH0ZGtrixEjRqB+/fq4evUqPD09MW3aNHh7e6NVq1Y4d+4cPD09cfnyZZVtkbt7SJMKFy6M6tWrw8/PD0eOHAHwv8++kiVLIjw8XDpVyOcy+u6ezzGo0C+RGkAcHR1x6tQpuLu7o23btti9ezfi4+PTrJ8Rz1dB2vOt7alUqVLIkSMHDhw4ABcXF/Tq1QsAYGVlBVdXVzRp0gSlSpX6laVSJuPo6IjevXsjMjISCxcuxJ49e6RlOXLkQJ48ebRYnTxknkhGWiH+f/Dry5cvkZycjFy5csHW1hYVK1ZEQkICunfvjnXr1qFx48YwMjKCj48PateuDWdnZ22XThmE+Gzg7KpVqxAeHg4DAwMMGzZMOv1CYmIinj9/jtDQUBQsWBCHDh1C06ZN0b9//3+dKk/0M1JnjVWvXh3Lly/HmDFjMHLkSAQGBsLFxQVbt26FQqFAnTp1tF2qVnF6MqW7gIAATJo0Ca9fv0ajRo3QokULNGnSBADQtWtX7Ny5E0OHDsXr16/h7e2NmzdvokiRIlqumjKaiRMnwsvLC+XKlcOFCxdQvnx5+Pn5wc7ODnv37sW0adPw/v176OvrQwiBGzduQE9PjzPNKF2kblcBAQFYvnw5Dh06hLt37yI4OBhLly6Fo6MjLCws4O/vD319/Uw9FZ5BhdLV7du3Ua9ePQwePBgmJibYtGkTDA0N4e7ujo4dOwIABg4ciCtXriAxMRG+vr4oWbKkdoumDOHzXpCPHz/C3d0d/fv3R6lSpRAaGopGjRrBzs4OO3fuhI2NDfbv34+QkBDExsZi5MiR0NPTy9RfDqQZqYFEfHHsKF1dXQQEBKBz585YsGCBtNsR+LS96ujoqGy/mWlMypcYVCjd3L17F9u2bUN8fDxmzJgBALh58yYmTJiA6OhodO3aVQorr169gqmpKbJmzarNkimD+Dyk3LlzB9HR0VixYgUmTJgAJycnAJ+mhdapUwfZs2fHrl27YGNjo3IfDCn0sz7fDt++fQuFQoFs2bIB+PSZV7p0aUyYMAG9e/eWbvNlDx579BhUKB0IIfD+/Xs0btwY//zzD5o0aQI/Pz9p+Y0bNzBhwgTEx8ejbdu26Nq1qxarpYxs+PDhUtf569evERAQgAYNGkgf/I8fP0aDBg0ghMDp06dVTu5G9DM+DxhTp07Frl27EB0dDWtra0yfPh01a9bE8+fPkTNnTi1XKn8cHUYap1AoYGVlhZkzZ6Jo0aK4cuUKgoKCpOUuLi6YOnUqkpOTpTcvkSZ8Prtn3759OHjwIBYvXozly5cjT548GDt2LK5fvy4dKTlPnjzYt28fSpYsyfNHkUalhpQpU6Zg0aJF0vR3a2trdOjQAevXr0/Ti0dfxx4V0ohvdU8eP34cY8aMgZ2dHTw9PVGzZk1p2e3bt2Fubg4HB4dfWSplAgEBAThz5gyyZcuG0aNHAwBiY2NRunRpmJmZYdWqVShRokSabZa7e0iT3r17h7p168LT0xPdunWT2nv16oW9e/ciODgYhQoV4u6d/8AeFfppqW+yM2fOYMGCBRg/fjxOnz6N5ORkVKtWDVOmTMGrV6+wdOlSHDt2TLpd0aJFGVJI4+Lj4zF+/HgsWLAAt2/fltqzZMmCK1euICYmBh4eHtL5fD7HkEKa9PHjR7x9+1bqrUs9wKWvry/s7e2xcOFCADy45X9hUKGf8vkUuwYNGuD06dPYs2cPxowZg+nTpyMpKQm1atXClClT8O7dO0ydOhUnT57UdtmUgRkbG+PkyZOoXbs2Ll++jD179iAlJQXA/8LK3bt3sWLFCi1XShnJ13ZOZM+eHXZ2dlizZg0AwMjICElJSQAAZ2dnBpTvxKBCPyW1J2XAgAFYsGABduzYgW3btuHy5cvYsmULxo0bJ4WVUaNGQV9fn0daJI35fEyKEEL6srCyssLGjRthaWmJuXPnIjAwUFpmamqKV69ewdfXVys1U8ajVCql0PHixQuEh4fjw4cPAIBJkybh7t270sye1IMMPnv2jCe5/E4co0I/JPWNqVAosHz5cly7dg2+vr54/PgxateujcqVK8PMzAzbtm2Dh4cHxowZA0NDQ3z48AEmJibaLp8ygM+nfi5ZsgTXr1/Ho0ePMGjQIJQuXRoODg548+YNmjVrBl1dXYwZMwb16tVTOcIsx6TQz/D394erqyvy5csHABg9ejQCAwMRFhaG2rVro2nTpujQoQNWrlyJqVOnIlu2bChWrBgePnyIyMhI6aCC9O8YVOi7pH4pfB40rl27hpIlSyI6OhpPnz6Fs7Mz6tevjzx58mDNmjWIioqSjjDbpUsXTJ8+nYPG6Kd9uQ2NHj0aq1evRq9evfDs2TOcPXsWzZo1Q69eveDs7Iw3b96gZcuWePPmDdatWwdXV1ctVk8ZxYEDB9C4cWOMHDkSgwYNwoEDBzBixAh4eXnh3bt3uHLlCgIDAzF+/Hj07t0bN2/ehJeXF3R0dGBpaYkZM2bwoILfK13PzUwZyqNHj0S7du3EP//8I7Zu3SoUCoW4cOGCdErymzdvikKFConz588LIYR4+PChaNy4sRgzZox48uSJNkunDCYlJUUIIYSfn5/IkyePuHz5shBCiJMnTwqFQiHy588vBg4cKB49eiSEEOLly5eiV69e4uPHj1qrmTKepUuXCgcHBzF16lTRr18/sXLlSmnZ06dPxZQpU4STk5M4ePDgV2+fnJz8q0r9rbHPib5bQkICTp48iS5duuDatWtYu3YtypUrJ+0GEkLg48ePOHv2LIoWLYoNGzYAAIYNG8ZjVNBP69SpE2xsbLBgwQLo6OggOTkZBgYG6N27N0qXLo1du3aha9euWLVqFV69eoVp06ZBR0cHPXv2ROHChaXBs/wFSz8rKSkJBgYG8PT0hImJCUaPHo2YmBhMmzZNWsfBwQGdO3fGoUOHcOnSJdSrVy/NyS252+c7aTsp0e8h9Resj4+P0NHRESVKlBBXr15VWScqKkp06dJF5MuXTzg5OQkbGxvply7Rz4iKihKTJ08WVlZWYtKkSVL78+fPxevXr8XLly9F2bJlxfz586X17e3tRY4cOcSiRYuEEELq+SPSlJkzZ4rw8HDh7+8vTExMRMOGDcX9+/dV1mnTpo1o2bKllirMGDjrh/6TEAI6OjoQQsDe3h7z58/Hx48fMW7cOJw6dUpaz8zMDPPmzcPy5csxceJEnD9/HqVLl9Zi5ZQRxMTEwMzMDH369MG4cePg5eWFiRMnAgDs7e1ha2uLly9f4v3799L4k+fPn6Nu3bqYMGECPD09AfBYFfTzxGdDOtevX4+pU6fiwYMHaN++PRYuXIgrV67Ax8cH9+7dAwBER0fj8ePHyJUrl7ZKzhDY70T/Svz/wMWjR4/i+PHjGDRoEJo0aYLatWvDzc0Ns2bNwpgxY1CxYkUAn046WLduXS1XTRnFiBEjsGLFCjx8+BA2Njbo2LEjhBCYOnUqAGDy5MkAPoUZXV1dnD59GkIIzJo1CyYmJtKUUO7uIU1IDbtHjhzB1atX4evrK3329erVC8nJyZg8eTIOHjyI0qVLIy4uDklJSZgzZ442y/79abM7h+Qttat8+/btwtzcXIwePVpcvHhRWn7jxg1RpEgR0bhxY/HXX3+JSZMmCYVCIZ4+fcpudtKI69evi6pVq4qCBQuKN2/eCCGECA8PF/PnzxcWFhZiwoQJ0rr9+vUT+fLlEw4ODsLV1VUkJSUJIbjLhzTr2LFjonjx4iJbtmxi165dQgghEhMTpeWrV68WWbJkEaVLlxYbNmyQBnBz4OyP4/Rk+lcXLlxA/fr1MXv2bPTs2VNqj46OhpmZGe7cuYOePXsiPj4eUVFR2Lp1K3f3kEacPXsWb968QZEiRdCmTRvExsZKZzh+8+YN/Pz8MHXqVOlkb8CnKfMKhQLFixeHjo4OPn78yAGL9FPEF9PhY2NjMXfuXPj6+qJ8+fLYtGkTjI2NkZycDH19fQDAggULcObMGWzbtg0KhYI9ej+JQYX+1dKlS7Fz504cOXIEUVFROHr0KP766y/cuXMHw4YNQ7du3RAeHo6oqCiYm5vD1tZW2yVTBtG5c2e8ePEChw8fRmhoKFq3bo2YmJg0YWXatGno168fpkyZonJ7fjmQJi1btgwODg5o1qwZ4uPjMW/ePOzcuRPVq1fHjBkzYGRkpBJWUgPOl0GH1MfBtPSv7OzscPnyZcycOROtW7fG2rVrYWRkhEaNGqFHjx64f/8+bG1tkT9/foYU0qhly5bh2bNnWLp0KZycnLBp0yaYm5ujUqVKePv2LWxsbNCpUydMmDAB06ZNw+rVq1Vuz5BCmvLmzRscPXoUffv2xcGDB2FsbIwhQ4agcePGOHPmDMaOHYuEhATo6+vj48ePAMCQokHsUSFJ6psqNjYWWbJkAQC8fv0aS5YswdatW1GzZk106dIFf/zxB16/fo2mTZti3bp1KFq0qJYrp4wmtTdk8eLFuHr1KhYsWABLS0vcvXsXnTt3RlRUlNSz8urVKxw/fhytWrXibh7SiC+PdwIA169fx+LFi3H48GH4+PigQYMGiIuLw5w5c3D48GEULlwYy5cvl87lQ5rDHhWSKBQK7N+/H+3atUP16tWxbt066OnpYdq0aTh//jx8fHzg6uoKHR0dLFmyBHFxcexFoXSR2htSvXp1nDhxAvv37wcAFCxYEH5+frC0tETVqlXx+vVr2NnZoU2bNtDT05N+zRL9jNSQ8urVK6mtRIkSGDhwIGrUqIHevXvj4MGDMDU1xYgRI/DHH39AR0dH2u1DGqalQbwkQ6dPnxZGRkZi+PDhon79+sLFxUV4eHiIkJAQaZ3g4GDRq1cvYWVlleaAb0Q/KvWAgl/j4+MjChQoIO7duye13bt3Tzg5OYm2bdv+ivIok/h8O9y8ebPImzevykxHIYS4du2aaNasmciVK5c4duyYEEKI+Ph4aXbZv23L9GPYo0IAgLCwMAQFBWH69OmYM2cODhw4gF69euHGjRuYOXMmHj16hLi4OJw9exbh4eE4fvw4SpYsqe2yKQP4vJv9woULOHPmDI4fPy4tb9q0KcqXL4/g4GCprUCBAjhx4gT++uuvX14vZUyJiYnSdpiUlIR8+fKhUKFC8PT0xOXLl6X1SpQogebNm+Pp06eoW7cuzpw5AyMjI2lMype7jOjn8S+aCS1duhR///23dP3evXto06YN1qxZAyMjI6nd09MTHTp0wO3btzFnzhxERkZi+PDhWL9+PYoVK6aN0imD+fyDfcyYMejSpQu6desGd3d3tGnTBtHR0ciRI4e0/z85OVm6raOjI3R1dZGSkqKt8imDOHDgAPz8/AAAPXv2RM2aNVG2bFkMHToUdnZ28PDwwKVLl6T1c+XKhbZt22L+/PkoX7681M6Bs+lE21069Gs9fvxYtG/fXjx48EClfdSoUcLW1la0bNlSOrBWKm9vb1GwYEExYMAAHrSI0sW8efNEtmzZxPnz50VKSoqYMWOGUCgU4tSpU9I6lSpVEh4eHlqskjKqdu3aCScnJ1GvXj1hbW0trl+/Li07evSoaN68uShWrJg4cOCAePz4sWjevLkYOnSotA7Pyp2+GFQyobi4OCGEEOfOnRPbt2+X2idMmCCKFy8uxo0bJ16/fq1ym5UrV4rHjx//yjIpk1AqlcLd3V34+voKIYTYsWOHsLCwED4+PkIIIWJiYoQQQhw4cEA0bdpU3LhxQ2u1UsZVsmRJoVAoVE56merkyZOiU6dOQqFQiAIFCggXFxfpRxuPfJz+OJcvEzI2NkZkZCRmzpyJ58+fQ1dXF82bN8fkyZORnJyM/fv3QwiBgQMHwsbGBgDQo0cPLVdNGVVCQgLOnz+P6tWr49ixY3B3d8fcuXPh4eGBjx8/Ys6cOahQoQJcXV0xZcoUXLhwAcWLF9d22ZRBJCUlISEhAc7OzsiVKxe2bNmCnDlzom3bttJhGipXrozy5cujZ8+eSE5ORrVq1aCrq8sjH/8iHKOSCSkUClhYWGDo0KHIkycPvLy8EBAQAACYMWMG6tevj6CgIMyYMQNv377VcrWUkdy4cQPPnj0DAAwePBjHjx+HsbEx2rdvj7/++gsNGzbEwoULpZMJvn//HpcuXcK9e/dgaWkJPz8/5M6dW5tPgTIYAwMDmJmZYdu2bdi9ezfKlSuHOXPmYPPmzYiJiZHWS0hIQJUqVVCzZk1pbBRDyq/BoJIJiU+7/FClShUMHjwYlpaWWLx4sUpYcXV1xdWrV1VOa070o4QQuH//PmrUqIE1a9agd+/eWLRoESwtLQEArq6uCAsLQ/ny5VGhQgUAwIsXL9ClSxdERkaiX79+AIB8+fKhdu3aWnselPEIIaBUKqXr69evR8WKFbFw4UJs2LABT548Qc2aNfHnn39K6wM88vGvxCPTZkKpR/2MioqCiYkJbty4genTp+P9+/cYOHAgmjdvDuDTYaNTd/0QacLKlSsxYsQIJCQkYPfu3ahbt650ROQtW7ZgypQpEEJAT08PxsbGUCqVOHPmDPT19XnuHvppERERsLKyUmlL3f62bduGoKAg+Pr6AgB69eqFY8eOISUlBVZWVjh9+jSPOqsl7FHJZD5+/AhdXV2EhoaievXqOHToEMqUKYNhw4bBxsYGkydPxr59+wCAIYU0JvUXq6OjIwwNDWFmZoZz584hNDRUmtLZpk0bbNiwAVOmTIGbmxtGjhyJc+fOSedPYUihn7Fo0SKUK1dOZXcOACmkdOnSBSVKlJDafX19sWLFCixZsgTnzp2DgYEBj3ysLdoZw0u/wrdGo4eEhIjs2bOLHj16qEyrO3bsmOjUqZMIDQ39VSVSBvflNpiUlCTi4+OFt7e3yJkzpxgzZsx/bm+c+kk/a8WKFcLQ0FBs3LgxzbInT56I4sWLi6VLl0ptX9vmuB1qD3f9ZFDi/7szz549izt37iAkJASdO3dGjhw5sH79ely6dAnr169Pc4bPhIQElYO+Ef2oz484GxERgZiYGJWBsF5eXpg3bx66d++Orl27wsnJCU2aNMHYsWPh6uqqrbIpg1m5ciX69+8PPz8//Pnnn4iMjERcXBwSEhJga2uLrFmz4sGDB8ifP7+2S6VvYFDJwHbs2IFevXpJJ2978+YN2rRpg5EjRyJr1qzaLo8ysM9DypQpU3Do0CHcunULbm5uaNGiBRo0aADgU1jx8vJCsWLF8O7dOzx58gShoaE8uRtpxKNHj+Ds7Aw3Nzds3rwZt27dQt++ffHmzRuEhYWhRo0a6NOnDxo3bqztUulfcG5VBnXr1i0MHjwY8+fPR5cuXRAdHQ0LCwsYGxszpFC6Sw0pEyZMgK+vL+bOnQsnJyf07t0bDx48QGRkJNq1a4dBgwbB2toa169fR0JCAk6ePCmdBZlTP+ln2djYYPbs2ZgwYQKGDRuGQ4cOoUqVKmjWrBmio6Oxfft2jBs3DtbW1uzFkzNt7ncizTh69Kh4+PBhmrYKFSoIIYS4c+eOyJ07t+jRo4e0/OHDh9znSunq6NGjomjRouLEiRNCCCHOnDkjDAwMRJEiRUT58uXFtm3bpHU/PzUDT9NAmpSQkCDmzZsndHR0RLdu3URSUpK07NKlS6JgwYJi2bJlWqyQ/gtn/fzGhBC4evUqGjRoAG9vb4SFhUnLnj9/DiEEYmNjUb9+fdStWxcrVqwAAAQFBcHb2xvv37/XVumUAYkv9iLnzJkTffr0QZUqVXDo0CE0btwYvr6+CAoKwsOHD7F48WKsXr0aAFR6T9iTQppkaGiI3r17Y8eOHejRowf09fWlbbVMmTIwMjLC06dPtVwl/RsGld+YQqFAqVKlMH/+fGzduhXe3t549OgRAKBRo0Z4/fo1zMzM0KhRI/j6+krd8YGBgbhx4wane5LGKJVKaUD2o0ePEBcXh/z586Ndu3ZISEjAokWLMGDAAHTq1An29vYoWrQoQkJCcOfOHS1XTpmBqakpGjRoIB1MMHVbDQ8Ph7GxMYoWLarN8ug/8KfLbyx1P76npycAYO7cudDV1UWPHj2QJ08ejB8/HjNmzMDHjx/x4cMHhISEYNOmTVi1ahVOnTolHRWU6Gd8PnB2woQJOHv2LIYPH44aNWrAysoKcXFxePnyJUxMTKCjo4PExEQ4OTlhxIgRqF+/vparp4xIfDaTMZWhoaH0/5SUFLx9+xY9e/aEQqFAu3btfnWJpAYGld9Yao/IoUOHoKOjg+TkZHh5eSEhIQEjR46Em5sb4uPjMWPGDGzfvh3Zs2eHgYEBgoODUaxYMS1XTxnF5yFlxYoV8PX1RalSpaSZO4mJibCyssKpU6ekAbPv3r3DmjVroKOjoxJ0iH5EWFgYIiIikC1bNtjZ2f3rEWSTk5Ph5+eHTZs2ISIiAufOnZPO3cNeZnni9OTfXGBgoHQiN1NTUzx48ACLFy9G3759MXLkSNjY2CAmJgbHjx+Hk5MTbG1tYWtrq+2y6Tf3Zbi4f/8+mjdvjtmzZ6NJkyZp1rt48SLGjRuH2NhYWFlZISAgAPr6+gwp9NM2bNiA+fPnIzw8HNbW1ujfv7/UU5Lqy+0sKCgIt2/fRr9+/TjL7DfAoPIbUyqV6NChAxQKBTZu3Ci1L1myBCNGjICnpyf69u2LvHnzarFKymhatmyJMWPGoGzZslLbtWvXUL9+fRw/fhwFCxb86kEEExISIISAkZERFAoFvxzop23YsAGenp7S4fFnzJiBR48e4fTp09K2lRpSIiMjcejQIbi5uancB3tS5I8/ZX5jqb8QUrvYk5KSAAD9+/eHh4cH1q5di8WLF6vMBiL6Webm5nBxcVFpMzIywvv373Hr1i2pLfX8PmfPnsWOHTugo6MDY2NjKBQKKJVKhhT6KZcuXcLUqVOxdOlSdOvWDcWLF8fgwYPh7OyMM2fO4Pbt24iOjpZ2i69fvx59+/bFX3/9pXI/DCnyx6DyG3rx4oX0/4IFC2Lv3r0IDw+HgYEBkpOTAQAODg4wMTFBcHAwjI2NtVUqZSDPnz8HAKxduxYGBgZYvHgxDh06hKSkJDg7O6NNmzaYO3cuDh8+DIVCAR0dHaSkpGD69OkIDg5WGTfA3T30sxITEzFo0CA0atRIaps0aRKOHDmCdu3aoXPnzmjbti0iIiKgr6+Phg0bYtiwYRw4+xvirp/fzPXr19GvXz+0b98effr0QVJSEmrWrIm3b9/i2LFjsLOzAwCMHDkSRYsWRePGjdOc1pxIXT179gQAjB49WtqV6OLigrdv32Lz5s2oWrUqTp48iYULF+LmzZvo0KEDDAwMcOTIEbx58wZXrlxhDwpplFKpxJs3b5A9e3YAQOfOnXH48GHs2bMHjo6OOH78OKZNm4aRI0eiffv2KmNWuLvn98KfNb8ZExMTWFhYYPv27Vi3bh0MDAywYsUK2NjYoHDhwmjevDnq1q2LRYsWoWzZsgwppBEuLi44ePAgvL29ERISAgC4ceMGChYsiA4dOuDEiROoUqUKpkyZgs6dO8PPzw9Hjx5Frly5cPnyZWnAIpGm6OjoSCEFAIYNG4bz58+jbNmyyJ49Oxo0aICIiAi8fv06zVRlhpTfC3tUfkMhISEYM2YMXr16hZ49e6JTp05ISUnBvHnzEBYWBiEE+vfvjyJFimi7VMpA1qxZgwkTJqBt27bo2bMnChYsCACoWrUqHj9+DH9/f1StWhUA8OHDB5iYmEi35cBZ+tWePXuGjh07YtiwYTzp4G+OQeU3cOXKFbx8+VJlX2xISAjGjRuH0NBQ9O/fHx06dNBihZSRfT61c/Xq1ZgwYQLatWuXJqyEhYVhw4YNqFChgsp4lK8dfItIHZ9vQ6n/T/33zZs3sLGxUVk/Li4O7dq1Q1RUFI4ePcoelN8cg4rMxcTEoFGjRtDV1cWIESPQoEEDaVloaCjq168PExMT9OjRA3379tVipZTRfOsYJytXrsTkyZPRpk0b9OrVSworNWvWxOnTp3Hu3DmUKlXqV5dLGdTXtsPUtoCAAGzatAmLFi2Cvb094uPjsXv3bvj5+eH58+e4ePEi9PX1OSblN8cxKjKVmh+zZs2KOXPmQE9PD0uXLsX+/fuldZycnFCjRg28evUKR44cQWRkpJaqpYzm8y+HM2fOIDg4GNevXwfwaWDt+PHjsXnzZvj6+uLevXsAgKNHj6JHjx5ppi4T/ahTp05JJwwcMmQIZs2aBeDT+JQtW7agc+fOqF27Nuzt7QF8OqHl48ePkTdvXly6dAn6+vr4+PEjQ8pvjj0qMpPanZn6CyD1C+P8+fMYNWoUTE1N0adPH2k30NChQ5E3b160bNkSOXLk0HL1lBF83s0+ZMgQbNmyBbGxsXBwcECuXLlw4MABAMCKFSswbdo0tG3bFu7u7iqnZeAvWPoZQghERUXB1tYWDRo0gLW1NQICAnDy5EkUK1YMkZGRcHV1haenJ/r37y/d5vPPToDbYUbBoCIjqW+04OBg7NmzBxEREahcuTL+/PNPWFhY4Ny5cxg/fjwSExORN29emJiYYMuWLbh+/TocHBy0XT5lAJ+HlEOHDmHQoEHw9fWFhYUF/vnnH0ycOBGmpqa4dOkSgE9jVjw8PODl5YV+/fpps3TKgMLDw5E3b16kpKRgx44daNiwobTsa2NTvjaWhX5/3PUjIwqFAjt37kSTJk3w4cMHfPjwAX5+fujTpw8iIiLg6uqKefPmoVq1aggJCcGjR49w9OhRhhTSmNQP9j179mDz5s2oXbs2KleujGLFiqF169bYsGEDYmNj0adPHwBA9+7dsXv3buk6kaYkJibi1atXMDExga6uLtasWSNNjQcAa2tr6f+pR0H+PJgwpGQc7FGRkUuXLqFt27YYNWoUevTogbCwMJQuXRrGxsYoWbIkNmzYACsrK+ncKV9OASXShIiICDRu3BjXr19HjRo1sG/fPpXlY8aMwenTp/H333/D1NRUamc3O/2sbw3gDg0NhYuLC2rUqIEFCxYgX758WqiOtIU9Kloyc+ZMjB07VvolAHw6RLmrqyt69OiB0NBQ1KpVC82bN8e4ceNw8eJF9O3bFxERETAyMgIAhhTSiM+3QQCwsrLC+vXrUadOHVy9ehVr165VWZ4/f368e/cO8fHxKu0MKfQzPg8px44dw8aNG3H9+nU8f/4cTk5OOH36NIKDgzFixAhpAHeLFi2wZMkSbZZNvwB7VLRkyZIlGDhwIGbMmIERI0ZIb9A7d+6gYMGCaNasmfSFoVQqUbJkSYSEhKBRo0bYsmULz5VCGvH5l8PDhw+hUChgYmICOzs7PH78GJ6enoiLi8Off/4JDw8PvH79Gu7u7jAyMsK+ffvYvU4aN2zYMKxfvx56enrIkiUL7OzssHDhQpQtWxY3b95EjRo14OTkhKSkJHz8+BHXr1+XTsxKGZSgX06pVAohhFi5cqXQ0dERU6dOFcnJydLyp0+fisKFC4t9+/YJIYSIiIgQ7dq1E0uWLBHPnj3TSs2U8aRuh0IIMXHiRFG8eHFRqFAhkSNHDuHr6yuEECIkJEQ0bNhQGBkZiYIFC4oWLVqIevXqifj4eCGEECkpKVqpnTKOz7fDoKAgUaJECXHy5EkREREhdu/eLVq0aCGcnZ3FlStXhBBCPHjwQEyZMkVMnz5d+tz8/POTMh4GlV9MqVRKb0ylUin++usvoaOjI6ZNmyZ96IeHh4uSJUsKDw8PERoaKsaMGSPKlSsnXr9+rc3SKYOaMmWKsLGxEYGBgSI2Nla0aNFCWFhYiNu3bwshhHj06JFo1KiRKFmypFi4cKF0u4SEBC1VTBnR+vXrRb9+/USvXr1U2i9evCjq168v3N3dRWxsrBBCNdwwpGR83H+gBQqFAocPH8bQoUNRpkwZ6Rwqs2bNghAClpaW6NChA44fPw5XV1ds2LABPj4+sLW11XbplAF8PiZFqVTiwoULWLhwIerWrYugoCAcO3YMM2bMQJEiRZCcnIw8efJg/vz5yJ49O/bv34+AgAAAgKGhobaeAmUA4otRB7t27cKyZctw7do1JCYmSu1ly5ZFlSpVcOrUKaSkpABQndHDc0hlAtpOSpnRjh07hLGxsZg6daq4ePGiEEIIX19faTeQEEIkJiaK27dvi6CgIPH06VNtlksZ1IQJE8SsWbNEzpw5xb1790RwcLDIkiWL8Pb2FkII8eHDBzF27FgRGhoqhBDi/v37onHjxqJs2bIiICBAm6XTb+7zHhF/f3+xYcMGIYQQ/fr1ExYWFmLZsmUiKipKWicwMFAUKlRI2hYpc2FQ+cXu3bsn8uTJI5YvX55m2YoVK6TdQESa9vl4ks2bNwtHR0dx69Yt0bFjR1GvXj1hYmIiVq9eLa3z/PlzUaVKFbFhwwbptnfu3BGtW7cWYWFhv7x+yhg+3w5v3bolSpUqJUqUKCF2794thBDC3d1d5M+fX0yfPl2EhISIkJAQUatWLVGtWjWVgEOZB/vMfrEnT55AX19f5QiLqTMvevXqBVNTU3Tq1AmGhoYYNmyYFiuljCZ1ds/x48dx7NgxDB06FEWLFpUOJFirVi1069YNwKeTYfbo0QO6urpo3749dHR0oFQqUahQIWzcuJGzLOiHpW6Hw4cPx+PHj2FsbIy7d+9i8ODB+PjxI9atW4du3bph3LhxWLJkCSpVqoQsWbJgy5YtUCgU3zzWCmVcDCq/WGxsrMrxJ5RKpbS/9dixYyhTpgy2bNmict4UIk159eoVunfvjvDwcIwZMwYA0Lt3bzx8+BBHjx5FqVKlkD9/fjx58gQJCQm4ePEidHV1VQ7mxjEB9LPWrVuHVatW4ciRI8iTJw8SExPh7u6OmTNnQkdHB2vWrIGJiQm2bt2K+vXro23btjA0NERSUhIMDAy0XT79Yoylv1iJEiXw9u1b+Pr6Avj06yI1qOzevRsbN25Ey5YtUbhwYW2WSRmUnZ0dAgICkD17duzduxeXL1+Grq4u5s6diylTpqBmzZqws7NDmzZtvnn2WR47hX5WSEgIihUrhpIlS8Lc3Bx2dnZYs2YNdHV1MXjwYOzcuRNLly5F7dq1sWDBAuzZswcxMTEMKZkUfxr9Ynny5MHSpUvRu3dvJCcno3PnztDV1cW6deuwbt06nD17lkf4pHTl4uKCHTt2wN3dHT4+Pujfvz9cXFzQtGlTNG3aVGXdlJQU9qCQxoj/P1GgoaEhEhISkJSUBCMjIyQnJyNnzpyYOXMmGjduDC8vLxgbG2Pjxo1o3749hg0bBj09Pbi5uWn7KZAW8Mi0WqBUKrFjxw54eHjA1NQURkZG0NXVxaZNm1CqVCltl0eZxNWrV9GjRw+UKVMGAwcORNGiRbVdEmUSN2/eRKlSpTB+/HhMnDhRag8MDMTKlSvx/v17pKSk4NixYwCArl27Yvz48cibN6+WKiZtYlDRohcvXiAsLAwKhQJ58uRB9uzZtV0SZTJXr16Fh4cHcufOjTlz5iBPnjzaLokyiXXr1qFXr14YNGgQ2rRpA0tLSwwYMAAVK1ZEixYtULRoUezfvx8NGjTQdqmkZQwqRJnchQsX4OPjg1WrVnE2Bf1SO3bsQN++fWFgYAAhBGxtbXHmzBm8fv0aderUwfbt2+Hi4qLtMknLGFSISBo7wKmf9Ks9f/4cT58+RXJyMipVqgQdHR2MHj0au3btQnBwMOzs7LRdImkZgwoRAfhfWCHSltu3b2P27Nn4+++/cfjwYZQsWVLbJZEMcDg/EQHgtGPSro8fPyIpKQm2trY4fvw4B3eThD0qREQkG8nJyTzyMalgUCEiIiLZ4qg5IiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSL6rRw7dgwKhQKRkZHffRsnJyd4eXmlW01ElH4YVIhIo7p06QKFQoHevXunWebp6QmFQoEuXbr8+sKI6LfEoEJEGufo6IjNmzcjPj5eaktISMDGjRuRK1cuLVZGRL8bBhUi0rjSpUvD0dERAQEBUltAQABy5cqFUqVKSW2JiYkYMGAAbG1tYWRkhMqVK+PixYsq9/X333+jQIECMDY2Ro0aNRAaGprm8U6dOoUqVarA2NgYjo6OGDBgAOLi4tLt+RHRr8OgQkTpolu3bli7dq10fc2aNejatavKOiNGjMCOHTuwfv16XLlyBc7OzqhXrx4iIiIAAE+fPkXLli3RpEkTXLt2DT169MCoUaNU7uPhw4eoX78+WrVqhRs3bmDLli04deoU+vXrl/5PkojSHYMKEaWLjh074tSpUwgLC0NYWBhOnz6Njh07Ssvj4uLg7e2NuXPnokGDBihSpAhWrlwJY2NjrF69GgDg7e2NfPnyYf78+ShYsCA6dOiQZnzLzJkz0aFDBwwaNAj58+dHxYoVsXjxYmzYsAEJCQm/8ikTUTrgSQmJKF3Y2NigUaNGWLduHYQQaNSoEaytraXlDx8+RHJyMipVqiS16evr448//sCdO3cAAHfu3EH58uVV7rdChQoq169fv44bN27A399fahNCQKlU4vHjxyhcuHB6PD0i+kUYVIgo3XTr1k3aBbNs2bJ0eYzY2Fh4eHhgwIABaZZx4C7R749BhYjSTf369ZGUlASFQoF69eqpLMuXLx8MDAxw+vRp5M6dG8CnM+devHgRgwYNAgAULlwYe/bsUbnduXPnVK6XLl0a//zzD5ydndPviRCR1nCMChGlG11dXdy5cwf//PMPdHV1VZaZmpqiT58+GD58OA4ePIh//vkHPXv2xIcPH9C9e3cAQO/evfHgwQMMHz4c9+7dw8aNG7Fu3TqV+xk5ciTOnDmDfv364dq1a3jw4AF2797NwbREGQSDChGlKzMzM5iZmX112axZs9CqVSt06tQJpUuXRkhICAIDA2FpaQng066bHTt2YNeuXShRogR8fHwwY8YMlftwcXHB8ePHcf/+fVSpUgWlSpXChAkTYG9vn+7PjYjSn0IIIbRdBBEREdHXsEeFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhk6/8AHoK08GWUizwAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "## calculate avg response time\n", + "unique_models = set(result[\"response\"]['model'] for result in result[\"results\"])\n", + "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", + "for completion_result in result[\"results\"]:\n", + " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", + "\n", + "avg_response_time = {}\n", + "for model, data in model_dict.items():\n", + " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", + "\n", + "models = list(avg_response_time.keys())\n", + "response_times = list(avg_response_time.values())\n", + "\n", + "plt.bar(models, response_times)\n", + "plt.xlabel('Model', fontsize=10)\n", + "plt.ylabel('Average Response Time')\n", + "plt.title('Average Response Times for each Model')\n", + "\n", + "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "inSDIE3_IRds" + }, + "source": [ + "# Duration Test endpoint\n", + "\n", + "Run load testing for 2 mins. Hitting endpoints with 100+ queries every 15 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "ePIqDx2EIURH" + }, + "outputs": [], + "source": [ + "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompt = \"Where does Paul Graham live?\"\n", + "final_prompt = context + prompt\n", + "result = load_test_model(models=models, prompt=final_prompt, num_calls=100, interval=15, duration=120)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" + "base_uri": "https://localhost:8080/", + "height": 552 }, - "language_info": { - "name": "python" + "id": "k6rJoELM6t1K", + "outputId": "f4968b59-3bca-4f78-a88b-149ad55e3cf7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIXCAYAAABghH+YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwdUlEQVR4nO3dd1QU198G8GfpoNKUooKCYuwIaiL2GrGLJnYFOxrsNZbYFTsYG2JDjV2xRKOIir33EhsWLBGwUaXJ3vcPX+bnCiYsLi6Oz+ecPbp37ux+lx3YZ+/cmVEIIQSIiIiIZEJH2wUQERERaRLDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNEcmSg4MDunfvru0y1DZnzhyUKFECurq6cHFx0XY5GnfkyBEoFAps27ZN26WoTaFQYNKkSWqv9+jRIygUCgQFBWm8Jsoaww19tiVLlkChUKBatWraLiXPcXBwgEKhkG758uXDDz/8gLVr12q7tK9Oxodidm5fqwMHDmDUqFGoWbMmVq9ejRkzZmi7pDwnKChIep9PnDiRabkQAvb29lAoFGjRooUWKqS8QE/bBdDXb/369XBwcMC5c+cQHh4OJycnbZeUp7i4uGD48OEAgOfPn2PFihXw8vJCSkoK+vTpo+Xqvh5ly5bFunXrVNrGjBmD/PnzY9y4cZn637lzBzo6X9f3t8OHD0NHRwcrV66EgYGBtsvJ04yMjLBhwwbUqlVLpf3o0aN4+vQpDA0NtVQZ5QUMN/RZHj58iFOnTiE4OBje3t5Yv349Jk6c+EVrUCqVSE1NhZGR0Rd93uwqWrQounbtKt3v3r07SpQoAT8/P4YbNdjY2Kj8HAFg5syZKFSoUKZ2AF/lh1t0dDSMjY01FmyEEEhOToaxsbFGHi8vadasGbZu3Yrff/8denr/+yjbsGEDqlSpgpcvX2qxOtK2r+trDeU569evh4WFBZo3b46ff/4Z69evl5alpaXB0tISPXr0yLReXFwcjIyMMGLECKktJSUFEydOhJOTEwwNDWFvb49Ro0YhJSVFZV2FQoEBAwZg/fr1KF++PAwNDbF//34AwNy5c1GjRg0ULFgQxsbGqFKlSpb79pOSkjBo0CAUKlQIBQoUQKtWrfDs2bMs96k/e/YMPXv2hI2NDQwNDVG+fHmsWrUqxz8zKysrlClTBvfv31dpVyqV8Pf3R/ny5WFkZAQbGxt4e3vjzZs3Kv0uXLgAd3d3FCpUCMbGxnB0dETPnj2l5Rn79+fOnQs/Pz8UL14cxsbGqFu3Lm7cuJGpnsOHD6N27drIly8fzM3N0bp1a9y6dUulz6RJk6BQKBAeHo7u3bvD3NwcZmZm6NGjB96+favSNzQ0FLVq1YK5uTny58+P0qVLY+zYsSp9svtef46P59xk7M44ceIEBg0aBCsrK5ibm8Pb2xupqamIiYmBp6cnLCwsYGFhgVGjRkEIofKYmnqPsqJQKLB69WokJiZKu10y5mi8e/cOU6dORcmSJWFoaAgHBweMHTs208/LwcEBLVq0QEhICKpWrQpjY2MsW7bsX5/37NmzaNKkCczMzGBiYoK6devi5MmTKn0iIiLwyy+/oHTp0jA2NkbBggXRrl07PHr0KNPjxcTEYOjQoXBwcIChoSHs7Ozg6emZKWwolUpMnz4ddnZ2MDIyQsOGDREeHv6vtX6oU6dOePXqFUJDQ6W21NRUbNu2DZ07d85yncTERAwfPhz29vYwNDRE6dKlMXfu3Ezvc0pKCoYOHQorKyvp78PTp0+zfExN/30gDRFEn6FMmTKiV69eQgghjh07JgCIc+fOSct79uwpzM3NRUpKisp6a9asEQDE+fPnhRBCpKeni8aNGwsTExMxZMgQsWzZMjFgwAChp6cnWrdurbIuAFG2bFlhZWUlJk+eLBYvXiwuX74shBDCzs5O/PLLL2LRokVi/vz54ocffhAAxJ49e1Qeo3379gKA6Natm1i8eLFo3769qFSpkgAgJk6cKPWLjIwUdnZ2wt7eXkyZMkUsXbpUtGrVSgAQfn5+//nzKV68uGjevLlKW1pamrC1tRU2NjYq7b179xZ6enqiT58+IiAgQIwePVrky5dPfP/99yI1NVUIIURUVJSwsLAQ3333nZgzZ45Yvny5GDdunChbtqz0OA8fPhQARMWKFYWDg4OYNWuWmDx5srC0tBRWVlYiMjJS6hsaGir09PTEd999J2bPni0mT54sChUqJCwsLMTDhw+lfhMnThQAhKurq2jbtq1YsmSJ6N27twAgRo0aJfW7ceOGMDAwEFWrVhULFiwQAQEBYsSIEaJOnTpSH3Xe6/9Svnx5Ubdu3U/+7L28vKT7q1evFgCEi4uLaNKkiVi8eLHo1q2b9Bpq1aolOnfuLJYsWSJatGghAIg1a9bkynuUlXXr1onatWsLQ0NDsW7dOrFu3Tpx//59IYQQXl5eAoD4+eefxeLFi4Wnp6cAIDw8PDK9ZicnJ2FhYSF+/fVXERAQIMLCwj75nIcOHRIGBgaievXqYt68ecLPz084OzsLAwMDcfbsWanf1q1bRaVKlcSECRNEYGCgGDt2rLCwsBDFixcXiYmJUr/4+HhRoUIFoaurK/r06SOWLl0qpk6dKr7//nvpdzQsLEzalqpUqSL8/PzEpEmThImJifjhhx/+9Wf04ft4/vx5UaNGDdGtWzdp2c6dO4WOjo549uxZpt89pVIpGjRoIBQKhejdu7dYtGiRaNmypQAghgwZovIcXbt2FQBE586dxaJFi0Tbtm2Fs7Nzjv8+ZPxOrl69+j9fH2kGww3l2IULFwQAERoaKoR4/8fDzs5ODB48WOoTEhIiAIg///xTZd1mzZqJEiVKSPfXrVsndHR0xPHjx1X6BQQECADi5MmTUhsAoaOjI27evJmpprdv36rcT01NFRUqVBANGjSQ2i5evJjlH7Tu3btn+uPVq1cvUbhwYfHy5UuVvh07dhRmZmaZnu9jxYsXF40bNxYvXrwQL168ENevX5c+UH18fKR+x48fFwDE+vXrVdbfv3+/SvuOHTtUQmFWMv6QGhsbi6dPn0rtZ8+eFQDE0KFDpTYXFxdhbW0tXr16JbVdvXpV6OjoCE9PT6ktI9z07NlT5bnatGkjChYsKN338/MTAMSLFy8+WZ867/V/yUm4cXd3F0qlUmqvXr26UCgUol+/flLbu3fvhJ2dncpja/I9+hQvLy+RL18+lbYrV64IAKJ3794q7SNGjBAAxOHDh1VeMwCxf//+/3wupVIpSpUqlenn8fbtW+Ho6Ch+/PFHlbaPnT59WgAQa9euldomTJggAIjg4OAsn0+I/4WbsmXLqnzpWbBggQAgrl+//q91fxhuFi1aJAoUKCDV165dO1G/fn3pZ/FhuNm5c6cAIKZNm6byeD///LNQKBQiPDxcCPG/n/cvv/yi0q9z5845/vvAcPPlcbcU5dj69ethY2OD+vXrA3g/rN6hQwds2rQJ6enpAIAGDRqgUKFC2Lx5s7TemzdvEBoaig4dOkhtW7duRdmyZVGmTBm8fPlSujVo0AAAEBYWpvLcdevWRbly5TLV9OHcgjdv3iA2Nha1a9fGpUuXpPaMXVi//PKLyroDBw5UuS+EwPbt29GyZUsIIVTqcnd3R2xsrMrjfsqBAwdgZWUFKysrVKxYEevWrUOPHj0wZ84clddvZmaGH3/8UeV5qlSpgvz580uv39zcHACwZ88epKWl/evzenh4oGjRotL9H374AdWqVcNff/0F4P3k5itXrqB79+6wtLSU+jk7O+PHH3+U+n2oX79+Kvdr166NV69eIS4uTqW+Xbt2QalUZlmXuu+1pvXq1UvliKpq1apBCIFevXpJbbq6uqhatSoePHigUrem36PsyHgfhg0bptKeMUl97969Ku2Ojo5wd3f/z8e9cuUK7t27h86dO+PVq1fS60lMTETDhg1x7Ngx6T388PcqLS0Nr169gpOTE8zNzVV+B7Zv345KlSqhTZs2mZ7v46PYevTooTK3qHbt2gCg8jP/L+3bt0dSUhL27NmD+Ph47Nmz55O7pP766y/o6upi0KBBKu3Dhw+HEAL79u2T+gHI1G/IkCEq9zX194Fyxzcdbo4dO4aWLVuiSJEiUCgU2LlzZ64/57Nnz9C1a1dpTkjFihVx4cKFXH9eTUtPT8emTZtQv359PHz4EOHh4QgPD0e1atUQFRWFQ4cOAQD09PTw008/YdeuXdL8gODgYKSlpamEm3v37uHmzZtSCMi4fffddwDeT7T8kKOjY5Z17dmzB25ubjAyMoKlpSWsrKywdOlSxMbGSn0iIiKgo6OT6TE+PsrrxYsXiImJQWBgYKa6MuYRfVxXVqpVq4bQ0FDs378fc+fOhbm5Od68eaPyh/3evXuIjY2FtbV1pudKSEiQnqdu3br46aefMHnyZBQqVAitW7fG6tWrs5yrUqpUqUxt3333nTRPIiIiAgBQunTpTP3Kli0rfdB9qFixYir3LSwsAECac9KhQwfUrFkTvXv3ho2NDTp27IgtW7aoBB1132tN+/g1mJmZAQDs7e0ztX84lyY33qPsyNheP94+bW1tYW5uLr2PGT71u/Gxe/fuAQC8vLwyvZ4VK1YgJSVF+r1JSkrChAkTpLkqhQoVgpWVFWJiYlR+t+7fv48KFSpk6/n/a1vKDisrKzRq1AgbNmxAcHAw0tPT8fPPP2fZNyIiAkWKFEGBAgVU2suWLSstz/hXR0cHJUuWVOn38e+Jpv4+UO74po+WSkxMRKVKldCzZ0+0bds215/vzZs3qFmzJurXr499+/bBysoK9+7dk36pvyaHDx/G8+fPsWnTJmzatCnT8vXr16Nx48YAgI4dO2LZsmXYt28fPDw8sGXLFpQpUwaVKlWS+iuVSlSsWBHz58/P8vk+/uDJ6uiP48ePo1WrVqhTpw6WLFmCwoULQ19fH6tXr8aGDRvUfo0ZH8hdu3aFl5dXln2cnZ3/83EKFSqERo0aAQDc3d1RpkwZtGjRAgsWLJC+jSuVSlhbW6tMyP6QlZUVAEgnPztz5gz+/PNPhISEoGfPnpg3bx7OnDmD/Pnzq/061aGrq5tlu/j/CZnGxsY4duwYwsLCsHfvXuzfvx+bN29GgwYNcODAAejq6qr9Xmvap15DVu3ig4mm2n6Psnv+nuweGZWxfc+ZM+eTJwvMqHXgwIFYvXo1hgwZgurVq8PMzAwKhQIdO3b85Ajdf/mvbSm7OnfujD59+iAyMhJNmzaVRs5ym6b+PlDu+KbDTdOmTdG0adNPLk9JScG4ceOwceNGxMTEoEKFCpg1axbq1auXo+ebNWsW7O3tsXr1aqktu9+y8pr169fD2toaixcvzrQsODgYO3bsQEBAAIyNjVGnTh0ULlwYmzdvRq1atXD48OFM5yUpWbIkrl69ioYNG+b4JGzbt2+HkZERQkJCVA4D/vDnDQDFixeHUqnEw4cPVUY3Pj5SI+NIifT0dCmcaELz5s1Rt25dzJgxA97e3siXLx9KliyJgwcPombNmtn6cHJzc4ObmxumT5+ODRs2oEuXLti0aRN69+4t9cn4Zv6hu3fvwsHBAcD7nwPw/nwwH7t9+zYKFSqEfPnyqf36dHR00LBhQzRs2BDz58/HjBkzMG7cOISFhaFRo0Yaea+1ITfeo+zI2F7v3bsnjTIAQFRUFGJiYqT3UV0ZIxOmpqb/uX1v27YNXl5emDdvntSWnJyMmJiYTI+Z1RF5ualNmzbw9vbGmTNnVHZ/f6x48eI4ePAg4uPjVUZvbt++LS3P+FepVOL+/fsqozUf/57k1t8H0oxverfUfxkwYABOnz6NTZs24dq1a2jXrh2aNGmS5YdGduzevRtVq1ZFu3btYG1tDVdXVyxfvlzDVee+pKQkBAcHo0WLFvj5558z3QYMGID4+Hjs3r0bwPsPu59//hl//vkn1q1bh3fv3qnskgLe7zt/9uxZlj+PpKSkTLtHsqKrqwuFQiHN9wHeHxb98e7GjPkIS5YsUWlfuHBhpsf76aefsH379iz/YL948eI/a/qU0aNH49WrV9Lrbd++PdLT0zF16tRMfd+9eyd9iLx58ybTN9uMb90f7/bYuXMnnj17Jt0/d+4czp49KwX6woULw8XFBWvWrFH5kLpx4wYOHDiAZs2aqf26Xr9+nant4/o08V5rQ268R9mR8T74+/urtGeMfDVv3lztxwSAKlWqoGTJkpg7dy4SEhIyLf9w+9bV1c30mhYuXKjyuwYAP/30E65evYodO3Zkejx1R2SyK3/+/Fi6dCkmTZqEli1bfrJfs2bNkJ6ejkWLFqm0+/n5QaFQSL8XGf/+/vvvKv0+/vnn5t8H+nzf9MjNv3n8+DFWr16Nx48fo0iRIgCAESNGYP/+/Tk+LfqDBw+wdOlSDBs2DGPHjsX58+cxaNAgGBgYfHJYMy/avXs34uPj0apVqyyXu7m5wcrKCuvXr5dCTIcOHbBw4UJMnDgRFStWVPkGCgDdunXDli1b0K9fP4SFhaFmzZpIT0/H7du3sWXLFum8Hf+mefPmmD9/Ppo0aYLOnTsjOjoaixcvhpOTE65duyb1q1KlCn766Sf4+/vj1atXcHNzw9GjR3H37l0AqsP/M2fORFhYGKpVq4Y+ffqgXLlyeP36NS5duoSDBw9m+WGeHU2bNkWFChUwf/58+Pj4oG7duvD29oavry+uXLmCxo0bQ19fH/fu3cPWrVuxYMEC/Pzzz1izZg2WLFmCNm3aoGTJkoiPj8fy5cthamqaKYw4OTmhVq1a6N+/P1JSUuDv74+CBQti1KhRUp85c+agadOmqF69Onr16oWkpCQsXLgQZmZmObqGzpQpU3Ds2DE0b94cxYsXR3R0NJYsWQI7OzvpTLKaeK+1ITfeo+yoVKkSvLy8EBgYiJiYGNStWxfnzp3DmjVr4OHhIU3oV5eOjg5WrFiBpk2bonz58ujRoweKFi2KZ8+eISwsDKampvjzzz8BAC1atMC6detgZmaGcuXK4fTp0zh48CAKFiyo8pgjR47Etm3b0K5dO/Ts2RNVqlTB69evsXv3bgQEBKjsitak7Pz9bNmyJerXr49x48bh0aNHqFSpEg4cOIBdu3ZhyJAh0kiWi4sLOnXqhCVLliA2NhY1atTAoUOHsjwHT279fSAN0MoxWnkQALFjxw7p/p49ewQAkS9fPpWbnp6eaN++vRBCiFu3bgkA/3obPXq09Jj6+vqievXqKs87cOBA4ebm9kVeo6a0bNlSGBkZqZzf4mPdu3cX+vr60iGSSqVS2NvbZ3koZobU1FQxa9YsUb58eWFoaCgsLCxElSpVxOTJk0VsbKzUDx8dRv2hlStXilKlSglDQ0NRpkwZsXr1aukw5g8lJiYKHx8fYWlpKfLnzy88PDzEnTt3BAAxc+ZMlb5RUVHCx8dH2NvbC319fWFraysaNmwoAgMD//NnldV5bjIEBQVlOjw0MDBQVKlSRRgbG4sCBQqIihUrilGjRol//vlHCCHEpUuXRKdOnUSxYsWEoaGhsLa2Fi1atBAXLlyQHiPjsNM5c+aIefPmCXt7e2FoaChq164trl69mqmOgwcPipo1awpjY2NhamoqWrZsKf7++2+VPhk/w48P8c44LDfjnDiHDh0SrVu3FkWKFBEGBgaiSJEiolOnTuLu3bsq62X3vf4vOTkU/ONDtD/12rI6LFsIzbxHn/Kp50xLSxOTJ08Wjo6OQl9fX9jb24sxY8aI5OTkTK/5U9vbp1y+fFm0bdtWFCxYUBgaGorixYuL9u3bi0OHDkl93rx5I3r06CEKFSok8ufPL9zd3cXt27cz/YyFEOLVq1diwIABomjRosLAwEDY2dkJLy8v6W9BxqHgW7duVVkvu4dLf+p9/FhWP4v4+HgxdOhQUaRIEaGvry9KlSol5syZo3IovBBCJCUliUGDBomCBQuKfPnyiZYtW4onT55kOhRciOz9feCh4F+eQohcGiv8yigUCuzYsQMeHh4AgM2bN6NLly64efNmpolv+fPnh62tLVJTU//zsMWCBQtKEw2LFy+OH3/8EStWrJCWL126FNOmTVPZfUDaceXKFbi6uuKPP/5Aly5dtF1Ojj169AiOjo6YM2eOyhmgiYi+Fdwt9Qmurq5IT09HdHS0dP6FjxkYGKBMmTLZfsyaNWtmmpR29+7dHE8IpJxLSkrKNCnU398fOjo6qFOnjpaqIiIiTfimw01CQoLKftSHDx/iypUrsLS0xHfffYcuXbrA09MT8+bNg6urK168eIFDhw7B2dk5R5P4hg4diho1amDGjBlo3749zp07h8DAQAQGBmryZVE2zJ49GxcvXkT9+vWhp6eHffv2Yd++fejbt2+uH4pMRES5TNv7xbQpY9/vx7eMfcipqaliwoQJwsHBQejr64vChQuLNm3aiGvXruX4Of/8809RoUIFaU5IduZtkOYdOHBA1KxZU1hYWAh9fX1RsmRJMWnSJJGWlqbt0j7bh3NuiIi+RZxzQ0RERLLC89wQERGRrDDcEBERkax8cxOKlUol/vnnHxQoUOCrOvU7ERHRt0wIgfj4eBQpUgQ6Ov8+NvPNhZt//vmHR8MQERF9pZ48eQI7O7t/7fPNhZuMC6Y9efIEpqamWq6GiIiIsiMuLg729vYqFz79lG8u3GTsijI1NWW4ISIi+spkZ0oJJxQTERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs6Gm7ACLSLIdf92q7BNKyRzOba/X5uQ2StrdBjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrGg13CxduhTOzs4wNTWFqakpqlevjn379v3rOlu3bkWZMmVgZGSEihUr4q+//vpC1RIREdHXQKvhxs7ODjNnzsTFixdx4cIFNGjQAK1bt8bNmzez7H/q1Cl06tQJvXr1wuXLl+Hh4QEPDw/cuHHjC1dOREREeZVCCCG0XcSHLC0tMWfOHPTq1SvTsg4dOiAxMRF79uyR2tzc3ODi4oKAgIBsPX5cXBzMzMwQGxsLU1NTjdVNlFfwooWk7YsWchuk3NgG1fn8zjNzbtLT07Fp0yYkJiaievXqWfY5ffo0GjVqpNLm7u6O06dPf/JxU1JSEBcXp3IjIiIi+dJ6uLl+/Try588PQ0ND9OvXDzt27EC5cuWy7BsZGQkbGxuVNhsbG0RGRn7y8X19fWFmZibd7O3tNVo/ERER5S1aDzelS5fGlStXcPbsWfTv3x9eXl74+++/Nfb4Y8aMQWxsrHR78uSJxh6biIiI8h49bRdgYGAAJycnAECVKlVw/vx5LFiwAMuWLcvU19bWFlFRUSptUVFRsLW1/eTjGxoawtDQULNFExERUZ6l9ZGbjymVSqSkpGS5rHr16jh06JBKW2ho6Cfn6BAREdG3R6sjN2PGjEHTpk1RrFgxxMfHY8OGDThy5AhCQkIAAJ6enihatCh8fX0BAIMHD0bdunUxb948NG/eHJs2bcKFCxcQGBiozZdBREREeYhWw010dDQ8PT3x/PlzmJmZwdnZGSEhIfjxxx8BAI8fP4aOzv8Gl2rUqIENGzZg/PjxGDt2LEqVKoWdO3eiQoUK2noJRERElMdoNdysXLnyX5cfOXIkU1u7du3Qrl27XKqIiIiIvnZ5bs4NERER0edguCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWdFquPH19cX333+PAgUKwNraGh4eHrhz586/rhMUFASFQqFyMzIy+kIVExERUV6n1XBz9OhR+Pj44MyZMwgNDUVaWhoaN26MxMTEf13P1NQUz58/l24RERFfqGIiIiLK6/S0+eT79+9XuR8UFARra2tcvHgRderU+eR6CoUCtra2uV0eERERfYXy1Jyb2NhYAIClpeW/9ktISEDx4sVhb2+P1q1b4+bNm5/sm5KSgri4OJUbERERyVeeCTdKpRJDhgxBzZo1UaFChU/2K126NFatWoVdu3bhjz/+gFKpRI0aNfD06dMs+/v6+sLMzEy62dvb59ZLICIiojwgz4QbHx8f3LhxA5s2bfrXftWrV4enpydcXFxQt25dBAcHw8rKCsuWLcuy/5gxYxAbGyvdnjx5khvlExERUR6h1Tk3GQYMGIA9e/bg2LFjsLOzU2tdfX19uLq6Ijw8PMvlhoaGMDQ01ESZRERE9BXQ6siNEAIDBgzAjh07cPjwYTg6Oqr9GOnp6bh+/ToKFy6cCxUSERHR10arIzc+Pj7YsGEDdu3ahQIFCiAyMhIAYGZmBmNjYwCAp6cnihYtCl9fXwDAlClT4ObmBicnJ8TExGDOnDmIiIhA7969tfY6iIiIKO/QarhZunQpAKBevXoq7atXr0b37t0BAI8fP4aOzv8GmN68eYM+ffogMjISFhYWqFKlCk6dOoVy5cp9qbKJiIgoD9NquBFC/GefI0eOqNz38/ODn59fLlVEREREX7s8MaFYThx+3avtEkjLHs1sru0SiIi+aXnmUHAiIiIiTWC4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZyVG4uX//PsaPH49OnTohOjoaALBv3z7cvHlTo8URERERqUvtcHP06FFUrFgRZ8+eRXBwMBISEgAAV69excSJEzVeIBEREZE61A43v/76K6ZNm4bQ0FAYGBhI7Q0aNMCZM2c0WhwRERGRutQON9evX0ebNm0ytVtbW+Ply5caKYqIiIgop9QON+bm5nj+/Hmm9suXL6No0aIaKYqIiIgop9QONx07dsTo0aMRGRkJhUIBpVKJkydPYsSIEfD09MyNGomIiIiyTe1wM2PGDJQpUwb29vZISEhAuXLlUKdOHdSoUQPjx4/PjRqJiIiIsk3tq4IbGBhg+fLl+O2333Djxg0kJCTA1dUVpUqVyo36iIiIiNSidrjJUKxYMRQrVkyTtRARERF9NrXDjRAC27ZtQ1hYGKKjo6FUKlWWBwcHa6w4IiIiInWpHW6GDBmCZcuWoX79+rCxsYFCociNuoiIiIhyRO1ws27dOgQHB6NZs2a5UQ8RERHRZ1H7aCkzMzOUKFEiN2ohIiIi+mxqh5tJkyZh8uTJSEpKyo16iIiIiD6L2rul2rdvj40bN8La2hoODg7Q19dXWX7p0iWNFUdERESkLrXDjZeXFy5evIiuXbtyQjERERHlOWqHm7179yIkJAS1atXKjXqIiIiIPovac27s7e1hamqaG7UQERERfTa1w828efMwatQoPHr0KBfKISIiIvo8au+W6tq1K96+fYuSJUvCxMQk04Ti169fa6w4IiIiInWpHW78/f1zoQwiIiIizcjR0VJEREREeVW2wk1cXJw0iTguLu5f+3KyMREREWlTtsKNhYUFnj9/Dmtra5ibm2d5bhshBBQKBdLT0zVeJBEREVF2ZSvcHD58GJaWlgCAsLCwXC2IiIiI6HNkK9zUrVsXJUqUwPnz51G3bt3cromIiIgox7J9nptHjx5xlxMRERHleWqfxI+IiIgoL1PrUPCQkBCYmZn9a59WrVp9VkFEREREn0OtcPNf57jh0VJERESkbWrtloqMjIRSqfzkjcGGiIiItC3b4Sarc9sQERER5TXZDjdCiNysg4iIiEgjsh1uvLy8YGxsnJu1EBEREX22bE8oXr16dW7WQURERKQRPM8NERERyQrDDREREckKww0RERHJSo7DTXh4OEJCQpCUlAQgZ0dT+fr64vvvv0eBAgVgbW0NDw8P3Llz5z/X27p1K8qUKQMjIyNUrFgRf/31l9rPTURERPKkdrh59eoVGjVqhO+++w7NmjXD8+fPAQC9evXC8OHD1Xqso0ePwsfHB2fOnEFoaCjS0tLQuHFjJCYmfnKdU6dOoVOnTujVqxcuX74MDw8PeHh44MaNG+q+FCIiIpIhtcPN0KFDoaenh8ePH8PExERq79ChA/bv36/WY+3fvx/du3dH+fLlUalSJQQFBeHx48e4ePHiJ9dZsGABmjRpgpEjR6Js2bKYOnUqKleujEWLFqn7UoiIiEiG1Lq2FAAcOHAAISEhsLOzU2kvVaoUIiIiPquY2NhYAIClpeUn+5w+fRrDhg1TaXN3d8fOnTuz7J+SkoKUlBTpflxc3GfVSERERHmb2iM3iYmJKiM2GV6/fg1DQ8McF6JUKjFkyBDUrFkTFSpU+GS/yMhI2NjYqLTZ2NggMjIyy/6+vr4wMzOTbvb29jmukYiIiPI+tcNN7dq1sXbtWum+QqGAUqnE7NmzUb9+/RwX4uPjgxs3bmDTpk05foysjBkzBrGxsdLtyZMnGn18IiIiylvU3i01e/ZsNGzYEBcuXEBqaipGjRqFmzdv4vXr1zh58mSOihgwYAD27NmDY8eOZdrd9TFbW1tERUWptEVFRcHW1jbL/oaGhp81okRERERfF7VHbipUqIC7d++iVq1aaN26NRITE9G2bVtcvnwZJUuWVOuxhBAYMGAAduzYgcOHD8PR0fE/16levToOHTqk0hYaGorq1aur9dxEREQkT2qP3ACAmZkZxo0b99lP7uPjgw0bNmDXrl0oUKCANG/GzMxMukinp6cnihYtCl9fXwDA4MGDUbduXcybNw/NmzfHpk2bcOHCBQQGBn52PURERPT1U3vkZv/+/Thx4oR0f/HixXBxcUHnzp3x5s0btR5r6dKliI2NRb169VC4cGHptnnzZqnP48ePpXPpAECNGjWwYcMGBAYGolKlSti2bRt27tz5r5OQiYiI6Nuh9sjNyJEjMWvWLADA9evXMWzYMAwfPhxhYWEYNmyYWlcPz85ZjY8cOZKprV27dmjXrl22n4eIiIi+HWqHm4cPH6JcuXIAgO3bt6Nly5aYMWMGLl26hGbNmmm8QCIiIiJ1qL1bysDAAG/fvgUAHDx4EI0bNwbw/sR7PEEeERERaZvaIze1atXCsGHDULNmTZw7d06aH3P37t3/PIybiIiIKLepPXKzaNEi6OnpYdu2bVi6dCmKFi0KANi3bx+aNGmi8QKJiIiI1KH2yE2xYsWwZ8+eTO1+fn4aKYiIiIjoc+ToPDdKpRLh4eGIjo6GUqlUWVanTh2NFEZERESUE2qHmzNnzqBz586IiIjIdCi3QqFAenq6xoojIiIiUpfa4aZfv36oWrUq9u7di8KFC0OhUORGXUREREQ5ona4uXfvHrZt2wYnJ6fcqIeIiIjos6h9tFS1atUQHh6eG7UQERERfTa1R24GDhyI4cOHIzIyEhUrVoS+vr7KcmdnZ40VR0RERKQutcPNTz/9BADo2bOn1KZQKCCE4IRiIiIi0rocXVuKiIiIKK9SO9wUL148N+ogIiIi0ogcncTv/v378Pf3x61btwAA5cqVw+DBg1GyZEmNFkdERESkLrWPlgoJCUG5cuVw7tw5ODs7w9nZGWfPnkX58uURGhqaGzUSERERZZvaIze//vorhg4dipkzZ2ZqHz16NH788UeNFUdERESkLrVHbm7duoVevXplau/Zsyf+/vtvjRRFRERElFNqhxsrKytcuXIlU/uVK1dgbW2tiZqIiIiIckzt3VJ9+vRB37598eDBA9SoUQMAcPLkScyaNQvDhg3TeIFERERE6lA73Pz2228oUKAA5s2bhzFjxgAAihQpgkmTJmHQoEEaL5CIiIhIHWqHG4VCgaFDh2Lo0KGIj48HABQoUEDjhRERERHlRI7OcwMA0dHRuHPnDgCgTJkysLKy0lhRRERERDml9oTi+Ph4dOvWDUWKFEHdunVRt25dFClSBF27dkVsbGxu1EhERESUbWqHm969e+Ps2bPYu3cvYmJiEBMTgz179uDChQvw9vbOjRqJiIiIsk3t3VJ79uxBSEgIatWqJbW5u7tj+fLlaNKkiUaLIyIiIlKX2iM3BQsWhJmZWaZ2MzMzWFhYaKQoIiIiopxSO9yMHz8ew4YNQ2RkpNQWGRmJkSNH4rffftNocURERETqUnu31NKlSxEeHo5ixYqhWLFiAIDHjx/D0NAQL168wLJly6S+ly5d0lylRERERNmgdrjx8PDIhTKIiIiINEPtcDNx4sTcqIOIiIhII9Sec/PkyRM8ffpUun/u3DkMGTIEgYGBGi2MiIiIKCfUDjedO3dGWFgYgPcTiRs1aoRz585h3LhxmDJlisYLJCIiIlKH2uHmxo0b+OGHHwAAW7ZsQcWKFXHq1CmsX78eQUFBmq6PiIiISC1qh5u0tDQYGhoCAA4ePIhWrVoBeH99qefPn2u2OiIiIiI1qR1uypcvj4CAABw/fhyhoaHSWYn/+ecfFCxYUOMFEhEREalD7XAza9YsLFu2DPXq1UOnTp1QqVIlAMDu3bul3VVERERE2qL2oeD16tXDy5cvERcXp3K5hb59+8LExESjxRERERGpS+2RGwAQQuDixYtYtmwZ4uPjAQAGBgYMN0RERKR1ao/cREREoEmTJnj8+DFSUlLw448/okCBApg1axZSUlIQEBCQG3USERERZYvaIzeDBw9G1apV8ebNGxgbG0vtbdq0waFDhzRaHBEREZG61B65OX78OE6dOgUDAwOVdgcHBzx79kxjhRERERHlhNojN0qlEunp6Znanz59igIFCmikKCIiIqKcUjvcNG7cGP7+/tJ9hUKBhIQETJw4Ec2aNdNkbURERERqU3u31Lx58+Du7o5y5cohOTkZnTt3xr1791CoUCFs3LgxN2okIiIiyja1R27s7Oxw9epVjBs3DkOHDoWrqytmzpyJy5cvw9raWq3HOnbsGFq2bIkiRYpAoVBg586d/9r/yJEjUCgUmW6RkZHqvgwiIiKSKbVHbgBAT08PXbp0QZcuXaS258+fY+TIkVi0aFG2HycxMRGVKlVCz5490bZt22yvd+fOHZiamkr31Q1VREREJF9qhZubN28iLCwMBgYGaN++PczNzfHy5UtMnz4dAQEBKFGihFpP3rRpUzRt2lStdYD3Ycbc3Fzt9YiIiEj+sr1bavfu3XB1dcWgQYPQr18/VK1aFWFhYShbtixu3bqFHTt24ObNm7lZq8TFxQWFCxfGjz/+iJMnT/5r35SUFMTFxanciIiISL6yHW6mTZsGHx8fxMXFYf78+Xjw4AEGDRqEv/76C/v375euDp6bChcujICAAGzfvh3bt2+Hvb096tWrh0uXLn1yHV9fX5iZmUk3e3v7XK+TiIiItCfb4ebOnTvw8fFB/vz5MXDgQOjo6MDPzw/ff/99btanonTp0vD29kaVKlVQo0YNrFq1CjVq1ICfn98n1xkzZgxiY2Ol25MnT75YvURERPTlZXvOTXx8vDSJV1dXF8bGxmrPsckNP/zwA06cOPHJ5YaGhjA0NPyCFREREZE2qTWhOCQkBGZmZgDen6n40KFDuHHjhkqfVq1aaa66bLhy5QoKFy78RZ+TiIiI8i61wo2Xl5fKfW9vb5X7CoUiy0szfEpCQgLCw8Ol+w8fPsSVK1dgaWmJYsWKYcyYMXj27BnWrl0LAPD394ejoyPKly+P5ORkrFixAocPH8aBAwfUeRlEREQkY9kON0qlUuNPfuHCBdSvX1+6P2zYMADvQ1RQUBCeP3+Ox48fS8tTU1MxfPhwPHv2DCYmJnB2dsbBgwdVHoOIiIi+bTk6iZ+m1KtXD0KITy4PCgpSuT9q1CiMGjUql6siIiKir5nal18gIiIiyssYboiIiEhWGG6IiIhIVhhuiIiISFZyFG5iYmKwYsUKjBkzBq9fvwYAXLp0Cc+ePdNocURERETqUvtoqWvXrqFRo0YwMzPDo0eP0KdPH1haWiI4OBiPHz+WzklDREREpA1qj9wMGzYM3bt3x71792BkZCS1N2vWDMeOHdNocURERETqUjvcnD9/PtOZiQGgaNGiiIyM1EhRRERERDmldrgxNDREXFxcpva7d+/CyspKI0URERER5ZTa4aZVq1aYMmUK0tLSALy/ntTjx48xevRo/PTTTxovkIiIiEgdaoebefPmISEhAdbW1khKSkLdunXh5OSEAgUKYPr06blRIxEREVG2qX20lJmZGUJDQ3HixAlcu3YNCQkJqFy5Mho1apQb9RERERGpJccXzqxVqxZq1aqlyVqIiIiIPpva4eb333/Psl2hUMDIyAhOTk6oU6cOdHV1P7s4IiIiInWpHW78/Pzw4sULvH37FhYWFgCAN2/ewMTEBPnz50d0dDRKlCiBsLAw2Nvba7xgIiIion+j9oTiGTNm4Pvvv8e9e/fw6tUrvHr1Cnfv3kW1atWwYMECPH78GLa2thg6dGhu1EtERET0r9QeuRk/fjy2b9+OkiVLSm1OTk6YO3cufvrpJzx48ACzZ8/mYeFERESkFWqP3Dx//hzv3r3L1P7u3TvpDMVFihRBfHz851dHREREpCa1w039+vXh7e2Ny5cvS22XL19G//790aBBAwDA9evX4ejoqLkqiYiIiLJJ7XCzcuVKWFpaokqVKjA0NIShoSGqVq0KS0tLrFy5EgCQP39+zJs3T+PFEhEREf0Xtefc2NraIjQ0FLdv38bdu3cBAKVLl0bp0qWlPvXr19dchURERERqyPFJ/MqUKYMyZcposhYiIiKiz5ajcPP06VPs3r0bjx8/Rmpqqsqy+fPna6QwIiIiopxQO9wcOnQIrVq1QokSJXD79m1UqFABjx49ghAClStXzo0aiYiIiLJN7QnFY8aMwYgRI3D9+nUYGRlh+/btePLkCerWrYt27drlRo1ERERE2aZ2uLl16xY8PT0BAHp6ekhKSkL+/PkxZcoUzJo1S+MFEhEREalD7XCTL18+aZ5N4cKFcf/+fWnZy5cvNVcZERERUQ6oPefGzc0NJ06cQNmyZdGsWTMMHz4c169fR3BwMNzc3HKjRiIiIqJsUzvczJ8/HwkJCQCAyZMnIyEhAZs3b0apUqV4pBQRERFpnVrhJj09HU+fPoWzszOA97uoAgICcqUwIiIiopxQa86Nrq4uGjdujDdv3uRWPURERESfRe0JxRUqVMCDBw9yoxYiIiKiz6Z2uJk2bRpGjBiBPXv24Pnz54iLi1O5EREREWmT2hOKmzVrBgBo1aoVFAqF1C6EgEKhQHp6uuaqIyIiIlKT2uEmLCwsN+ogIiIi0gi1w03dunVzow4iIiIijVB7zg0AHD9+HF27dkWNGjXw7NkzAMC6detw4sQJjRZHREREpC61w8327dvh7u4OY2NjXLp0CSkpKQCA2NhYzJgxQ+MFEhEREakjR0dLBQQEYPny5dDX15faa9asiUuXLmm0OCIiIiJ1qR1u7ty5gzp16mRqNzMzQ0xMjCZqIiIiIsoxtcONra0twsPDM7WfOHECJUqU0EhRRERERDmldrjp06cPBg8ejLNnz0KhUOCff/7B+vXrMWLECPTv3z83aiQiIiLKNrUPBf/111+hVCrRsGFDvH37FnXq1IGhoSFGjBiBgQMH5kaNRERERNmmdrhRKBQYN24cRo4cifDwcCQkJKBcuXLInz9/btRHREREpBa1d0v98ccfePv2LQwMDFCuXDn88MMPDDZERESUZ6gdboYOHQpra2t07twZf/3112ddS+rYsWNo2bIlihQpAoVCgZ07d/7nOkeOHEHlypVhaGgIJycnBAUF5fj5iYiISH7UDjfPnz/Hpk2boFAo0L59exQuXBg+Pj44deqU2k+emJiISpUqYfHixdnq//DhQzRv3hz169fHlStXMGTIEPTu3RshISFqPzcRERHJk9pzbvT09NCiRQu0aNECb9++xY4dO7BhwwbUr18fdnZ2uH//frYfq2nTpmjatGm2+wcEBMDR0RHz5s0DAJQtWxYnTpyAn58f3N3d1X0pREREJENqh5sPmZiYwN3dHW/evEFERARu3bqlqbqydPr0aTRq1Eilzd3dHUOGDPnkOikpKdIlIgAgLi4ut8ojIiKiPCBHF858+/Yt1q9fj2bNmqFo0aLw9/dHmzZtcPPmTU3XpyIyMhI2NjYqbTY2NoiLi0NSUlKW6/j6+sLMzEy62dvb52qNREREpF1qh5uOHTvC2toaQ4cORYkSJXDkyBGEh4dj6tSpKFOmTG7U+FnGjBmD2NhY6fbkyRNtl0RERES5SO3dUrq6utiyZQvc3d2hq6ursuzGjRuoUKGCxor7mK2tLaKiolTaoqKiYGpqCmNj4yzXMTQ0hKGhYa7VRERERHmL2uFm/fr1Kvfj4+OxceNGrFixAhcvXvysQ8P/S/Xq1fHXX3+ptIWGhqJ69eq59pxERET0dcnRnBvg/TlqvLy8ULhwYcydOxcNGjTAmTNn1HqMhIQEXLlyBVeuXAHw/lDvK1eu4PHjxwDe71Ly9PSU+vfr1w8PHjzAqFGjcPv2bSxZsgRbtmzB0KFDc/oyiIiISGbUGrmJjIxEUFAQVq5cibi4OLRv3x4pKSnYuXMnypUrp/aTX7hwAfXr15fuDxs2DADg5eWFoKAgPH/+XAo6AODo6Ii9e/di6NChWLBgAezs7LBixQoeBk5ERESSbIebli1b4tixY2jevDn8/f3RpEkT6OrqIiAgIMdPXq9ePQghPrk8q7MP16tXD5cvX87xcxIREZG8ZTvc7Nu3D4MGDUL//v1RqlSp3KyJiIiIKMeyPefmxIkTiI+PR5UqVVCtWjUsWrQIL1++zM3aiIiIiNSW7XDj5uaG5cuX4/nz5/D29samTZtQpEgRKJVKhIaGIj4+PjfrJCIiIsoWtY+WypcvH3r27IkTJ07g+vXrGD58OGbOnAlra2u0atUqN2okIiIiyrYcHwoOAKVLl8bs2bPx9OlTbNy4UVM1EREREeXYZ4WbDLq6uvDw8MDu3bs18XBEREREOaaRcENERESUVzDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs5Ilws3jxYjg4OMDIyAjVqlXDuXPnPtk3KCgICoVC5WZkZPQFqyUiIqK8TOvhZvPmzRg2bBgmTpyIS5cuoVKlSnB3d0d0dPQn1zE1NcXz58+lW0RExBesmIiIiPIyrYeb+fPno0+fPujRowfKlSuHgIAAmJiYYNWqVZ9cR6FQwNbWVrrZ2Nh8wYqJiIgoL9NquElNTcXFixfRqFEjqU1HRweNGjXC6dOnP7leQkICihcvDnt7e7Ru3Ro3b978ZN+UlBTExcWp3IiIiEi+tBpuXr58ifT09EwjLzY2NoiMjMxyndKlS2PVqlXYtWsX/vjjDyiVStSoUQNPnz7Nsr+vry/MzMykm729vcZfBxEREeUdWt8tpa7q1avD09MTLi4uqFu3LoKDg2FlZYVly5Zl2X/MmDGIjY2Vbk+ePPnCFRMREdGXpKfNJy9UqBB0dXURFRWl0h4VFQVbW9tsPYa+vj5cXV0RHh6e5XJDQ0MYGhp+dq1ERET0ddDqyI2BgQGqVKmCQ4cOSW1KpRKHDh1C9erVs/UY6enpuH79OgoXLpxbZRIREdFXRKsjNwAwbNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwZcoUuLm5wcnJCTExMZgzZw4iIiLQu3dvbb4MIiIiyiO0Hm46dOiAFy9eYMKECYiMjISLiwv2798vTTJ+/PgxdHT+N8D05s0b9OnTB5GRkbCwsECVKlVw6tQplCtXTlsvgYiIiPIQrYcbABgwYAAGDBiQ5bIjR46o3Pfz84Ofn98XqIqIiIi+Rl/d0VJERERE/4bhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkJU+Em8WLF8PBwQFGRkaoVq0azp0796/9t27dijJlysDIyAgVK1bEX3/99YUqJSIiorxO6+Fm8+bNGDZsGCZOnIhLly6hUqVKcHd3R3R0dJb9T506hU6dOqFXr164fPkyPDw84OHhgRs3bnzhyomIiCgv0nq4mT9/Pvr06YMePXqgXLlyCAgIgImJCVatWpVl/wULFqBJkyYYOXIkypYti6lTp6Jy5cpYtGjRF66ciIiI8iKthpvU1FRcvHgRjRo1ktp0dHTQqFEjnD59Ost1Tp8+rdIfANzd3T/Zn4iIiL4tetp88pcvXyI9PR02NjYq7TY2Nrh9+3aW60RGRmbZPzIyMsv+KSkpSElJke7HxsYCAOLi4j6n9E9SprzNlcelr0dubVvZxW2QuA2StuXGNpjxmEKI/+yr1XDzJfj6+mLy5MmZ2u3t7bVQDX0LzPy1XQF967gNkrbl5jYYHx8PMzOzf+2j1XBTqFAh6OrqIioqSqU9KioKtra2Wa5ja2urVv8xY8Zg2LBh0n2lUonXr1+jYMGCUCgUn/kK6ENxcXGwt7fHkydPYGpqqu1y6BvEbZC0jdtg7hFCID4+HkWKFPnPvloNNwYGBqhSpQoOHToEDw8PAO/Dx6FDhzBgwIAs16levToOHTqEIUOGSG2hoaGoXr16lv0NDQ1haGio0mZubq6J8ukTTE1N+UtNWsVtkLSN22Du+K8Rmwxa3y01bNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwePBg1K1bF/PmzUPz5s2xadMmXLhwAYGBgdp8GURERJRHaD3cdOjQAS9evMCECRMQGRkJFxcX7N+/X5o0/PjxY+jo/O+grho1amDDhg0YP348xo4di1KlSmHnzp2oUKGCtl4CERER5SEKkZ1px0TZkJKSAl9fX4wZMybTrkCiL4HbIGkbt8G8geGGiIiIZEXrZygmIiIi0iSGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYb+mYolUptl0BERF8Aww19MzIuwPry5UsAAK88Ql/axwGb2yBpw8fboRy/+DHc0DdlwYIF8PDwwP3796FQKLRdDn1jdHR0EBsbi5CQEADgNkhaoaOjg5iYGMyZMwdv3ryRvvjJifxeEdEHPv5mrK+vD2NjYxgYGGipIvqWKZVKzJs3D97e3tizZ4+2y6Fv2IEDBzB//nwsWrRI26XkCl4VnL4JcXFxMDU1BQDExsbCzMxMyxXRt0KpVKp8M7516xZWrlyJWbNmQVdXV4uV0bckPT1dZXtLS0vD5s2b0alTJ1luhww3JHtDhw5Feno6xowZg8KFC2u7HPoGxcTEICYmBvb29iofJB9/4BB9jo+D9MdevXqFkydPokaNGihUqJDULsftkLulSHY+zut2dnZYu3at7H556esghMCvv/6KatWq4dGjRyrLuE3S53j+/Dn++ecfvHjxAsD7uTT/Nl6xZcsWeHh44OjRoyrtctwOOXJDX7WMbxxCCCgUik9+c3nz5g0sLCy0UCHJzX99O86qT0REBMaPH4+goCBZfpDQl7d69WosXrwYT548QcmSJVGrVi3Mnj1bpU9WIzL+/v4YMGAA9PT0vmS5XxzDDX01MgIM8P6XVggBPT09PHv2DDt27ECPHj2QL18+AO93RVlYWGDChAmZ1iXKqQ9Dy+HDh/H48WM4OTmhRIkSKFKkiEqf2NhYKJXKTKFajrsA6Mvas2cP2rdvjyVLlsDExAQPHjzA7NmzUaNGDaxZswYFCxaU/ua9fPkS4eHhcHNzU3mMd+/eyTrgcLcU5VkZuTsuLg5JSUlQKBQ4cOAAwsPDoaurCz09PURERMDV1RX//POPFGwSExOhr68PPz8/vH79msGGNEIIIQWbX3/9Fd27d8fcuXPRt29fjBgxAufPnwfwftdASkoKJkyYgMqVK+PVq1cqj8NgQ5/r/PnzaN68Obp374727dtj1KhRCAkJwbVr19ClSxcA708zkJaWhnXr1qFGjRo4ceKEymPIOdgADDeUx0VGRqJixYo4evQoNmzYgCZNmuDvv/8G8H5XU/ny5dGmTRtMnz5dWidfvnwYNWoU7t27B0tLSwYb0oiM7Wju3Ln4448/sHHjRty4cQNt27bFn3/+ifHjx+P06dMAAAMDA7i6uqJhw4YwNzfXYtUkRw8fPsTz589V2r7//nvs3r0bFy9eRJ8+fQC8P/VFixYtMH369EwjN7IniPK4Hj16CFNTU6GjoyOWL18utaemporNmzeL9PR0qU2pVGqjRPpGREVFibZt24pVq1YJIYTYvXu3MDU1Ff369ROurq6iYcOG4syZM0II1W3x3bt3WqmX5CkkJETY2NiITZs2SW0Z29v69euFk5OTOH/+fKb10tLSvliN2saRG8qzMk4J7uPjg/j4eBgYGMDW1hbJyckA3n8rad++vcrETY7SUG6ytrbGqFGj0KRJE1y+fBk+Pj6YNm0ali5dip9++glnzpyBj48PLl68qLItclcUaVLZsmVRr149rFu3DocOHQLwv799Li4uiI6Oli4z8yG574r6EMMN5VkZocXe3h4nTpyAl5cXOnbsiF27diEpKSlTfzleH4W051Pbk6urKwoXLox9+/bB2dkZffv2BQBYWlrCzc0NLVu2hKur65cslb4x9vb26NevH2JiYuDn54fdu3dLywoXLgxHR0ctVpc3fDsxjr4a4v8nAD9//hxpaWkoVqwYrK2tUaNGDSQnJ6NXr14ICgpCixYtYGRkhICAADRq1AhOTk7aLp1kQnwweXjFihWIjo6GgYEBRowYIV26IyUlBc+ePcOjR49QunRpHDhwAK1atcLAgQP/9bQERJ8j42i7evXqYcmSJRg7dixGjx6NkJAQODs7Y8uWLVAoFPjxxx+1XapW8VBwypOCg4MxadIkREVFoXnz5mjTpg1atmwJAOjRowd27NiB4cOHIyoqCkuXLsX169dRrlw5LVdNcjNx4kT4+/vj+++/x7lz51CtWjWsW7cOtra2+PPPPzFt2jS8efMG+vr6EELg2rVr0NPT4xF6lCsytqvg4GAsWbIEBw4cwO3btxEWFoZFixbB3t4e5ubmWL9+PfT19b/p0w4w3FCec/PmTbi7u2Po0KEwMTHBxo0bYWhoCC8vL3Tt2hUAMHjwYFy6dAkpKSkIDAyEi4uLdosmWfhwtOXdu3fw8vLCwIED4erqikePHqF58+awtbXFjh07YGVlhb179yI8PBwJCQkYPXo09PT0vukPFNKMjBAjPjq3l66uLoKDg+Hp6Yn58+dLu0SB99urjo6Oyvb7Lc2x+RjDDeUpt2/fxtatW5GUlIQZM2YAAK5fv44JEyYgLi4OPXr0kAJOZGQk8uXLhwIFCmizZJKJD4PNrVu3EBcXh2XLlmHChAlwcHAA8P4Q3B9//BE2NjbYuXMnrKysVB6DwYY+14fb4cuXL6FQKFCwYEEA7//mVa5cGRMmTEC/fv2kdT4eKeTIIcMN5RFCCLx58wYtWrTA33//jZYtW2LdunXS8mvXrmHChAlISkpCx44d0aNHDy1WS3I2cuRIaVg/KioKwcHBaNq0qfRh8fDhQzRt2hRCCJw8eVLlAoREn+PDUDJ16lTs3LkTcXFxKFSoEKZPn44GDRrg2bNnKFq0qJYrzfs4243yBIVCAUtLS/j6+qJ8+fK4dOkSQkNDpeXOzs6YOnUq0tLSpF94Ik348KioPXv2YP/+/fj999+xZMkSODo6Yty4cbh69ap0xmxHR0fs2bMHLi4uvF4ZaVRGsJkyZQoWLFggnWqgUKFC6NKlC9asWZNptJCyxpEb0ppPDZ0ePXoUY8eOha2tLXx8fNCgQQNp2c2bN2FmZgY7O7svWSp9A4KDg3Hq1CkULFgQY8aMAQAkJCSgcuXKMDU1xYoVK1CpUqVM2yx3RZEmvXr1Co0bN4aPjw969uwptfft2xd//vknwsLCUKZMGe56+g8cuSGtyPjFPHXqFObPn4/ffvsNJ0+eRFpaGurWrYspU6YgMjISixYtwpEjR6T1ypcvz2BDGpeUlITffvsN8+fPx82bN6X2/Pnz49KlS4iPj4e3t7d0/agPMdiQJr179w4vX76URgUzTloaGBiIIkWKwM/PDwBPWPpfGG7oi/vwcMamTZvi5MmT2L17N8aOHYvp06cjNTUVDRs2xJQpU/Dq1StMnToVx48f13bZJGPGxsY4fvw4GjVqhIsXL2L37t1IT08H8L+Ac/v2bSxbtkzLlZKcZLXjxMbGBra2tli1ahUAwMjICKmpqQAAJycnhppsYrihLy5jxGbQoEGYP38+tm/fjq1bt+LixYvYvHkzxo8fLwWcX3/9Ffr6+jzjJmnMh3NshBDSB4ylpSU2bNgACwsLzJkzByEhIdKyfPnyITIyEoGBgVqpmeRHqVRKQeWff/5BdHQ03r59CwCYNGkSbt++LR0RlXHiyKdPn/JCrNnEOTf0xWT8MisUCixZsgRXrlxBYGAgHj58iEaNGqFWrVowNTXF1q1b4e3tjbFjx8LQ0BBv376FiYmJtssnGfjwMNuFCxfi6tWrePDgAYYMGYLKlSvDzs4OL168QOvWraGrq4uxY8fC3d1d5UzDnGNDn2P9+vVwc3NDyZIlAQBjxoxBSEgIIiIi0KhRI7Rq1QpdunTB8uXLMXXqVBQsWBAVKlTA/fv3ERMTI50okv4dww3lmowPkg/DyZUrV+Di4oK4uDg8efIETk5OaNKkCRwdHbFq1SrExsZKZxru3r07pk+fzolz9Nk+3obGjBmDlStXom/fvnj69ClOnz6N1q1bo2/fvnBycsKLFy/Qtm1bvHjxAkFBQXBzc9Ni9SQX+/btQ4sWLTB69GgMGTIE+/btw6hRo+Dv749Xr17h0qVLCAkJwW+//YZ+/frh+vXr8Pf3h46ODiwsLDBjxgyeKDK7cvWa4/TNe/DggejUqZP4+++/xZYtW4RCoRDnzp0TSqVSCCHE9evXRZkyZcTZs2eFEELcv39ftGjRQowdO1Y8fvxYm6WTzKSnpwshhFi3bp1wdHQUFy9eFEIIcfz4caFQKESpUqXE4MGDxYMHD4QQQjx//lz07dtXvHv3Tms1k/wsWrRI2NnZialTp4oBAwaI5cuXS8uePHkipkyZIhwcHMT+/fuzXD8tLe1LlfpV49gW5ark5GQcP34c3bt3x5UrV7B69Wp8//330i4qIQTevXuH06dPo3z58li7di0AYMSIETyHCH22bt26wcrKCvPnz4eOjg7S0tJgYGCAfv36oXLlyti5cyd69OiBFStWIDIyEtOmTYOOjg769OmDsmXLShOI+U2ZPldqaioMDAzg4+MDExMTjBkzBvHx8Zg2bZrUx87ODp6enjhw4AAuXLgAd3f3TBdg5S6pbNJ2uiL5yvimHBAQIHR0dESlSpXE5cuXVfrExsaK7t27i5IlSwoHBwdhZWUlfaMm+hyxsbFi8uTJwtLSUkyaNElqf/bsmYiKihLPnz8XVatWFfPmzZP6FylSRBQuXFgsWLBACCGkEUYiTfH19RXR0dFi/fr1wsTERDRr1kzcvXtXpU+HDh1E27ZttVShPPBoKcoVQgjo6OhACIEiRYpg3rx5ePfuHcaPH48TJ05I/UxNTTF37lwsWbIEEydOxNmzZ1G5cmUtVk5yEB8fD1NTU/Tv3x/jx4+Hv78/Jk6cCAAoUqQIrK2t8fz5c7x580aaT/Ps2TM0btwYEyZMgI+PDwCeS4Q+n/hgWuuaNWswdepU3Lt3D507d4afnx8uXbqEgIAA3LlzBwAQFxeHhw8folixYtoqWRY4vkUaJ/5/8ubhw4dx9OhRDBkyBC1btkSjRo3Qvn17zJw5E2PHjkWNGjUAvL8wZuPGjbVcNcnFqFGjsGzZMty/fx9WVlbo2rUrhBCYOnUqAGDy5MkA3gcgXV1dnDx5EkIIzJw5EyYmJtLht9wVRZqQEZAPHTqEy5cvIzAwUPrb17dvX6SlpWHy5MnYv38/KleujMTERKSmpmL27NnaLPvrp81hI5KfjGH8bdu2CTMzMzFmzBhx/vx5afm1a9dEuXLlRIsWLcQff/whJk2aJBQKhXjy5Al3AZBGXL16VdSpU0eULl1avHjxQgghRHR0tJg3b54wNzcXEyZMkPoOGDBAlCxZUtjZ2Qk3NzeRmpoqhODuKNKsI0eOiIoVK4qCBQuKnTt3CiGESElJkZavXLlS5M+fX1SuXFmsXbtWmsTOycM5x0PBSePOnTuHJk2aYNasWejTp4/UHhcXB1NTU9y6dQt9+vRBUlISYmNjsWXLFu6KIo04ffo0Xrx4gXLlyqFDhw5ISEiQrtz94sULrFu3DlOnTpUuSAi8Pz2BQqFAxYoVoaOjg3fv3nHSJn0W8dGpBxISEjBnzhwEBgaiWrVq2LhxI4yNjZGWlgZ9fX0AwPz583Hq1Cls3boVCoWCI4efieGGNG7RokXYsWMHDh06hNjYWBw+fBh//PEHbt26hREjRqBnz56Ijo5GbGwszMzMYG1tre2SSSY8PT3xzz//4ODBg3j06BF+/vlnxMfHZwo406ZNw4ABAzBlyhSV9fmBQpq0ePFi2NnZoXXr1khKSsLcuXOxY8cO1KtXDzNmzICRkZFKwMkIRR+HI1IfJxSTxtna2uLixYvw9fXFzz//jNWrV8PIyAjNmzdH7969cffuXVhbW6NUqVIMNqRRixcvxtOnT7Fo0SI4ODhg48aNMDMzQ82aNfHy5UtYWVmhW7dumDBhAqZNm4aVK1eqrM9gQ5ry4sULHD58GL/88gv2798PY2NjDBs2DC1atMCpU6cwbtw4JCcnQ19fH+/evQMABhsN4sgNfZaMX8SEhATkz58fABAVFYWFCxdiy5YtaNCgAbp3744ffvgBUVFRaNWqFYKCglC+fHktV05ykzHq8vvvv+Py5cuYP38+LCwscPv2bXh6eiI2NlYawYmMjMTRo0fx008/cRcUacTH56MBgKtXr+L333/HwYMHERAQgKZNmyIxMRGzZ8/GwYMHUbZsWSxZskS6dhRpDkdu6LMoFArs3bsXnTp1Qr169RAUFAQ9PT1MmzYNZ8+eRUBAANzc3KCjo4OFCxciMTGRozWUKzJGXerVq4djx45h7969AIDSpUtj3bp1sLCwQJ06dRAVFQVbW1t06NABenp60rdmos+REWwiIyOltkqVKmHw4MGoX78++vXrh/379yNfvnwYNWoUfvjhB+jo6Ei7pEjDtDSRmWTi5MmTwsjISIwcOVI0adJEODs7C29vbxEeHi71CQsLE3379hWWlpaZTuJHlFMZJ4nMSkBAgPjuu+/EnTt3pLY7d+4IBwcH0bFjxy9RHn0jPtwON23aJEqUKKFyhKgQQly5ckW0bt1aFCtWTBw5ckQIIURSUpJ0VN6/bcuUMxy5oRyLiIhAaGgopk+fjtmzZ2Pfvn3o27cvrl27Bl9fXzx48ACJiYk4ffo0oqOjcfToUbi4uGi7bJKBD3cBnDt3DqdOncLRo0el5a1atUK1atUQFhYmtX333Xc4duwY/vjjjy9eL8lTSkqKtB2mpqaiZMmSKFOmDHx8fHDx4kWpX6VKleDh4YEnT56gcePGOHXqFIyMjKQ5Nh/vzqLPx58oZcuiRYvw119/Sffv3LmDDh06YNWqVTAyMpLafXx80KVLF9y8eROzZ89GTEwMRo4ciTVr1qBChQraKJ1k5sMPg7Fjx6J79+7o2bMnvLy80KFDB8TFxaFw4cLSfIa0tDRpXXt7e+jq6iI9PV1b5ZNM7Nu3D+vWrQMA9OnTBw0aNEDVqlUxfPhw2NrawtvbGxcuXJD6FytWDB07dsS8efNQrVo1qZ2Th3OJtoeOKO97+PCh6Ny5s7h3755K+6+//iqsra1F27ZtpZOlZVi6dKkoXbq0GDRoEE9ERbli7ty5omDBguLs2bMiPT1dzJgxQygUCnHixAmpT82aNYW3t7cWqyS56tSpk3BwcBDu7u6iUKFC4urVq9Kyw4cPCw8PD1GhQgWxb98+8fDhQ+Hh4SGGDx8u9eHV5nMXww1lS2JiohBCiDNnzoht27ZJ7RMmTBAVK1YU48ePF1FRUSrrLF++XDx8+PBLlknfCKVSKby8vERgYKAQQojt27cLc3NzERAQIIQQIj4+XgghxL59+0SrVq3EtWvXtFYryZeLi4tQKBQqF2bNcPz4cdGtWzehUCjEd999J5ydnaUvejwDdu7jMZCULcbGxoiJiYGvry+ePXsGXV1deHh4YPLkyUhLS8PevXshhMDgwYNhZWUFAOjdu7eWqya5Sk5OxtmzZ1GvXj0cOXIEXl5emDNnDry9vfHu3TvMnj0b1atXh5ubG6ZMmYJz586hYsWK2i6bZCI1NRXJyclwcnJCsWLFsHnzZhQtWhQdO3aUTolRq1YtVKtWDX369EFaWhrq1q0LXV1dngH7C+GcG8oWhUIBc3NzDB8+HI6OjvD390dwcDAAYMaMGWjSpAlCQ0MxY8YMvHz5UsvVkpxcu3YNT58+BQAMHToUR48ehbGxMTp37ow//vgDzZo1g5+fn3TByzdv3uDChQu4c+cOLCwssG7dOhQvXlybL4FkxsDAAKampti6dSt27dqF77//HrNnz8amTZsQHx8v9UtOTkbt2rXRoEEDaa4Xg82XwXBD2SLe78JE7dq1MXToUFhYWOD3339XCThubm64fPkyBM8LSRoghMDdu3dRv359rFq1Cv369cOCBQtgYWEBAHBzc0NERASqVauG6tWrAwD++ecfdO/eHTExMRgwYAAAoGTJkmjUqJHWXgfJjxACSqVSur9mzRrUqFEDfn5+WLt2LR4/fowGDRqgXbt2Un+AZ8D+kniGYsqWjLO/xsbGwsTEBNeuXcP06dPx5s0bDB48GB4eHgDen3I8Y7cUkSYsX74co0aNQnJyMnbt2oXGjRtLZ8bevHkzpkyZAiEE9PT0YGxsDKVSiVOnTkFfX5/XiqLP9vr1a1haWqq0ZWx/W7duRWhoKAIDAwEAffv2xZEjR5Ceng5LS0ucPHmSZx/WEo7c0H969+4ddHV18ejRI9SrVw8HDhxAlSpVMGLECFhZWWHy5MnYs2cPADDYkMZkfDO2t7eHoaEhTE1NcebMGTx69Eg6fLZDhw5Yu3YtpkyZgvbt22P06NE4c+aMdL0eBhv6HAsWLMD333+vsqsJgBRsunfvjkqVKkntgYGBWLZsGRYuXIgzZ87AwMCAZ8DWFu3MY6a86lOz+MPDw4WNjY3o3bu3yiGMR44cEd26dROPHj36UiWSzH28DaampoqkpCSxdOlSUbRoUTF27Nj/3N54mC19rmXLlglDQ0OxYcOGTMseP34sKlasKBYtWiS1ZbXNcTvUHu6WIon4/6HW06dP49atWwgPD4enpycKFy6MNWvW4MKFC1izZk2mK9cmJyernMiPKKc+PPPw69evER8frzIZ2N/fH3PnzkWvXr3Qo0cPODg4oGXLlhg3bhzc3Ny0VTbJzPLlyzFw4ECsW7cO7dq1Q0xMDBITE5GcnAxra2sUKFAA9+7dQ6lSpbRdKn0Cww2p2L59O/r27StdYPDFixfo0KEDRo8ejQIFCmi7PJKxD4PNlClTcODAAdy4cQPt27dHmzZt0LRpUwDvA46/vz8qVKiAV69e4fHjx3j06BEvQEga8eDBAzg5OaF9+/bYtGkTbty4gV9++QUvXrxAREQE6tevj/79+6NFixbaLpX+BY9JI8mNGzcwdOhQzJs3D927d0dcXBzMzc1hbGzMYEO5LiPYTJgwAYGBgZgzZw4cHBzQr18/3Lt3DzExMejUqROGDBmCQoUK4erVq0hOTsbx48elq3vzMFv6XFZWVpg1axYmTJiAESNG4MCBA6hduzZat26NuLg4bNu2DePHj0ehQoU4WpiXaXOfGGnP4cOHxf379zO1Va9eXQghxK1bt0Tx4sVF7969peX379/nPmTKVYcPHxbly5cXx44dE0IIcerUKWFgYCDKlSsnqlWrJrZu3Sr1/fCyHrzEB2lScnKymDt3rtDR0RE9e/YUqamp0rILFy6I0qVLi8WLF2uxQvovPFrqGyOEwOXLl9G0aVMsXboUERER0rJnz55BCIGEhAQ0adIEjRs3xrJlywAAoaGhWLp0Kd68eaOt0kmGxEd7xYsWLYr+/fujdu3aOHDgAFq0aIHAwECEhobi/v37+P3337Fy5UoAUBml4YgNaZKhoSH69euH7du3o3fv3tDX15e21SpVqsDIyAhPnjzRcpX0bxhuvjEKhQKurq6YN28etmzZgqVLl+LBgwcAgObNmyMqKgqmpqZo3rw5AgMDpV0FISEhuHbtGg+tJY1RKpXSpPQHDx4gMTERpUqVQqdOnZCcnIwFCxZg0KBB6NatG4oUKYLy5csjPDwct27d0nLl9C3Ily8fmjZtKp0gMmNbjY6OhrGxMcqXL6/N8ug/8OvONyZjXoKPjw8AYM6cOdDV1UXv3r3h6OiI3377DTNmzMC7d+/w9u1bhIeHY+PGjVixYgVOnDghnR2W6HN8OHl4woQJOH36NEaOHIn69evD0tISiYmJeP78OUxMTKCjo4OUlBQ4ODhg1KhRaNKkiZarJzkSHxwBmsHQ0FD6f3p6Ol6+fIk+ffpAoVCgU6dOX7pEUgPDzTcmY+TlwIED0NHRQVpaGvz9/ZGcnIzRo0ejffv2SEpKwowZM7Bt2zbY2NjAwMAAYWFhqFChgparJ7n4MNgsW7YMgYGBcHV1lY54SklJgaWlJU6cOCFNGn716hVWrVoFHR0dlXBElBMRERF4/fo1ChYsCFtb2389k3BaWhrWrVuHjRs34vXr1zhz5ox0rSiOZudNPBT8GxQSEiJdbDBfvny4d+8efv/9d/zyyy8YPXo0rKysEB8fj6NHj8LBwQHW1tawtrbWdtn0lfs4kNy9exceHh6YNWsWWrZsmanf+fPnMX78eCQkJMDS0hLBwcHQ19dnsKHPtnbtWsybNw/R0dEoVKgQBg4cKI3IZPh4OwsNDcXNmzcxYMAAHp33FWC4+cYolUp06dIFCoUCGzZskNoXLlyIUaNGwcfHB7/88gtKlCihxSpJbtq2bYuxY8eiatWqUtuVK1fQpEkTHD16FKVLl87yxJDJyckQQsDIyAgKhYIfKPTZ1q5dCx8fH+nSCjNmzMCDBw9w8uRJadvKCDYxMTE4cOAA2rdvr/IYHLHJ+/j15xuT8U0kY/g/NTUVADBw4EB4e3tj9erV+P3331WOoiL6XGZmZnB2dlZpMzIywps3b3Djxg2pLeN6UqdPn8b27duho6MDY2NjKBQKKJVKBhv6LBcuXMDUqVOxaNEi9OzZExUrVsTQoUPh5OSEU6dO4ebNm4iLi5N22a9Zswa//PIL/vjjD5XHYbDJ+xhuvhH//POP9P/SpUvjzz//RHR0NAwMDJCWlgYAsLOzg4mJCcLCwmBsbKytUklGnj17BgBYvXo1DAwM8Pvvv+PAgQNITU2Fk5MTOnTogDlz5uDgwYNQKBTQ0dFBeno6pk+fjrCwMJV5ENwVRZ8rJSUFQ4YMQfPmzaW2SZMm4dChQ+jUqRM8PT3RsWNHvH79Gvr6+mjWrBlGjBjBycNfIe6W+gZcvXoVAwYMQOfOndG/f3+kpqaiQYMGePnyJY4cOQJbW1sAwOjRo1G+fHm0aNEClpaWWq6avnZ9+vQBAIwZM0bazens7IyXL19i06ZNqFOnDo4fPw4/Pz9cv34dXbp0gYGBAQ4dOoQXL17g0qVLHKkhjVIqlXjx4gVsbGwAAJ6enjh48CB2794Ne3t7HD16FNOmTcPo0aPRuXNnlTk43BX1deFXoW+AiYkJzM3NsW3bNgQFBcHAwADLli2DlZUVypYtCw8PDzRu3BgLFixA1apVGWxII5ydnbF//34sXboU4eHhAIBr166hdOnS6NKlC44dO4batWtjypQp8PT0xLp163D48GEUK1YMFy9elCZtEmmKjo6OFGwAYMSIETh79iyqVq0KGxsbNG3aFK9fv0ZUVFSmw8IZbL4uHLn5RoSHh2Ps2LGIjIxEnz590K1bN6Snp2Pu3LmIiIiAEAIDBw5EuXLltF0qyciqVaswYcIEdOzYEX369EHp0qUBAHXq1MHDhw+xfv161KlTBwDw9u1bmJiYSOty8jB9aU+fPkXXrl0xYsQIXhjzK8dwI1OXLl3C8+fPVfYth4eHY/z48Xj06BEGDhyILl26aLFCkrMPD6NduXIlJkyYgE6dOmUKOBEREVi7di2qV6+uMr8mqxOqEanjw20o4/8Z/7548QJWVlYq/RMTE9GpUyfExsbi8OHDHKn5yjHcyFB8fDyaN28OXV1djBo1Ck2bNpWWPXr0CE2aNIGJiQl69+6NX375RYuVktx86hw0y5cvx+TJk9GhQwf07dtXCjgNGjTAyZMncebMGbi6un7pckmmstoOM9qCg4OxceNGLFiwAEWKFEFSUhJ27dqFdevW4dmzZzh//jz09fU5x+Yrxzk3MpKRUwsUKIDZs2dDT08PixYtwt69e6U+Dg4OqF+/PiIjI3Ho0CHExMRoqVqSmw8/UE6dOoWwsDBcvXoVwPvJxb/99hs2bdqEwMBA3LlzBwBw+PBh9O7dO9Nh4kQ5deLECemilsOGDcPMmTMBvJ9vs3nzZnh6eqJRo0YoUqQIgPcXXX348CFKlCiBCxcuQF9fH+/evWOw+cpx5EYGMoZaM75pZHzInD17Fr/++ivy5cuH/v37S7uohg8fjhIlSqBt27YoXLiwlqsnOfhwF8CwYcOwefNmJCQkwM7ODsWKFcO+ffsAAMuWLcO0adPQsWNHeHl5qVzSg9+U6XMIIRAbGwtra2s0bdoUhQoVQnBwMI4fP44KFSogJiYGbm5u8PHxwcCBA6V1PvzbCXA7lAuGm69cxi9nWFgYdu/ejdevX6NWrVpo164dzM3NcebMGfz2229ISUlBiRIlYGJigs2bN+Pq1auws7PTdvkkAx8GmwMHDmDIkCEIDAyEubk5/v77b0ycOBH58uXDhQsXALyfg+Pt7Q1/f38MGDBAm6WTDEVHR6NEiRJIT0/H9u3b0axZM2lZVnNtspqbQ18/7pb6yikUCuzYsQMtW7bE27dv8fbtW6xbtw79+/fH69ev4ebmhrlz56Ju3boIDw/HgwcPcPjwYQYb0piMD4Pdu3dj06ZNaNSoEWrVqoUKFSrg559/xtq1a5GQkID+/fsDAHr16oVdu3ZJ94k0JSUlBZGRkTAxMYGuri5WrVolnYYAAAoVKiT9P+Ns2B+GGQYb+eDIzVfuwoUL6NixI3799Vf07t0bERERqFy5MoyNjeHi4oK1a9fC0tJSulbPx4fbEmnC69ev0aJFC1y9ehX169fHnj17VJaPHTsWJ0+exF9//YV8+fJJ7dwFQJ/rU5PYHz16BGdnZ9SvXx/z589HyZIltVAdaQtHbr4ivr6+GDdunPSNA3h/ens3Nzf07t0bjx49QsOGDeHh4YHx48fj/Pnz+OWXX/D69WsYGRkBAIMNacSH2yAAWFpaYs2aNfjxxx9x+fJlrF69WmV5qVKl8OrVKyQlJam0M9jQ5/gw2Bw5cgQbNmzA1atX8ezZMzg4OODkyZMICwvDqFGjpEnsbdq0wcKFC7VZNn0BHLn5iixcuBCDBw/GjBkzMGrUKOmX+tatWyhdujRat24tfcgolUq4uLggPDwczZs3x+bNm3ltHtKIDz9Q7t+/D4VCARMTE9ja2uLhw4fw8fFBYmIi2rVrB29vb0RFRcHLywtGRkbYs2cPh/5J40aMGIE1a9ZAT08P+fPnh62tLfz8/FC1alVcv34d9evXh4ODA1JTU/Hu3TtcvXpVungwyZSgr4JSqRRCCLF8+XKho6Mjpk6dKtLS0qTlT548EWXLlhV79uwRQgjx+vVr0alTJ7Fw4ULx9OlTrdRM8pOxHQohxMSJE0XFihVFmTJlROHChUVgYKAQQojw8HDRrFkzYWRkJEqXLi3atGkj3N3dRVJSkhBCiPT0dK3UTvLx4XYYGhoqKlWqJI4fPy5ev34tdu3aJdq0aSOcnJzEpUuXhBBC3Lt3T0yZMkVMnz5d+rv54d9Pkh+Gm6+AUqmUfpmVSqX4448/hI6Ojpg2bZr0QREdHS1cXFyEt7e3ePTokRg7dqz4/vvvRVRUlDZLJ5maMmWKsLKyEiEhISIhIUG0adNGmJubi5s3bwohhHjw4IFo3ry5cHFxEX5+ftJ6ycnJWqqY5GjNmjViwIABom/fvirt58+fF02aNBFeXl4iISFBCKEaiBhs5I/7Kb4SCoUCBw8exPDhw1GlShXpmj0zZ86EEAIWFhbo0qULjh49Cjc3N6xduxYBAQGwtrbWdukkAx/OsVEqlTh37hz8/PzQuHFjhIaG4siRI5gxYwbKlSuHtLQ0ODo6Yt68ebCxscHevXsRHBwMADA0NNTWSyAZEB/Noti5cycWL16MK1euICUlRWqvWrUqateujRMnTiA9PR2A6pFQvGbZN0Db6YqyZ/v27cLY2FhMnTpVnD9/XgghRGBgoLSLSgghUlJSxM2bN0VoaKh48uSJNsslmZowYYKYOXOmKFq0qLhz544ICwsT+fPnF0uXLhVCCPH27Vsxbtw48ejRIyGEEHfv3hUtWrQQVatWFcHBwdosnb5yH468rF+/Xqxdu1YIIcSAAQOEubm5WLx4sYiNjZX6hISEiDJlykjbIn1bGG6+Anfu3BGOjo5iyZIlmZYtW7ZM2kVFpGkfzo/ZtGmTsLe3Fzdu3BBdu3YV7u7uwsTERKxcuVLq8+zZM1G7dm2xdu1aad1bt26Jn3/+WURERHzx+kkePtwOb9y4IVxdXUWlSpXErl27hBBCeHl5iVKlSonp06eL8PBwER4eLho2bCjq1q2rEoro28Gxua/A48ePoa+vr3KmzYwjVvr27Yt8+fKhW7duMDQ0xIgRI7RYKclNxlFRR48exZEjRzB8+HCUL19eOjlkw4YN0bNnTwDvL9jau3dv6OrqonPnztDR0YFSqUSZMmWwYcMGHp1COZaxHY4cORIPHz6EsbExbt++jaFDh+Ldu3cICgpCz549MX78eCxcuBA1a9ZE/vz5sXnzZigUik+eC4fki+HmK5CQkKByfhClUintPz5y5AiqVKmCzZs3q1ynh0hTIiMj0atXL0RHR2Ps2LEAgH79+uH+/fs4fPgwXF1dUapUKTx+/BjJyck4f/48dHV1VU7QxzkO9LmCgoKwYsUKHDp0CI6OjkhJSYGXlxd8fX2ho6ODVatWwcTEBFu2bEGTJk3QsWNHGBoaIjU1FQYGBtoun74wRtmvQKVKlfDy5UsEBgYCeP8tJiPc7Nq1Cxs2bEDbtm1RtmxZbZZJMmVra4vg4GDY2Njgzz//xMWLF6Grq4s5c+ZgypQpaNCgAWxtbdGhQ4dPXlWZ57ahzxUeHo4KFSrAxcUFZmZmsLW1xapVq6Crq4uhQ4dix44dWLRoERo1aoT58+dj9+7diI+PZ7D5RvHr1FfA0dERixYtQr9+/ZCWlgZPT0/o6uoiKCgIQUFBOH36NM/0SrnK2dkZ27dvh5eXFwICAjBw4EA4OzujVatWaNWqlUrf9PR0jtSQxoj/v5iloaEhkpOTkZqaCiMjI6SlpaFo0aLw9fVFixYt4O/vD2NjY2zYsAGdO3fGiBEjoKenh/bt22v7JZAW8AzFXwmlUont27fD29sb+fLlg5GREXR1dbFx40a4urpquzz6Rly+fBm9e/dGlSpVMHjwYJQvX17bJdE34vr163B1dcVvv/2GiRMnSu0hISFYvnw53rx5g/T0dBw5cgQA0KNHD/z2228oUaKEliombWK4+cr8888/iIiIgEKhgKOjI2xsbLRdEn1jLl++DG9vbxQvXhyzZ8+Go6Ojtkuib0RQUBD69u2LIUOGoEOHDrCwsMCgQYNQo0YNtGnTBuXLl8fevXvRtGlTbZdKWsZwQ0RqO3fuHAICArBixQoehUJf1Pbt2/HLL7/AwMAAQghYW1vj1KlTiIqKwo8//oht27bB2dlZ22WSljHcEFGOZMyF4GG29KU9e/YMT548QVpaGmrWrAkdHR2MGTMGO3fuRFhYGGxtbbVdImkZww0R5VhGwCHSlps3b2LWrFn466+/cPDgQbi4uGi7JMoDeEgDEeUYgw1p07t375Camgpra2scPXqUE9xJwpEbIiL6qqWlpfEM2KSC4YaIiIhkhbMAiYiISFYYboiIiEhWGG6IiIhIVhhuiIiISFYYbohI9o4cOQKFQoGYmJhsr+Pg4AB/f/9cq4mIcg/DDRFpXffu3aFQKNCvX79My3x8fKBQKNC9e/cvXxgRfZUYbogoT7C3t8emTZuQlJQktSUnJ2PDhg0oVqyYFisjoq8Nww0R5QmVK1eGvb09goODpbbg4GAUK1YMrq6uUltKSgoGDRoEa2trGBkZoVatWjh//rzKY/3111/47rvvYGxsjPr16+PRo0eZnu/EiROoXbs2jI2NYW9vj0GDBiExMTHXXh8RfTkMN0SUZ/Ts2ROrV6+W7q9atQo9evRQ6TNq1Chs374da9aswaVLl+Dk5AR3d3e8fv0aAPDkyRO0bdsWLVu2xJUrV9C7d2/8+uuvKo9x//59NGnSBD/99BOuXbuGzZs348SJExgwYEDuv0giynUMN0SUZ3Tt2hUnTpxAREQEIiIicPLkSXTt2lVanpiYiKVLl2LOnDlo2rQpypUrh+XLl8PY2BgrV64EACxduhQlS5bEvHnzULp0aXTp0iXTfB1fX1906dIFQ4YMQalSpVCjRg38/vvvWLt2LZKTk7/kSyaiXMALZxJRnmFlZYXmzZsjKCgIQgg0b94chQoVkpbfv38faWlpqFmzptSmr6+PH374Abdu3QIA3Lp1C9WqVVN53OrVq6vcv3r1Kq5du4b169dLbUIIKJVKPHz4EGXLls2Nl0dEXwjDDRHlKT179pR2Dy1evDhXniMhIQHe3t4YNGhQpmWcvEz09WO4IaI8pUmTJkhNTYVCoYC7u7vKspIlS8LAwAAnT55E8eLFAby/IvT58+cxZMgQAEDZsmWxe/dulfXOnDmjcr9y5cr4+++/4eTklHsvhIi0hnNuiChP0dXVxa1bt/D3339DV1dXZVm+fPnQv39/jBw5Evv378fff/+NPn364O3bt+jVqxcAoF+/frh37x5GjhyJO3fuYMOGDQgKClJ5nNGjR+PUqVMYMGAArly5gnv37mHXrl2cUEwkEww3RJTnmJqawtTUNMtlM2fOxE8//YRu3bqhcuXKCA8PR0hICCwsLAC83620fft27Ny5E5UqVUJAQABmzJih8hjOzs44evQo7t69i9q1a8PV1RUTJkxAkSJFcv21EVHuUwghhLaLICIiItIUjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs/B+XLE52CERTBAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "## calculate avg response time\n", + "unique_models = set(unique_result[\"response\"]['model'] for unique_result in result[0][\"results\"])\n", + "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", + "for iteration in result:\n", + " for completion_result in iteration[\"results\"]:\n", + " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", + "\n", + "avg_response_time = {}\n", + "for model, data in model_dict.items():\n", + " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", + "\n", + "models = list(avg_response_time.keys())\n", + "response_times = list(avg_response_time.values())\n", + "\n", + "plt.bar(models, response_times)\n", + "plt.xlabel('Model', fontsize=10)\n", + "plt.ylabel('Average Response Time')\n", + "plt.title('Average Response Times for each Model')\n", + "\n", + "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", + "plt.show()" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/cookbook/LiteLLM_Azure_and_OpenAI_example.ipynb b/cookbook/LiteLLM_Azure_and_OpenAI_example.ipynb index 9e5db982bdac..7df1c47eb117 100644 --- a/cookbook/LiteLLM_Azure_and_OpenAI_example.ipynb +++ b/cookbook/LiteLLM_Azure_and_OpenAI_example.ipynb @@ -1,423 +1,422 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "BmX0b5Ueh91v" + }, + "source": [ + "# LiteLLM - Azure OpenAI + OpenAI Calls\n", + "This notebook covers the following for Azure OpenAI + OpenAI:\n", + "* Completion - Quick start\n", + "* Completion - Streaming\n", + "* Completion - Azure, OpenAI in separate threads\n", + "* Completion - Stress Test 10 requests in parallel\n", + "* Completion - Azure, OpenAI in the same thread" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iHq4d0dpfawS" + }, + "outputs": [], + "source": [ + "!pip install litellm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "mnveHO5dfcB0" + }, + "outputs": [], + "source": [ + "import os" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eo88QUdbiDIE" + }, + "source": [ + "## Completion - Quick start" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" + "base_uri": "https://localhost:8080/" }, - "language_info": { - "name": "python" + "id": "5OSosWNCfc_2", + "outputId": "c52344b1-2458-4695-a7eb-a9b076893348" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Openai Response\n", + "\n", + "{\n", + " \"id\": \"chatcmpl-7yjVOEKCPw2KdkfIaM3Ao1tIXp8EM\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1694708958,\n", + " \"model\": \"gpt-3.5-turbo-0613\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"I'm an AI, so I don't have feelings, but I'm here to help you. How can I assist you?\"\n", + " },\n", + " \"finish_reason\": \"stop\"\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"prompt_tokens\": 13,\n", + " \"completion_tokens\": 26,\n", + " \"total_tokens\": 39\n", + " }\n", + "}\n", + "Azure Response\n", + "\n", + "{\n", + " \"id\": \"chatcmpl-7yjVQ6m2R2HRtnKHRRFp6JzL4Fjez\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1694708960,\n", + " \"model\": \"gpt-35-turbo\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"finish_reason\": \"stop\",\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"Hello there! As an AI language model, I don't have feelings but I'm functioning well. How can I assist you today?\"\n", + " }\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"completion_tokens\": 27,\n", + " \"prompt_tokens\": 14,\n", + " \"total_tokens\": 41\n", + " }\n", + "}\n" + ] } + ], + "source": [ + "from litellm import completion\n", + "\n", + "# openai configs\n", + "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "\n", + "# azure openai configs\n", + "os.environ[\"AZURE_API_KEY\"] = \"\"\n", + "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", + "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", + "\n", + "\n", + "# openai call\n", + "response = completion(\n", + " model = \"gpt-3.5-turbo\",\n", + " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", + ")\n", + "print(\"Openai Response\\n\")\n", + "print(response)\n", + "\n", + "\n", + "\n", + "# azure call\n", + "response = completion(\n", + " model = \"azure/your-azure-deployment\",\n", + " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", + ")\n", + "print(\"Azure Response\\n\")\n", + "print(response)" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# LiteLLM - Azure OpenAI + OpenAI Calls\n", - "This notebook covers the following for Azure OpenAI + OpenAI:\n", - "* Completion - Quick start\n", - "* Completion - Streaming\n", - "* Completion - Azure, OpenAI in separate threads\n", - "* Completion - Stress Test 10 requests in parallel\n", - "* Completion - Azure, OpenAI in the same thread" - ], - "metadata": { - "id": "BmX0b5Ueh91v" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "iHq4d0dpfawS" - }, - "outputs": [], - "source": [ - "!pip install litellm" - ] - }, - { - "cell_type": "code", - "source": [ - "import os, litellm" - ], - "metadata": { - "id": "mnveHO5dfcB0" - }, - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Completion - Quick start" - ], - "metadata": { - "id": "eo88QUdbiDIE" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from litellm import completion\n", - "\n", - "# openai configs\n", - "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", - "\n", - "# azure openai configs\n", - "os.environ[\"AZURE_API_KEY\"] = \"\"\n", - "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", - "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", - "\n", - "\n", - "# openai call\n", - "response = completion(\n", - " model = \"gpt-3.5-turbo\",\n", - " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", - ")\n", - "print(\"Openai Response\\n\")\n", - "print(response)\n", - "\n", - "\n", - "\n", - "# azure call\n", - "response = completion(\n", - " model = \"azure/your-azure-deployment\",\n", - " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n", - ")\n", - "print(\"Azure Response\\n\")\n", - "print(response)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5OSosWNCfc_2", - "outputId": "c52344b1-2458-4695-a7eb-a9b076893348" - }, - "execution_count": 12, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Openai Response\n", - "\n", - "{\n", - " \"id\": \"chatcmpl-7yjVOEKCPw2KdkfIaM3Ao1tIXp8EM\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1694708958,\n", - " \"model\": \"gpt-3.5-turbo-0613\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": \"I'm an AI, so I don't have feelings, but I'm here to help you. How can I assist you?\"\n", - " },\n", - " \"finish_reason\": \"stop\"\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"prompt_tokens\": 13,\n", - " \"completion_tokens\": 26,\n", - " \"total_tokens\": 39\n", - " }\n", - "}\n", - "Azure Response\n", - "\n", - "{\n", - " \"id\": \"chatcmpl-7yjVQ6m2R2HRtnKHRRFp6JzL4Fjez\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1694708960,\n", - " \"model\": \"gpt-35-turbo\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"finish_reason\": \"stop\",\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": \"Hello there! As an AI language model, I don't have feelings but I'm functioning well. How can I assist you today?\"\n", - " }\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"completion_tokens\": 27,\n", - " \"prompt_tokens\": 14,\n", - " \"total_tokens\": 41\n", - " }\n", - "}\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Completion - Streaming" - ], - "metadata": { - "id": "dQMkM-diiKdE" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from litellm import completion\n", - "\n", - "# openai configs\n", - "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", - "\n", - "# azure openai configs\n", - "os.environ[\"AZURE_API_KEY\"] = \"\"\n", - "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", - "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", - "\n", - "\n", - "# openai call\n", - "response = completion(\n", - " model = \"gpt-3.5-turbo\",\n", - " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n", - " stream=True\n", - ")\n", - "print(\"OpenAI Streaming response\")\n", - "for chunk in response:\n", - " print(chunk)\n", - "\n", - "# azure call\n", - "response = completion(\n", - " model = \"azure/your-azure-deployment\",\n", - " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n", - " stream=True\n", - ")\n", - "print(\"Azure Streaming response\")\n", - "for chunk in response:\n", - " print(chunk)\n" - ], - "metadata": { - "id": "uVvJDVn4g1i1" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Completion - Azure, OpenAI in separate threads" - ], - "metadata": { - "id": "4xrOPnt-oqwm" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "import threading\n", - "from litellm import completion\n", - "\n", - "# Function to make a completion call\n", - "def make_completion(model, messages):\n", - " response = completion(\n", - " model=model,\n", - " messages=messages\n", - " )\n", - "\n", - " print(f\"Response for {model}: {response}\")\n", - "\n", - "# openai configs\n", - "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", - "\n", - "# azure openai configs\n", - "os.environ[\"AZURE_API_KEY\"] = \"\"\n", - "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", - "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", - "\n", - "# Define the messages for the completions\n", - "messages = [{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", - "\n", - "# Create threads for making the completions\n", - "thread1 = threading.Thread(target=make_completion, args=(\"gpt-3.5-turbo\", messages))\n", - "thread2 = threading.Thread(target=make_completion, args=(\"azure/your-azure-deployment\", messages))\n", - "\n", - "# Start both threads\n", - "thread1.start()\n", - "thread2.start()\n", - "\n", - "# Wait for both threads to finish\n", - "thread1.join()\n", - "thread2.join()\n", - "\n", - "print(\"Both completions are done.\")" - ], - "metadata": { - "id": "V5b5taJPjvC3" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Completion - Stress Test 10 requests in parallel\n", - "\n" - ], - "metadata": { - "id": "lx8DbMBqoAoN" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "import threading\n", - "from litellm import completion\n", - "\n", - "# Function to make a completion call\n", - "def make_completion(model, messages):\n", - " response = completion(\n", - " model=model,\n", - " messages=messages\n", - " )\n", - "\n", - " print(f\"Response for {model}: {response}\")\n", - "\n", - "# Set your API keys\n", - "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", - "os.environ[\"AZURE_API_KEY\"] = \"\"\n", - "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", - "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", - "\n", - "# Define the messages for the completions\n", - "messages = [{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", - "\n", - "# Create and start 10 threads for making completions\n", - "threads = []\n", - "for i in range(10):\n", - " thread = threading.Thread(target=make_completion, args=(\"gpt-3.5-turbo\" if i % 2 == 0 else \"azure/your-azure-deployment\", messages))\n", - " threads.append(thread)\n", - " thread.start()\n", - "\n", - "# Wait for all threads to finish\n", - "for thread in threads:\n", - " thread.join()\n", - "\n", - "print(\"All completions are done.\")\n" - ], - "metadata": { - "id": "pHYANOlOkoDh" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Completion - Azure, OpenAI in the same thread" - ], - "metadata": { - "id": "yB2NDOO4oxrp" - } + { + "cell_type": "markdown", + "metadata": { + "id": "dQMkM-diiKdE" + }, + "source": [ + "## Completion - Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uVvJDVn4g1i1" + }, + "outputs": [], + "source": [ + "import os\n", + "from litellm import completion\n", + "\n", + "# openai configs\n", + "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "\n", + "# azure openai configs\n", + "os.environ[\"AZURE_API_KEY\"] = \"\"\n", + "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", + "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", + "\n", + "\n", + "# openai call\n", + "response = completion(\n", + " model = \"gpt-3.5-turbo\",\n", + " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n", + " stream=True\n", + ")\n", + "print(\"OpenAI Streaming response\")\n", + "for chunk in response:\n", + " print(chunk)\n", + "\n", + "# azure call\n", + "response = completion(\n", + " model = \"azure/your-azure-deployment\",\n", + " messages = [{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n", + " stream=True\n", + ")\n", + "print(\"Azure Streaming response\")\n", + "for chunk in response:\n", + " print(chunk)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4xrOPnt-oqwm" + }, + "source": [ + "## Completion - Azure, OpenAI in separate threads" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V5b5taJPjvC3" + }, + "outputs": [], + "source": [ + "import os\n", + "import threading\n", + "from litellm import completion\n", + "\n", + "# Function to make a completion call\n", + "def make_completion(model, messages):\n", + " response = completion(\n", + " model=model,\n", + " messages=messages\n", + " )\n", + "\n", + " print(f\"Response for {model}: {response}\")\n", + "\n", + "# openai configs\n", + "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "\n", + "# azure openai configs\n", + "os.environ[\"AZURE_API_KEY\"] = \"\"\n", + "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", + "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", + "\n", + "# Define the messages for the completions\n", + "messages = [{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", + "\n", + "# Create threads for making the completions\n", + "thread1 = threading.Thread(target=make_completion, args=(\"gpt-3.5-turbo\", messages))\n", + "thread2 = threading.Thread(target=make_completion, args=(\"azure/your-azure-deployment\", messages))\n", + "\n", + "# Start both threads\n", + "thread1.start()\n", + "thread2.start()\n", + "\n", + "# Wait for both threads to finish\n", + "thread1.join()\n", + "thread2.join()\n", + "\n", + "print(\"Both completions are done.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lx8DbMBqoAoN" + }, + "source": [ + "## Completion - Stress Test 10 requests in parallel\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pHYANOlOkoDh" + }, + "outputs": [], + "source": [ + "import os\n", + "import threading\n", + "from litellm import completion\n", + "\n", + "# Function to make a completion call\n", + "def make_completion(model, messages):\n", + " response = completion(\n", + " model=model,\n", + " messages=messages\n", + " )\n", + "\n", + " print(f\"Response for {model}: {response}\")\n", + "\n", + "# Set your API keys\n", + "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "os.environ[\"AZURE_API_KEY\"] = \"\"\n", + "os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", + "os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", + "\n", + "# Define the messages for the completions\n", + "messages = [{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", + "\n", + "# Create and start 10 threads for making completions\n", + "threads = []\n", + "for i in range(10):\n", + " thread = threading.Thread(target=make_completion, args=(\"gpt-3.5-turbo\" if i % 2 == 0 else \"azure/your-azure-deployment\", messages))\n", + " threads.append(thread)\n", + " thread.start()\n", + "\n", + "# Wait for all threads to finish\n", + "for thread in threads:\n", + " thread.join()\n", + "\n", + "print(\"All completions are done.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yB2NDOO4oxrp" + }, + "source": [ + "## Completion - Azure, OpenAI in the same thread" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "HTBqwzxpnxab", + "outputId": "f3bc0efe-e4d5-44d5-a193-97d178cfbe14" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "import os\n", - "from litellm import completion\n", - "\n", - "# Function to make both OpenAI and Azure completions\n", - "def make_completions():\n", - " # Set your OpenAI API key\n", - " os.environ[\"OPENAI_API_KEY\"] = \"\"\n", - "\n", - " # OpenAI completion\n", - " openai_response = completion(\n", - " model=\"gpt-3.5-turbo\",\n", - " messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", - " )\n", - "\n", - " print(\"OpenAI Response:\", openai_response)\n", - "\n", - " # Set your Azure OpenAI API key and configuration\n", - " os.environ[\"AZURE_API_KEY\"] = \"\"\n", - " os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", - " os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", - "\n", - " # Azure OpenAI completion\n", - " azure_response = completion(\n", - " model=\"azure/your-azure-deployment\",\n", - " messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", - " )\n", - "\n", - " print(\"Azure OpenAI Response:\", azure_response)\n", - "\n", - "# Call the function to make both completions in one thread\n", - "make_completions()\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "HTBqwzxpnxab", - "outputId": "f3bc0efe-e4d5-44d5-a193-97d178cfbe14" - }, - "execution_count": 23, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "OpenAI Response: {\n", - " \"id\": \"chatcmpl-7yjzrDeOeVeSrQ00tApmTxEww3vBS\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1694710847,\n", - " \"model\": \"gpt-3.5-turbo-0613\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": \"Hello! I'm an AI, so I don't have feelings, but I'm here to help you. How can I assist you today?\"\n", - " },\n", - " \"finish_reason\": \"stop\"\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"prompt_tokens\": 13,\n", - " \"completion_tokens\": 29,\n", - " \"total_tokens\": 42\n", - " }\n", - "}\n", - "Azure OpenAI Response: {\n", - " \"id\": \"chatcmpl-7yjztAQ0gK6IMQt7cvLroMSOoXkeu\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1694710849,\n", - " \"model\": \"gpt-35-turbo\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"finish_reason\": \"stop\",\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": \"As an AI language model, I don't have feelings but I'm functioning properly. Thank you for asking! How can I assist you today?\"\n", - " }\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"completion_tokens\": 29,\n", - " \"prompt_tokens\": 14,\n", - " \"total_tokens\": 43\n", - " }\n", - "}\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "OpenAI Response: {\n", + " \"id\": \"chatcmpl-7yjzrDeOeVeSrQ00tApmTxEww3vBS\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1694710847,\n", + " \"model\": \"gpt-3.5-turbo-0613\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"Hello! I'm an AI, so I don't have feelings, but I'm here to help you. How can I assist you today?\"\n", + " },\n", + " \"finish_reason\": \"stop\"\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"prompt_tokens\": 13,\n", + " \"completion_tokens\": 29,\n", + " \"total_tokens\": 42\n", + " }\n", + "}\n", + "Azure OpenAI Response: {\n", + " \"id\": \"chatcmpl-7yjztAQ0gK6IMQt7cvLroMSOoXkeu\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1694710849,\n", + " \"model\": \"gpt-35-turbo\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"finish_reason\": \"stop\",\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"As an AI language model, I don't have feelings but I'm functioning properly. Thank you for asking! How can I assist you today?\"\n", + " }\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"completion_tokens\": 29,\n", + " \"prompt_tokens\": 14,\n", + " \"total_tokens\": 43\n", + " }\n", + "}\n" + ] } - ] + ], + "source": [ + "import os\n", + "from litellm import completion\n", + "\n", + "# Function to make both OpenAI and Azure completions\n", + "def make_completions():\n", + " # Set your OpenAI API key\n", + " os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "\n", + " # OpenAI completion\n", + " openai_response = completion(\n", + " model=\"gpt-3.5-turbo\",\n", + " messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", + " )\n", + "\n", + " print(\"OpenAI Response:\", openai_response)\n", + "\n", + " # Set your Azure OpenAI API key and configuration\n", + " os.environ[\"AZURE_API_KEY\"] = \"\"\n", + " os.environ[\"AZURE_API_BASE\"] = \"https://openai-gpt-4-test-v-1.openai.azure.com/\"\n", + " os.environ[\"AZURE_API_VERSION\"] = \"2023-05-15\"\n", + "\n", + " # Azure OpenAI completion\n", + " azure_response = completion(\n", + " model=\"azure/your-azure-deployment\",\n", + " messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}]\n", + " )\n", + "\n", + " print(\"Azure OpenAI Response:\", azure_response)\n", + "\n", + "# Call the function to make both completions in one thread\n", + "make_completions()\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/LiteLLM_Comparing_LLMs.ipynb b/cookbook/LiteLLM_Comparing_LLMs.ipynb index 7f5ce809bc00..0b2e4e8c776a 100644 --- a/cookbook/LiteLLM_Comparing_LLMs.ipynb +++ b/cookbook/LiteLLM_Comparing_LLMs.ipynb @@ -1,442 +1,441 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "L-W4C3SgClxl" + }, + "source": [ + "## Comparing LLMs on a Test Set using LiteLLM\n", + "LiteLLM allows you to use any LLM as a drop in replacement for `gpt-3.5-turbo`\n", + "\n", + "This notebook walks through how you can compare GPT-4 vs Claude-2 on a given test set using litellm" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "## Comparing LLMs on a Test Set using LiteLLM\n", - "LiteLLM allows you to use any LLM as a drop in replacement for `gpt-3.5-turbo`\n", - "\n", - "This notebook walks through how you can compare GPT-4 vs Claude-2 on a given test set using litellm" - ], - "metadata": { - "id": "L-W4C3SgClxl" - } - }, - { - "cell_type": "code", - "source": [ - "!pip install litellm" - ], - "metadata": { - "id": "fBkbl4Qo9pvz" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "tzS-AXWK8lJC" - }, - "outputs": [], - "source": [ - "from litellm import completion\n", - "import litellm\n", - "\n", - "# init your test set questions\n", - "questions = [\n", - " \"how do i call completion() using LiteLLM\",\n", - " \"does LiteLLM support VertexAI\",\n", - " \"how do I set my keys on replicate llama2?\",\n", - "]\n", - "\n", - "\n", - "# set your prompt\n", - "prompt = \"\"\"\n", - "You are a coding assistant helping users using litellm.\n", - "litellm is a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints. It manages:\n", - "\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "os.environ['OPENAI_API_KEY'] = \"\"\n", - "os.environ['ANTHROPIC_API_KEY'] = \"\"" - ], - "metadata": { - "id": "vMlqi40x-KAA" - }, - "execution_count": 18, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [], - "metadata": { - "id": "-HOzUfpK-H8J" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Calling gpt-3.5-turbo and claude-2 on the same questions\n", - "\n", - "## LiteLLM `completion()` allows you to call all LLMs in the same format\n" - ], - "metadata": { - "id": "Ktn25dfKEJF1" - } - }, - { - "cell_type": "code", - "source": [ - "results = [] # for storing results\n", - "\n", - "models = ['gpt-3.5-turbo', 'claude-2'] # define what models you're testing, see: https://docs.litellm.ai/docs/providers\n", - "for question in questions:\n", - " row = [question]\n", - " for model in models:\n", - " print(\"Calling:\", model, \"question:\", question)\n", - " response = completion( # using litellm.completion\n", - " model=model,\n", - " messages=[\n", - " {'role': 'system', 'content': prompt},\n", - " {'role': 'user', 'content': question}\n", - " ]\n", - " )\n", - " answer = response.choices[0].message['content']\n", - " row.append(answer)\n", - " print(print(\"Calling:\", model, \"answer:\", answer))\n", - "\n", - " results.append(row) # save results\n", - "\n" - ], - "metadata": { - "id": "DhXwRlc-9DED" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Visualizing Results" - ], - "metadata": { - "id": "RkEXhXxCDN77" - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fBkbl4Qo9pvz" + }, + "outputs": [], + "source": [ + "!pip install litellm" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "tzS-AXWK8lJC" + }, + "outputs": [], + "source": [ + "from litellm import completion\n", + "\n", + "# init your test set questions\n", + "questions = [\n", + " \"how do i call completion() using LiteLLM\",\n", + " \"does LiteLLM support VertexAI\",\n", + " \"how do I set my keys on replicate llama2?\",\n", + "]\n", + "\n", + "\n", + "# set your prompt\n", + "prompt = \"\"\"\n", + "You are a coding assistant helping users using litellm.\n", + "litellm is a light package to simplify calling OpenAI, Azure, Cohere, Anthropic, Huggingface API Endpoints. It manages:\n", + "\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "vMlqi40x-KAA" + }, + "outputs": [], + "source": [ + "import os\n", + "os.environ['OPENAI_API_KEY'] = \"\"\n", + "os.environ['ANTHROPIC_API_KEY'] = \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-HOzUfpK-H8J" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ktn25dfKEJF1" + }, + "source": [ + "## Calling gpt-3.5-turbo and claude-2 on the same questions\n", + "\n", + "## LiteLLM `completion()` allows you to call all LLMs in the same format\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DhXwRlc-9DED" + }, + "outputs": [], + "source": [ + "results = [] # for storing results\n", + "\n", + "models = ['gpt-3.5-turbo', 'claude-2'] # define what models you're testing, see: https://docs.litellm.ai/docs/providers\n", + "for question in questions:\n", + " row = [question]\n", + " for model in models:\n", + " print(\"Calling:\", model, \"question:\", question)\n", + " response = completion( # using litellm.completion\n", + " model=model,\n", + " messages=[\n", + " {'role': 'system', 'content': prompt},\n", + " {'role': 'user', 'content': question}\n", + " ]\n", + " )\n", + " answer = response.choices[0].message['content']\n", + " row.append(answer)\n", + " print(print(\"Calling:\", model, \"answer:\", answer))\n", + "\n", + " results.append(row) # save results\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RkEXhXxCDN77" + }, + "source": [ + "## Visualizing Results" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 }, + "id": "42hrmW6q-n4s", + "outputId": "b763bf39-72b9-4bea-caf6-de6b2412f86d" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Create a table to visualize results\n", - "import pandas as pd\n", - "\n", - "columns = ['Question'] + models\n", - "df = pd.DataFrame(results, columns=columns)\n", - "\n", - "df" + "data": { + "application/vnd.google.colaboratory.module+javascript": "\n import \"https://ssl.gstatic.com/colaboratory/data_table/881c4a0d49046431/data_table.js\";\n\n const table = window.createDataTable({\n data: [[{\n 'v': 0,\n 'f': \"0\",\n },\n\"how do i call completion() using LiteLLM\",\n\"To call the `completion()` function using LiteLLM, you need to follow these steps:\\n\\n1. Install the `litellm` package by running `pip install litellm` in your terminal.\\n2. Import the `Completion` class from the `litellm` module.\\n3. Initialize an instance of the `Completion` class by providing the required parameters like the API endpoint URL and your API key.\\n4. Call the `complete()` method on the `Completion` instance and pass the text prompt as a string.\\n5. Retrieve the generated completion from the response object and use it as desired.\\n\\nHere's an example:\\n\\n```python\\nfrom litellm.completion import Completion\\n\\n# Initialize the Completion client\\ncompletion_client = Completion(\\n model_name='gpt-3.5-turbo',\\n api_key='your_api_key',\\n endpoint='https://your_endpoint_url'\\n)\\n\\n# Call the completion() method\\nresponse = completion_client.complete(\\\"Once upon a time\\\")\\n\\n# Retrieve the generated completion\\ncompletion = response['choices'][0]['text']\\n\\nprint(completion)\\n```\\n\\nMake sure to replace `'gpt-3.5-turbo'` with the desired model name, `'your_api_key'` with your actual API key, and `'https://your_endpoint_url'` with the correct API endpoint URL provided by your service provider.\\n\\nNote: The above example assumes you have a valid API key and endpoint URL for the OpenAI GPT-3.5-turbo model. Make sure to obtain the necessary credentials according to the API you are using.\",\n\" Here is how you can call the completion() method using LiteLLM:\\n\\nFirst, import LiteLLM:\\n\\n```python\\nimport litellm as lm\\n```\\n\\nThen create a LiteLLM object, specifying the API you want to use (e.g. \\\"openai\\\"):\\n\\n```python \\nai = lm.LiteLLM(\\\"openai\\\")\\n```\\n\\nNow you can call the completion() method on the ai object:\\n\\n```python\\nresponse = ai.completion(\\n prompt=\\\"Hello\\\", \\n model=\\\"text-davinci-003\\\",\\n max_tokens=100\\n)\\n```\\n\\nThe completion() method takes parameters like:\\n\\n- prompt (str): The prompt text to complete \\n- model (str): The AI model to use\\n- max_tokens (int): The maximum number of tokens to generate\\n\\nIt returns a Python dictionary with the AI's response.\\n\\nYou can then access the generated text using:\\n\\n```python\\nprint(response[\\\"choices\\\"][0][\\\"text\\\"]) \\n```\\n\\nSo LiteLLM provides a simple unified interface to call the underlying AI APIs. The completion() method works similarly for OpenAI\"],\n [{\n 'v': 1,\n 'f': \"1\",\n },\n\"does LiteLLM support VertexAI\",\n\"Yes, LiteLLM does support Google Cloud Vertex AI. It provides convenient wrappers and simplified functions to call Vertex AI API endpoints for natural language processing tasks such as text classification, entity extraction, sentiment analysis, etc. You can easily integrate LiteLLM with Vertex AI in your code to leverage its capabilities.\",\n\" Unfortunately, LiteLLM does not currently support VertexAI. LiteLLM focuses on providing a simple interface to call the APIs of services like OpenAI, Azure, Cohere, Anthropic, and Hugging Face. \\n\\nVertexAI is Google's managed machine learning platform. Integrating VertexAI would require additional development work to wrap the VertexAI SDK in a simple interface like LiteLLM provides for other services. \\n\\nHowever, LiteLLM is open source, so it is possible for someone to contribute support for VertexAI. The maintainers would likely welcome a pull request to add VertexAI as an option if implemented well. But out of the box, LiteLLM does not have built-in support for calling VertexAI APIs.\\n\\nThe key services LiteLLM supports are:\\n\\n- OpenAI (GPT, Codex, DALL-E)\\n- Azure Cognitive Services (Text Analytics, Computer Vision, Speech) \\n- Cohere\\n- Anthropic AI\\n- Hugging Face Transformers\\n\\nSo while it doesn't cover every ML API provider, it does make it easy to use the most popular natural language, speech, and vision APIs through a simple interface. Adding VertexAI\"],\n [{\n 'v': 2,\n 'f': \"2\",\n },\n\"how do I set my keys on replicate llama2?\",\n\"To set your keys on Replicate Llama2, follow these steps:\\n\\n1. Open the Llama2 dashboard in your browser.\\n2. Click on the \\\"Settings\\\" tab in the top menu.\\n3. Scroll down to the \\\"API Keys\\\" section.\\n4. Click on the \\\"Add a Key\\\" button.\\n5. Enter a name for your API key to help you identify it later.\\n6. Select the provider for your API key from the dropdown menu. For example, you can select \\\"OpenAI\\\" for OpenAI GPT-3 access.\\n7. Enter your API key in the provided input field. Make sure to copy it correctly.\\n8. Click on the \\\"Save\\\" button to save your API key.\\n\\nNote: The actual steps may vary slightly depending on the platform or interface you are using to access Llama2.\",\n\" Here are the steps to set your API keys on Replicate for litellm:\\n\\n1. Go to your Replicate project settings and select the Environment tab.\\n\\n2. Under Environment Variables, click Add Variable.\\n\\n3. Add variables for the API keys you want to use. The variable names should match the ones used in litellm:\\n\\n- `OPENAI_API_KEY` for OpenAI \\n- `AZURE_API_KEY` for Azure Cognitive Services\\n- `COHERE_API_KEY` for Cohere\\n- `ANTHROPIC_API_KEY` for Anthropic\\n- `HUGGINGFACE_API_KEY` for Hugging Face\\n\\n4. Set the value to your actual API key for each service. Make sure to treat the values as secrets.\\n\\n5. Make sure your litellm code is referencing the environment variable names, for example:\\n\\n```python\\nimport litellm as lm\\n\\nlm.auth(openai_key=os.getenv(\\\"OPENAI_API_KEY\\\")) \\n```\\n\\n6. Restart your Replicate runtime to load the new environment variables.\\n\\nNow litellm will use your\"]],\n columns: [[\"number\", \"index\"], [\"string\", \"Question\"], [\"string\", \"gpt-3.5-turbo\"], [\"string\", \"claude-2\"]],\n columnOptions: [{\"width\": \"1px\", \"className\": \"index_column\"}],\n rowsPerPage: 25,\n helpUrl: \"https://colab.research.google.com/notebooks/data_table.ipynb\",\n suppressOutputScrolling: true,\n minimumWidth: undefined,\n });\n\n function appendQuickchartButton(parentElement) {\n let quickchartButtonContainerElement = document.createElement('div');\n quickchartButtonContainerElement.innerHTML = `\n
\n \n \n\n\n \n
`;\n parentElement.appendChild(quickchartButtonContainerElement);\n }\n\n appendQuickchartButton(table);\n ", + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Questiongpt-3.5-turboclaude-2
0how do i call completion() using LiteLLMTo call the `completion()` function using Lite...Here is how you can call the completion() met...
1does LiteLLM support VertexAIYes, LiteLLM does support Google Cloud Vertex ...Unfortunately, LiteLLM does not currently sup...
2how do I set my keys on replicate llama2?To set your keys on Replicate Llama2, follow t...Here are the steps to set your API keys on Re...
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 761 - }, - "id": "42hrmW6q-n4s", - "outputId": "b763bf39-72b9-4bea-caf6-de6b2412f86d" - }, - "execution_count": 15, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " Question \\\n", - "0 how do i call completion() using LiteLLM \n", - "1 does LiteLLM support VertexAI \n", - "2 how do I set my keys on replicate llama2? \n", - "\n", - " gpt-3.5-turbo \\\n", - "0 To call the `completion()` function using Lite... \n", - "1 Yes, LiteLLM does support Google Cloud Vertex ... \n", - "2 To set your keys on Replicate Llama2, follow t... \n", - "\n", - " claude-2 \n", - "0 Here is how you can call the completion() met... \n", - "1 Unfortunately, LiteLLM does not currently sup... \n", - "2 Here are the steps to set your API keys on Re... " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Questiongpt-3.5-turboclaude-2
0how do i call completion() using LiteLLMTo call the `completion()` function using Lite...Here is how you can call the completion() met...
1does LiteLLM support VertexAIYes, LiteLLM does support Google Cloud Vertex ...Unfortunately, LiteLLM does not currently sup...
2how do I set my keys on replicate llama2?To set your keys on Replicate Llama2, follow t...Here are the steps to set your API keys on Re...
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.module+javascript": "\n import \"https://ssl.gstatic.com/colaboratory/data_table/881c4a0d49046431/data_table.js\";\n\n const table = window.createDataTable({\n data: [[{\n 'v': 0,\n 'f': \"0\",\n },\n\"how do i call completion() using LiteLLM\",\n\"To call the `completion()` function using LiteLLM, you need to follow these steps:\\n\\n1. Install the `litellm` package by running `pip install litellm` in your terminal.\\n2. Import the `Completion` class from the `litellm` module.\\n3. Initialize an instance of the `Completion` class by providing the required parameters like the API endpoint URL and your API key.\\n4. Call the `complete()` method on the `Completion` instance and pass the text prompt as a string.\\n5. Retrieve the generated completion from the response object and use it as desired.\\n\\nHere's an example:\\n\\n```python\\nfrom litellm.completion import Completion\\n\\n# Initialize the Completion client\\ncompletion_client = Completion(\\n model_name='gpt-3.5-turbo',\\n api_key='your_api_key',\\n endpoint='https://your_endpoint_url'\\n)\\n\\n# Call the completion() method\\nresponse = completion_client.complete(\\\"Once upon a time\\\")\\n\\n# Retrieve the generated completion\\ncompletion = response['choices'][0]['text']\\n\\nprint(completion)\\n```\\n\\nMake sure to replace `'gpt-3.5-turbo'` with the desired model name, `'your_api_key'` with your actual API key, and `'https://your_endpoint_url'` with the correct API endpoint URL provided by your service provider.\\n\\nNote: The above example assumes you have a valid API key and endpoint URL for the OpenAI GPT-3.5-turbo model. Make sure to obtain the necessary credentials according to the API you are using.\",\n\" Here is how you can call the completion() method using LiteLLM:\\n\\nFirst, import LiteLLM:\\n\\n```python\\nimport litellm as lm\\n```\\n\\nThen create a LiteLLM object, specifying the API you want to use (e.g. \\\"openai\\\"):\\n\\n```python \\nai = lm.LiteLLM(\\\"openai\\\")\\n```\\n\\nNow you can call the completion() method on the ai object:\\n\\n```python\\nresponse = ai.completion(\\n prompt=\\\"Hello\\\", \\n model=\\\"text-davinci-003\\\",\\n max_tokens=100\\n)\\n```\\n\\nThe completion() method takes parameters like:\\n\\n- prompt (str): The prompt text to complete \\n- model (str): The AI model to use\\n- max_tokens (int): The maximum number of tokens to generate\\n\\nIt returns a Python dictionary with the AI's response.\\n\\nYou can then access the generated text using:\\n\\n```python\\nprint(response[\\\"choices\\\"][0][\\\"text\\\"]) \\n```\\n\\nSo LiteLLM provides a simple unified interface to call the underlying AI APIs. The completion() method works similarly for OpenAI\"],\n [{\n 'v': 1,\n 'f': \"1\",\n },\n\"does LiteLLM support VertexAI\",\n\"Yes, LiteLLM does support Google Cloud Vertex AI. It provides convenient wrappers and simplified functions to call Vertex AI API endpoints for natural language processing tasks such as text classification, entity extraction, sentiment analysis, etc. You can easily integrate LiteLLM with Vertex AI in your code to leverage its capabilities.\",\n\" Unfortunately, LiteLLM does not currently support VertexAI. LiteLLM focuses on providing a simple interface to call the APIs of services like OpenAI, Azure, Cohere, Anthropic, and Hugging Face. \\n\\nVertexAI is Google's managed machine learning platform. Integrating VertexAI would require additional development work to wrap the VertexAI SDK in a simple interface like LiteLLM provides for other services. \\n\\nHowever, LiteLLM is open source, so it is possible for someone to contribute support for VertexAI. The maintainers would likely welcome a pull request to add VertexAI as an option if implemented well. But out of the box, LiteLLM does not have built-in support for calling VertexAI APIs.\\n\\nThe key services LiteLLM supports are:\\n\\n- OpenAI (GPT, Codex, DALL-E)\\n- Azure Cognitive Services (Text Analytics, Computer Vision, Speech) \\n- Cohere\\n- Anthropic AI\\n- Hugging Face Transformers\\n\\nSo while it doesn't cover every ML API provider, it does make it easy to use the most popular natural language, speech, and vision APIs through a simple interface. Adding VertexAI\"],\n [{\n 'v': 2,\n 'f': \"2\",\n },\n\"how do I set my keys on replicate llama2?\",\n\"To set your keys on Replicate Llama2, follow these steps:\\n\\n1. Open the Llama2 dashboard in your browser.\\n2. Click on the \\\"Settings\\\" tab in the top menu.\\n3. Scroll down to the \\\"API Keys\\\" section.\\n4. Click on the \\\"Add a Key\\\" button.\\n5. Enter a name for your API key to help you identify it later.\\n6. Select the provider for your API key from the dropdown menu. For example, you can select \\\"OpenAI\\\" for OpenAI GPT-3 access.\\n7. Enter your API key in the provided input field. Make sure to copy it correctly.\\n8. Click on the \\\"Save\\\" button to save your API key.\\n\\nNote: The actual steps may vary slightly depending on the platform or interface you are using to access Llama2.\",\n\" Here are the steps to set your API keys on Replicate for litellm:\\n\\n1. Go to your Replicate project settings and select the Environment tab.\\n\\n2. Under Environment Variables, click Add Variable.\\n\\n3. Add variables for the API keys you want to use. The variable names should match the ones used in litellm:\\n\\n- `OPENAI_API_KEY` for OpenAI \\n- `AZURE_API_KEY` for Azure Cognitive Services\\n- `COHERE_API_KEY` for Cohere\\n- `ANTHROPIC_API_KEY` for Anthropic\\n- `HUGGINGFACE_API_KEY` for Hugging Face\\n\\n4. Set the value to your actual API key for each service. Make sure to treat the values as secrets.\\n\\n5. Make sure your litellm code is referencing the environment variable names, for example:\\n\\n```python\\nimport litellm as lm\\n\\nlm.auth(openai_key=os.getenv(\\\"OPENAI_API_KEY\\\")) \\n```\\n\\n6. Restart your Replicate runtime to load the new environment variables.\\n\\nNow litellm will use your\"]],\n columns: [[\"number\", \"index\"], [\"string\", \"Question\"], [\"string\", \"gpt-3.5-turbo\"], [\"string\", \"claude-2\"]],\n columnOptions: [{\"width\": \"1px\", \"className\": \"index_column\"}],\n rowsPerPage: 25,\n helpUrl: \"https://colab.research.google.com/notebooks/data_table.ipynb\",\n suppressOutputScrolling: true,\n minimumWidth: undefined,\n });\n\n function appendQuickchartButton(parentElement) {\n let quickchartButtonContainerElement = document.createElement('div');\n quickchartButtonContainerElement.innerHTML = `\n
\n \n \n\n\n \n
`;\n parentElement.appendChild(quickchartButtonContainerElement);\n }\n\n appendQuickchartButton(table);\n " - }, - "metadata": {}, - "execution_count": 15 - } + "text/plain": [ + " Question \\\n", + "0 how do i call completion() using LiteLLM \n", + "1 does LiteLLM support VertexAI \n", + "2 how do I set my keys on replicate llama2? \n", + "\n", + " gpt-3.5-turbo \\\n", + "0 To call the `completion()` function using Lite... \n", + "1 Yes, LiteLLM does support Google Cloud Vertex ... \n", + "2 To set your keys on Replicate Llama2, follow t... \n", + "\n", + " claude-2 \n", + "0 Here is how you can call the completion() met... \n", + "1 Unfortunately, LiteLLM does not currently sup... \n", + "2 Here are the steps to set your API keys on Re... " ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } - ] + ], + "source": [ + "# Create a table to visualize results\n", + "import pandas as pd\n", + "\n", + "columns = ['Question'] + models\n", + "df = pd.DataFrame(results, columns=columns)\n", + "\n", + "df" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/LiteLLM_batch_completion.ipynb b/cookbook/LiteLLM_batch_completion.ipynb index a72fc3e87679..b0d33d62f435 100644 --- a/cookbook/LiteLLM_batch_completion.ipynb +++ b/cookbook/LiteLLM_batch_completion.ipynb @@ -1,166 +1,163 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "MbLbs1tbISk-" + }, + "source": [ + "# LiteLLM Batch Completions Example\n", + "\n", + "* This tutorial walks through using `batch_completion`\n", + "* Docs: https://docs.litellm.ai/docs/completion/batching" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# LiteLLM Batch Completions Example\n", - "\n", - "* This tutorial walks through using `batch_completion`\n", - "* Docs: https://docs.litellm.ai/docs/completion/batching" - ], - "metadata": { - "id": "MbLbs1tbISk-" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Ty6-ko_aDlPF" - }, - "outputs": [], - "source": [ - "!pip install litellm" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Import Batch Completion" - ], - "metadata": { - "id": "KGhNJRUCIh1j" - } - }, - { - "cell_type": "code", - "source": [ - "import litellm\n", - "import os\n", - "from litellm import batch_completion\n", - "\n", - "# set your API_KEY\n", - "os.environ['ANTHROPIC_API_KEY'] = \"\"" - ], - "metadata": { - "id": "LOtI43snDrSK" - }, - "execution_count": 7, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Calling `litellm.batch_completion`\n", - "\n", - "In the batch_completion method, you provide a list of messages where each sub-list of messages is passed to litellm.completion(), allowing you to process multiple prompts efficiently in a single API call." - ], - "metadata": { - "id": "Xhv92NBaIpaw" - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ty6-ko_aDlPF" + }, + "outputs": [], + "source": [ + "!pip install litellm" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KGhNJRUCIh1j" + }, + "source": [ + "## Import Batch Completion" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "LOtI43snDrSK" + }, + "outputs": [], + "source": [ + "import os\n", + "from litellm import batch_completion\n", + "\n", + "# set your API_KEY\n", + "os.environ['ANTHROPIC_API_KEY'] = \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xhv92NBaIpaw" + }, + "source": [ + "## Calling `litellm.batch_completion`\n", + "\n", + "In the batch_completion method, you provide a list of messages where each sub-list of messages is passed to litellm.completion(), allowing you to process multiple prompts efficiently in a single API call." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "yY7GIRLsDywu", + "outputId": "009ea67f-95d5-462b-947f-b0d21e60c5bb" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "import litellm\n", - "import os\n", - "from litellm import batch_completion\n", - "\n", - "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", - "\n", - "\n", - "responses = batch_completion(\n", - " model=\"claude-2\",\n", - " messages = [\n", - " [\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": \"good morning? \"\n", - " }\n", - " ],\n", - " [\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": \"what's the time? \"\n", - " }\n", - " ]\n", - " ]\n", - ")\n", - "responses" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "yY7GIRLsDywu", - "outputId": "009ea67f-95d5-462b-947f-b0d21e60c5bb" - }, - "execution_count": 11, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[ JSON: {\n", - " \"choices\": [\n", - " {\n", - " \"finish_reason\": \"stop\",\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"content\": \" Good morning!\",\n", - " \"role\": \"assistant\",\n", - " \"logprobs\": null\n", - " }\n", - " }\n", - " ],\n", - " \"created\": 1694030351.309254,\n", - " \"model\": \"claude-2\",\n", - " \"usage\": {\n", - " \"prompt_tokens\": 11,\n", - " \"completion_tokens\": 3,\n", - " \"total_tokens\": 14\n", - " }\n", - " },\n", - " JSON: {\n", - " \"choices\": [\n", - " {\n", - " \"finish_reason\": \"stop\",\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"content\": \" I'm an AI assistant created by Anthropic. I don't actually have a concept of the current time.\",\n", - " \"role\": \"assistant\",\n", - " \"logprobs\": null\n", - " }\n", - " }\n", - " ],\n", - " \"created\": 1694030352.1215081,\n", - " \"model\": \"claude-2\",\n", - " \"usage\": {\n", - " \"prompt_tokens\": 13,\n", - " \"completion_tokens\": 22,\n", - " \"total_tokens\": 35\n", - " }\n", - " }]" - ] - }, - "metadata": {}, - "execution_count": 11 - } + "data": { + "text/plain": [ + "[ JSON: {\n", + " \"choices\": [\n", + " {\n", + " \"finish_reason\": \"stop\",\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"content\": \" Good morning!\",\n", + " \"role\": \"assistant\",\n", + " \"logprobs\": null\n", + " }\n", + " }\n", + " ],\n", + " \"created\": 1694030351.309254,\n", + " \"model\": \"claude-2\",\n", + " \"usage\": {\n", + " \"prompt_tokens\": 11,\n", + " \"completion_tokens\": 3,\n", + " \"total_tokens\": 14\n", + " }\n", + " },\n", + " JSON: {\n", + " \"choices\": [\n", + " {\n", + " \"finish_reason\": \"stop\",\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"content\": \" I'm an AI assistant created by Anthropic. I don't actually have a concept of the current time.\",\n", + " \"role\": \"assistant\",\n", + " \"logprobs\": null\n", + " }\n", + " }\n", + " ],\n", + " \"created\": 1694030352.1215081,\n", + " \"model\": \"claude-2\",\n", + " \"usage\": {\n", + " \"prompt_tokens\": 13,\n", + " \"completion_tokens\": 22,\n", + " \"total_tokens\": 35\n", + " }\n", + " }]" ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" } - ] + ], + "source": [ + "import os\n", + "\n", + "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", + "\n", + "\n", + "responses = batch_completion(\n", + " model=\"claude-2\",\n", + " messages = [\n", + " [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": \"good morning? \"\n", + " }\n", + " ],\n", + " [\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": \"what's the time? \"\n", + " }\n", + " ]\n", + " ]\n", + ")\n", + "responses" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/Proxy_Batch_Users.ipynb b/cookbook/Proxy_Batch_Users.ipynb index 70521f5ab05d..c362ab8f8a26 100644 --- a/cookbook/Proxy_Batch_Users.ipynb +++ b/cookbook/Proxy_Batch_Users.ipynb @@ -1,204 +1,205 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "680oRk1af-xJ" - }, - "source": [ - "# Environment Setup" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "X7TgJFn8f88p" - }, - "outputs": [], - "source": [ - "import csv\n", - "from typing import Optional\n", - "import httpx, json\n", - "import asyncio\n", - "\n", - "proxy_base_url = \"http://0.0.0.0:4000\" # 👈 SET TO PROXY URL\n", - "master_key = \"sk-1234\" # 👈 SET TO PROXY MASTER KEY" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rauw8EOhgBz5" - }, - "outputs": [], - "source": [ - "## GLOBAL HTTP CLIENT ## - faster http calls\n", - "class HTTPHandler:\n", - " def __init__(self, concurrent_limit=1000):\n", - " # Create a client with a connection pool\n", - " self.client = httpx.AsyncClient(\n", - " limits=httpx.Limits(\n", - " max_connections=concurrent_limit,\n", - " max_keepalive_connections=concurrent_limit,\n", - " )\n", - " )\n", - "\n", - " async def close(self):\n", - " # Close the client when you're done with it\n", - " await self.client.aclose()\n", - "\n", - " async def get(\n", - " self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None\n", - " ):\n", - " response = await self.client.get(url, params=params, headers=headers)\n", - " return response\n", - "\n", - " async def post(\n", - " self,\n", - " url: str,\n", - " data: Optional[dict] = None,\n", - " params: Optional[dict] = None,\n", - " headers: Optional[dict] = None,\n", - " ):\n", - " try:\n", - " response = await self.client.post(\n", - " url, data=data, params=params, headers=headers\n", - " )\n", - " return response\n", - " except Exception as e:\n", - " raise e\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7LXN8zaLgOie" - }, - "source": [ - "# Import Sheet\n", - "\n", - "\n", - "Format: | ID | Name | Max Budget |" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "oiED0usegPGf" - }, - "outputs": [], - "source": [ - "async def import_sheet():\n", - " tasks = []\n", - " http_client = HTTPHandler()\n", - " with open('my-batch-sheet.csv', 'r') as file:\n", - " csv_reader = csv.DictReader(file)\n", - " for row in csv_reader:\n", - " task = create_user(client=http_client, user_id=row['ID'], max_budget=row['Max Budget'], user_name=row['Name'])\n", - " tasks.append(task)\n", - " # print(f\"ID: {row['ID']}, Name: {row['Name']}, Max Budget: {row['Max Budget']}\")\n", - "\n", - " keys = await asyncio.gather(*tasks)\n", - "\n", - " with open('my-batch-sheet_new.csv', 'w', newline='') as new_file:\n", - " fieldnames = ['ID', 'Name', 'Max Budget', 'keys']\n", - " csv_writer = csv.DictWriter(new_file, fieldnames=fieldnames)\n", - " csv_writer.writeheader()\n", - "\n", - " with open('my-batch-sheet.csv', 'r') as file:\n", - " csv_reader = csv.DictReader(file)\n", - " for i, row in enumerate(csv_reader):\n", - " row['keys'] = keys[i] # Add the 'keys' value from the corresponding task result\n", - " csv_writer.writerow(row)\n", - "\n", - " await http_client.close()\n", - "\n", - "asyncio.run(import_sheet())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E7M0Li_UgJeZ" - }, - "source": [ - "# Create Users + Keys\n", - "\n", - "- Creates a user\n", - "- Creates a key with max budget" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NZudRFujf7j-" - }, - "outputs": [], - "source": [ - "\n", - "async def create_key_with_alias(client: HTTPHandler, user_id: str, max_budget: float):\n", - " global proxy_base_url\n", - " if not proxy_base_url.endswith(\"/\"):\n", - " proxy_base_url += \"/\"\n", - " url = proxy_base_url + \"key/generate\"\n", - "\n", - " # call /key/generate\n", - " print(\"CALLING /KEY/GENERATE\")\n", - " response = await client.post(\n", - " url=url,\n", - " headers={\"Authorization\": f\"Bearer {master_key}\"},\n", - " data=json.dumps({\n", - " \"user_id\": user_id,\n", - " \"key_alias\": f\"{user_id}-key\",\n", - " \"max_budget\": max_budget # 👈 KEY CHANGE: SETS MAX BUDGET PER KEY\n", - " })\n", - " )\n", - " print(f\"response: {response.text}\")\n", - " return response.json()[\"key\"]\n", - "\n", - "async def create_user(client: HTTPHandler, user_id: str, max_budget: float, user_name: str):\n", - " \"\"\"\n", - " - call /user/new\n", - " - create key for user\n", - " \"\"\"\n", - " global proxy_base_url\n", - " if not proxy_base_url.endswith(\"/\"):\n", - " proxy_base_url += \"/\"\n", - " url = proxy_base_url + \"user/new\"\n", - "\n", - " # call /user/new\n", - " await client.post(\n", - " url=url,\n", - " headers={\"Authorization\": f\"Bearer {master_key}\"},\n", - " data=json.dumps({\n", - " \"user_id\": user_id,\n", - " \"user_alias\": user_name,\n", - " \"auto_create_key\": False,\n", - " # \"max_budget\": max_budget # 👈 [OPTIONAL] Sets max budget per user (if you want to set a max budget across keys)\n", - " })\n", - " )\n", - "\n", - " # create key for user\n", - " return await create_key_with_alias(client=client, user_id=user_id, max_budget=max_budget)\n" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "680oRk1af-xJ" + }, + "source": [ + "# Environment Setup" + ] }, - "nbformat": 4, - "nbformat_minor": 0 + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "X7TgJFn8f88p" + }, + "outputs": [], + "source": [ + "import csv\n", + "from typing import Optional\n", + "import httpx\n", + "import json\n", + "import asyncio\n", + "\n", + "proxy_base_url = \"http://0.0.0.0:4000\" # 👈 SET TO PROXY URL\n", + "master_key = \"sk-1234\" # 👈 SET TO PROXY MASTER KEY" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rauw8EOhgBz5" + }, + "outputs": [], + "source": [ + "## GLOBAL HTTP CLIENT ## - faster http calls\n", + "class HTTPHandler:\n", + " def __init__(self, concurrent_limit=1000):\n", + " # Create a client with a connection pool\n", + " self.client = httpx.AsyncClient(\n", + " limits=httpx.Limits(\n", + " max_connections=concurrent_limit,\n", + " max_keepalive_connections=concurrent_limit,\n", + " )\n", + " )\n", + "\n", + " async def close(self):\n", + " # Close the client when you're done with it\n", + " await self.client.aclose()\n", + "\n", + " async def get(\n", + " self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None\n", + " ):\n", + " response = await self.client.get(url, params=params, headers=headers)\n", + " return response\n", + "\n", + " async def post(\n", + " self,\n", + " url: str,\n", + " data: Optional[dict] = None,\n", + " params: Optional[dict] = None,\n", + " headers: Optional[dict] = None,\n", + " ):\n", + " try:\n", + " response = await self.client.post(\n", + " url, data=data, params=params, headers=headers\n", + " )\n", + " return response\n", + " except Exception as e:\n", + " raise e\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7LXN8zaLgOie" + }, + "source": [ + "# Import Sheet\n", + "\n", + "\n", + "Format: | ID | Name | Max Budget |" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oiED0usegPGf" + }, + "outputs": [], + "source": [ + "async def import_sheet():\n", + " tasks = []\n", + " http_client = HTTPHandler()\n", + " with open('my-batch-sheet.csv', 'r') as file:\n", + " csv_reader = csv.DictReader(file)\n", + " for row in csv_reader:\n", + " task = create_user(client=http_client, user_id=row['ID'], max_budget=row['Max Budget'], user_name=row['Name'])\n", + " tasks.append(task)\n", + " # print(f\"ID: {row['ID']}, Name: {row['Name']}, Max Budget: {row['Max Budget']}\")\n", + "\n", + " keys = await asyncio.gather(*tasks)\n", + "\n", + " with open('my-batch-sheet_new.csv', 'w', newline='') as new_file:\n", + " fieldnames = ['ID', 'Name', 'Max Budget', 'keys']\n", + " csv_writer = csv.DictWriter(new_file, fieldnames=fieldnames)\n", + " csv_writer.writeheader()\n", + "\n", + " with open('my-batch-sheet.csv', 'r') as file:\n", + " csv_reader = csv.DictReader(file)\n", + " for i, row in enumerate(csv_reader):\n", + " row['keys'] = keys[i] # Add the 'keys' value from the corresponding task result\n", + " csv_writer.writerow(row)\n", + "\n", + " await http_client.close()\n", + "\n", + "asyncio.run(import_sheet())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E7M0Li_UgJeZ" + }, + "source": [ + "# Create Users + Keys\n", + "\n", + "- Creates a user\n", + "- Creates a key with max budget" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NZudRFujf7j-" + }, + "outputs": [], + "source": [ + "\n", + "async def create_key_with_alias(client: HTTPHandler, user_id: str, max_budget: float):\n", + " global proxy_base_url\n", + " if not proxy_base_url.endswith(\"/\"):\n", + " proxy_base_url += \"/\"\n", + " url = proxy_base_url + \"key/generate\"\n", + "\n", + " # call /key/generate\n", + " print(\"CALLING /KEY/GENERATE\")\n", + " response = await client.post(\n", + " url=url,\n", + " headers={\"Authorization\": f\"Bearer {master_key}\"},\n", + " data=json.dumps({\n", + " \"user_id\": user_id,\n", + " \"key_alias\": f\"{user_id}-key\",\n", + " \"max_budget\": max_budget # 👈 KEY CHANGE: SETS MAX BUDGET PER KEY\n", + " })\n", + " )\n", + " print(f\"response: {response.text}\")\n", + " return response.json()[\"key\"]\n", + "\n", + "async def create_user(client: HTTPHandler, user_id: str, max_budget: float, user_name: str):\n", + " \"\"\"\n", + " - call /user/new\n", + " - create key for user\n", + " \"\"\"\n", + " global proxy_base_url\n", + " if not proxy_base_url.endswith(\"/\"):\n", + " proxy_base_url += \"/\"\n", + " url = proxy_base_url + \"user/new\"\n", + "\n", + " # call /user/new\n", + " await client.post(\n", + " url=url,\n", + " headers={\"Authorization\": f\"Bearer {master_key}\"},\n", + " data=json.dumps({\n", + " \"user_id\": user_id,\n", + " \"user_alias\": user_name,\n", + " \"auto_create_key\": False,\n", + " # \"max_budget\": max_budget # 👈 [OPTIONAL] Sets max budget per user (if you want to set a max budget across keys)\n", + " })\n", + " )\n", + "\n", + " # create key for user\n", + " return await create_key_with_alias(client=client, user_id=user_id, max_budget=max_budget)\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/cookbook/TogetherAI_liteLLM.ipynb b/cookbook/TogetherAI_liteLLM.ipynb index ad9ca0ba6a1f..d47009149109 100644 --- a/cookbook/TogetherAI_liteLLM.ipynb +++ b/cookbook/TogetherAI_liteLLM.ipynb @@ -1,1007 +1,1006 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "WemkFEdDAnJL" - }, - "source": [ - "## liteLLM Together AI Tutorial\n", - "https://together.ai/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "pc6IO4V99O25", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "2d69da44-010b-41c2-b38b-5b478576bb8b" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting litellm\n", - " Downloading litellm-0.1.482-py3-none-any.whl (69 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.3/69.3 kB\u001b[0m \u001b[31m757.5 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: importlib-metadata<7.0.0,>=6.8.0 in /usr/local/lib/python3.10/dist-packages (from litellm) (6.8.0)\n", - "Collecting openai<0.28.0,>=0.27.8 (from litellm)\n", - " Downloading openai-0.27.9-py3-none-any.whl (75 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.5/75.5 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting python-dotenv<2.0.0,>=1.0.0 (from litellm)\n", - " Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n", - "Collecting tiktoken<0.5.0,>=0.4.0 (from litellm)\n", - " Downloading tiktoken-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<7.0.0,>=6.8.0->litellm) (3.16.2)\n", - "Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (2.31.0)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (4.66.1)\n", - "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (3.8.5)\n", - "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken<0.5.0,>=0.4.0->litellm) (2023.6.3)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (3.2.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (3.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (2.0.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (2023.7.22)\n", - "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (23.1.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (6.0.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (4.0.3)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.9.2)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.4.0)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.3.1)\n", - "Installing collected packages: python-dotenv, tiktoken, openai, litellm\n", - "Successfully installed litellm-0.1.482 openai-0.27.9 python-dotenv-1.0.0 tiktoken-0.4.0\n" - ] - } - ], - "source": [ - "!pip install litellm" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "TMI3739_9q97" - }, - "outputs": [], - "source": [ - "import os\n", - "from litellm import completion\n", - "os.environ[\"TOGETHERAI_API_KEY\"] = \"\" #@param\n", - "user_message = \"Hello, whats the weather in San Francisco??\"\n", - "messages = [{ \"content\": user_message,\"role\": \"user\"}]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bEqJ2HHjBJqq" - }, - "source": [ - "## Calling togethercomputer/llama-2-70b-chat\n", - "https://api.together.xyz/playground/chat?model=togethercomputer%2Fllama-2-70b-chat" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Jrrt8puj523f", - "outputId": "24494dea-816f-47a6-ade4-1b04f2e9085b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - " 'choices': [\n", - "{\n", - " 'finish_reason': 'stop',\n", - " 'index': 0,\n", - " 'message': {\n", - " 'role': 'assistant',\n", - " 'content': \"\n", - "\n", - "I'm not able to provide real-time weather information. However, I can suggest some ways for you to find out the current weather in San Francisco.\n", - "\n", - "1. Check online weather websites: There are many websites that provide up-to-date weather information, such as AccuWeather, Weather.com, or the National Weather Service. You can enter \"San Francisco\" in the search bar and get the current weather conditions, forecast, and radar imagery.\n", - "2. Use a weather app: You can download a weather app on your smartphone that provides real-time weather information. Some popular weather apps include Dark Sky, Weather Underground, and The Weather Channel.\n", - "3. Tune into local news: You can watch local news channels or listen to local radio stations to get the latest weather forecast and current conditions.\n", - "4. Check social media: Follow local weather accounts on social media platforms like Twitter or Facebook to\"\n", - "}\n", - "}\n", - " ],\n", - " 'created': 1692323365.8261144,\n", - " 'model': 'togethercomputer/llama-2-70b-chat',\n", - " 'usage': {'prompt_tokens': 9, 'completion_tokens': 176, 'total_tokens': 185}\n", - "}\n" - ] - } - ], - "source": [ - "model_name = \"togethercomputer/llama-2-70b-chat\"\n", - "response = completion(model=model_name, messages=messages, max_tokens=200)\n", - "print(response)" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "WemkFEdDAnJL" + }, + "source": [ + "## liteLLM Together AI Tutorial\n", + "https://together.ai/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "pc6IO4V99O25", + "outputId": "2d69da44-010b-41c2-b38b-5b478576bb8b" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "model_name = \"togethercomputer/CodeLlama-34b-Instruct\"\n", - "response = completion(model=model_name, messages=messages, max_tokens=200)\n", - "print(response)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "GIUevHlMvPb8", - "outputId": "ad930a12-16e3-4400-fff4-38151e4f6da5" - }, - "execution_count": 4, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[92mHere's your LiteLLM Dashboard 👉 \u001b[94m\u001b[4mhttps://admin.litellm.ai/6c0f0403-becb-44af-9724-7201c7d381d0\u001b[0m\n", - "{\n", - " \"choices\": [\n", - " {\n", - " \"finish_reason\": \"stop\",\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"content\": \"\\nI'm in San Francisco, and I'm not sure what the weather is like.\\nI'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and\",\n", - " \"role\": \"assistant\"\n", - " }\n", - " }\n", - " ],\n", - " \"created\": 1692934243.8663018,\n", - " \"model\": \"togethercomputer/CodeLlama-34b-Instruct\",\n", - " \"usage\": {\n", - " \"prompt_tokens\": 9,\n", - " \"completion_tokens\": 178,\n", - " \"total_tokens\": 187\n", - " }\n", - "}\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting litellm\n", + " Downloading litellm-0.1.482-py3-none-any.whl (69 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.3/69.3 kB\u001b[0m \u001b[31m757.5 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: importlib-metadata<7.0.0,>=6.8.0 in /usr/local/lib/python3.10/dist-packages (from litellm) (6.8.0)\n", + "Collecting openai<0.28.0,>=0.27.8 (from litellm)\n", + " Downloading openai-0.27.9-py3-none-any.whl (75 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.5/75.5 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting python-dotenv<2.0.0,>=1.0.0 (from litellm)\n", + " Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n", + "Collecting tiktoken<0.5.0,>=0.4.0 (from litellm)\n", + " Downloading tiktoken-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<7.0.0,>=6.8.0->litellm) (3.16.2)\n", + "Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (2.31.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (4.66.1)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai<0.28.0,>=0.27.8->litellm) (3.8.5)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken<0.5.0,>=0.4.0->litellm) (2023.6.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai<0.28.0,>=0.27.8->litellm) (2023.7.22)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (23.1.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai<0.28.0,>=0.27.8->litellm) (1.3.1)\n", + "Installing collected packages: python-dotenv, tiktoken, openai, litellm\n", + "Successfully installed litellm-0.1.482 openai-0.27.9 python-dotenv-1.0.0 tiktoken-0.4.0\n" + ] + } + ], + "source": [ + "!pip install litellm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "TMI3739_9q97" + }, + "outputs": [], + "source": [ + "import os\n", + "from litellm import completion\n", + "os.environ[\"TOGETHERAI_API_KEY\"] = \"\" #@param\n", + "user_message = \"Hello, whats the weather in San Francisco??\"\n", + "messages = [{ \"content\": user_message,\"role\": \"user\"}]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bEqJ2HHjBJqq" + }, + "source": [ + "## Calling togethercomputer/llama-2-70b-chat\n", + "https://api.together.xyz/playground/chat?model=togethercomputer%2Fllama-2-70b-chat" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "Jrrt8puj523f", + "outputId": "24494dea-816f-47a6-ade4-1b04f2e9085b" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "sfWtgf-mBQcM" - }, - "source": [ - "## With Streaming" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " 'choices': [\n", + "{\n", + " 'finish_reason': 'stop',\n", + " 'index': 0,\n", + " 'message': {\n", + " 'role': 'assistant',\n", + " 'content': \"\n", + "\n", + "I'm not able to provide real-time weather information. However, I can suggest some ways for you to find out the current weather in San Francisco.\n", + "\n", + "1. Check online weather websites: There are many websites that provide up-to-date weather information, such as AccuWeather, Weather.com, or the National Weather Service. You can enter \"San Francisco\" in the search bar and get the current weather conditions, forecast, and radar imagery.\n", + "2. Use a weather app: You can download a weather app on your smartphone that provides real-time weather information. Some popular weather apps include Dark Sky, Weather Underground, and The Weather Channel.\n", + "3. Tune into local news: You can watch local news channels or listen to local radio stations to get the latest weather forecast and current conditions.\n", + "4. Check social media: Follow local weather accounts on social media platforms like Twitter or Facebook to\"\n", + "}\n", + "}\n", + " ],\n", + " 'created': 1692323365.8261144,\n", + " 'model': 'togethercomputer/llama-2-70b-chat',\n", + " 'usage': {'prompt_tokens': 9, 'completion_tokens': 176, 'total_tokens': 185}\n", + "}\n" + ] + } + ], + "source": [ + "model_name = \"togethercomputer/llama-2-70b-chat\"\n", + "response = completion(model=model_name, messages=messages, max_tokens=200)\n", + "print(response)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "GIUevHlMvPb8", + "outputId": "ad930a12-16e3-4400-fff4-38151e4f6da5" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "background_save": true, - "base_uri": "https://localhost:8080/" - }, - "id": "wuBhlZtC6MH5", - "outputId": "8f4a408c-25eb-4434-cdd4-7b4ae4f6d3aa" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Com'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'bin'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ('}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ')'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' two'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' popular'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' gained'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' recognition'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' effect'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'iveness'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'urt'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'uring'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' scaling'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' early'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'stage'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ities'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' also'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' distinct'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' differences'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' set'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' apart'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' In'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' this'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ess'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ay'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' we'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' will'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' explore'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' key'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' features'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' discuss'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' might'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Com'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'bin'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' one'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' most'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' successful'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' world'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' includes'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Air'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'b'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'nb'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Drop'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'box'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Red'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'dit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' F'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ounded'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '5'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' over'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '9'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' combined'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' valu'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ation'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' over'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' billion'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' The'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' known'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' inten'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'se'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' three'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'month'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' boot'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' camp'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'style'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' format'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' where'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' work'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' closely'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' experienced'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ment'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' develop'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' products'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ref'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ine'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' business'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' models'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' prepare'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ra'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ising'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' strong'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' track'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' record'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ident'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ifying'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'urt'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'uring'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' successful'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' these'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' spaces'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' other'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' hand'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' relatively'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' new'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' was'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' founded'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '7'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' While'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' it'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' not'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' same'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' level'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' brand'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' recognition'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' as'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' quickly'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' gained'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' reputation'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' unique'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceleration'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' The'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' supporting'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' under'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'present'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' particularly'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' women'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' people'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' color'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' provides'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' help'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' these'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' succeed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' designed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' more'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' flexible'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' personal'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ized'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' than'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' traditional'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' connecting'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ment'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' tail'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ored'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'One'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' key'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' difference'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' between'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' type'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' primarily'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' while'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' bro'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ader'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' includes'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' indust'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ries'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' such'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' as'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' health'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'care'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fin'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ance'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' consumer'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' products'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' This'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' means'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' non'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'tech'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' industry'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'An'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'other'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' difference'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' between'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' two'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' programs'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' provides'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' seed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' all'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' typically'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' In'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' contrast'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' does'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' not'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' but'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' instead'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' connecting'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' invest'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' help'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' raise'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' capital'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' This'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' means'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' option'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'So'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' right'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '?'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' It'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' ultimately'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' depends'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' goals'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' If'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' non'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'tech'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' industry'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' bro'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ader'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Additionally'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' more'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' personal'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ized'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' flexible'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceleration'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' choice'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' On'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' other'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' hand'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' or'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' space'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' seed'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'In'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' conclusion'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' both'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' excellent'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' valuable'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' early'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'stage'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' While'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' share'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' some'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' similar'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 'ities'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' also'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' distinct'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' differences'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' set'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' apart'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' By'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' considering'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' goals'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' determine'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' best'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': ' business'}}]}\n", - "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n" - ] - } - ], - "source": [ - "user_message = \"Write 1page essay on YC + liteLLM\"\n", - "messages = [{ \"content\": user_message,\"role\": \"user\"}]\n", - "\n", - "\n", - "import asyncio\n", - "async def parse_stream(stream):\n", - " async for elem in stream:\n", - " print(elem)\n", - " return\n", - "\n", - "stream = completion(model=\"togethercomputer/llama-2-70b-chat\", messages=messages, stream=True, max_tokens=800)\n", - "print(stream)\n", - "\n", - "# Await the asynchronous function directly in the notebook cell\n", - "await parse_stream(stream)\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[92mHere's your LiteLLM Dashboard 👉 \u001b[94m\u001b[4mhttps://admin.litellm.ai/6c0f0403-becb-44af-9724-7201c7d381d0\u001b[0m\n", + "{\n", + " \"choices\": [\n", + " {\n", + " \"finish_reason\": \"stop\",\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"content\": \"\\nI'm in San Francisco, and I'm not sure what the weather is like.\\nI'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and I'm not sure what the weather is like. I'm in San Francisco, and\",\n", + " \"role\": \"assistant\"\n", + " }\n", + " }\n", + " ],\n", + " \"created\": 1692934243.8663018,\n", + " \"model\": \"togethercomputer/CodeLlama-34b-Instruct\",\n", + " \"usage\": {\n", + " \"prompt_tokens\": 9,\n", + " \"completion_tokens\": 178,\n", + " \"total_tokens\": 187\n", + " }\n", + "}\n" + ] } - ], - "metadata": { + ], + "source": [ + "model_name = \"togethercomputer/CodeLlama-34b-Instruct\"\n", + "response = completion(model=model_name, messages=messages, max_tokens=200)\n", + "print(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sfWtgf-mBQcM" + }, + "source": [ + "## With Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { "colab": { - "provenance": [] + "background_save": true, + "base_uri": "https://localhost:8080/" }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" + "id": "wuBhlZtC6MH5", + "outputId": "8f4a408c-25eb-4434-cdd4-7b4ae4f6d3aa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Com'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'bin'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ('}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ')'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' two'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' popular'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' gained'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' recognition'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' effect'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'iveness'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'urt'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'uring'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' scaling'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' early'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'stage'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ities'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' also'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' distinct'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' differences'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' set'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' apart'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' In'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' this'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ess'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ay'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' we'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' will'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' explore'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' key'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' features'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' discuss'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' might'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Com'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'bin'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' one'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' most'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' successful'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' world'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' includes'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Air'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'b'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'nb'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Drop'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'box'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Red'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'dit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' F'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ounded'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '5'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' over'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '9'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' combined'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' valu'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ation'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' over'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' billion'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' The'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' known'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' inten'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'se'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' three'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'month'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' boot'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' camp'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'style'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' format'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' where'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' work'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' closely'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' experienced'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ment'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' develop'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' products'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ref'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ine'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' business'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' models'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' prepare'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ra'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ising'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' strong'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' track'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' record'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ident'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ifying'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'urt'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'uring'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' successful'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' these'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' spaces'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' other'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' hand'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' relatively'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' new'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ator'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' was'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' founded'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' '}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '7'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' While'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' it'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' not'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' same'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' level'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' brand'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' recognition'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' as'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' quickly'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' gained'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' reputation'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' unique'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceleration'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' The'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' supporting'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' under'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'present'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' particularly'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' women'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' people'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' color'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' provides'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' help'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' these'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' succeed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' designed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' more'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' flexible'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' personal'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ized'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' than'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' traditional'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' connecting'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ment'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' tail'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ored'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'One'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' key'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' difference'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' between'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' type'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' primarily'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' start'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ups'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' while'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' has'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' bro'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ader'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' includes'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' indust'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ries'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' such'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' as'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' health'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'care'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fin'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ance'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' consumer'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' products'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' This'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' means'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' non'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'tech'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' industry'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'An'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'other'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' difference'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' between'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' two'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' programs'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' their'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' provides'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' seed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' all'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' typically'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' range'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' of'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '1'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' $'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '2'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '0'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' In'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' contrast'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' does'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' not'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' its'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' port'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'folio'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' but'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' instead'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'es'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' connecting'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' found'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ers'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' invest'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ors'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' help'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' raise'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' capital'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' This'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' means'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' option'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'So'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' right'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '?'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' It'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' ultimately'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' depends'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' on'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' goals'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' If'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' non'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'tech'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' industry'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' bro'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ader'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' focus'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Additionally'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' more'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' personal'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ized'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' flexible'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' approach'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceleration'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' choice'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' On'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' other'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' hand'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' software'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' technology'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' or'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' internet'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' space'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 're'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' looking'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' seed'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fund'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ing'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' may'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' be'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' a'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' better'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '\\n'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'In'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' conclusion'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' Y'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'C'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' l'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ite'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'LL'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'M'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' both'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' excellent'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' acceler'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ators'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' valuable'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' resources'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' support'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' early'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'stage'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' companies'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' While'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' share'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' some'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' similar'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 'ities'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' they'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' also'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' distinct'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' differences'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' that'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' set'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' them'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' apart'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' By'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' considering'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' startup'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': 's'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' needs'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' goals'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' determine'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' which'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' program'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' is'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' the'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' best'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' fit'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': ' business'}}]}\n", + "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n" + ] } + ], + "source": [ + "user_message = \"Write 1page essay on YC + liteLLM\"\n", + "messages = [{ \"content\": user_message,\"role\": \"user\"}]\n", + "\n", + "\n", + "async def parse_stream(stream):\n", + " async for elem in stream:\n", + " print(elem)\n", + " return\n", + "\n", + "stream = completion(model=\"togethercomputer/llama-2-70b-chat\", messages=messages, stream=True, max_tokens=800)\n", + "print(stream)\n", + "\n", + "# Await the asynchronous function directly in the notebook cell\n", + "await parse_stream(stream)\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/Using_Nemo_Guardrails_with_LiteLLM_Server.ipynb b/cookbook/Using_Nemo_Guardrails_with_LiteLLM_Server.ipynb index da5908324d47..0c3ff97a3737 100644 --- a/cookbook/Using_Nemo_Guardrails_with_LiteLLM_Server.ipynb +++ b/cookbook/Using_Nemo_Guardrails_with_LiteLLM_Server.ipynb @@ -1,159 +1,157 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "eKXncoQbU_2j" + }, + "source": [ + "# Using Nemo-Guardrails with LiteLLM Server\n", + "\n", + "[Call Bedrock, TogetherAI, Huggingface, etc. on the server](https://docs.litellm.ai/docs/providers)" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Using Nemo-Guardrails with LiteLLM Server\n", - "\n", - "[Call Bedrock, TogetherAI, Huggingface, etc. on the server](https://docs.litellm.ai/docs/providers)" - ], - "metadata": { - "id": "eKXncoQbU_2j" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Using with Bedrock\n", - "\n", - "`docker run -e PORT=8000 -e AWS_ACCESS_KEY_ID= -e AWS_SECRET_ACCESS_KEY= -p 8000:8000 ghcr.io/berriai/litellm:latest`" - ], - "metadata": { - "id": "ZciYaLwvuFbu" - } - }, - { - "cell_type": "code", - "source": [ - "pip install nemoguardrails langchain" - ], - "metadata": { - "id": "vOUwGSJ2Vsy3" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "xXEJNxe7U0IN" - }, - "outputs": [], - "source": [ - "import openai\n", - "from langchain.chat_models import ChatOpenAI\n", - "\n", - "llm = ChatOpenAI(model_name=\"anthropic.claude-v2\", openai_api_base=\"http://0.0.0.0:8000\", openai_api_key=\"my-fake-key\")\n", - "\n", - "from nemoguardrails import LLMRails, RailsConfig\n", - "\n", - "config = RailsConfig.from_path(\"./config.yml\")\n", - "app = LLMRails(config, llm=llm)\n", - "\n", - "new_message = app.generate(messages=[{\n", - " \"role\": \"user\",\n", - " \"content\": \"Hello! What can you do for me?\"\n", - "}])" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Using with TogetherAI\n", - "\n", - "1. You can either set this in the server environment:\n", - "`docker run -e PORT=8000 -e TOGETHERAI_API_KEY= -p 8000:8000 ghcr.io/berriai/litellm:latest`\n", - "\n", - "2. **Or** Pass this in as the api key `(...openai_api_key=\"\")`" - ], - "metadata": { - "id": "vz5n00qyuKjp" - } - }, - { - "cell_type": "code", - "source": [ - "import openai\n", - "from langchain.chat_models import ChatOpenAI\n", - "\n", - "llm = ChatOpenAI(model_name=\"together_ai/togethercomputer/CodeLlama-13b-Instruct\", openai_api_base=\"http://0.0.0.0:8000\", openai_api_key=\"my-together-ai-api-key\")\n", - "\n", - "from nemoguardrails import LLMRails, RailsConfig\n", - "\n", - "config = RailsConfig.from_path(\"./config.yml\")\n", - "app = LLMRails(config, llm=llm)\n", - "\n", - "new_message = app.generate(messages=[{\n", - " \"role\": \"user\",\n", - " \"content\": \"Hello! What can you do for me?\"\n", - "}])" - ], - "metadata": { - "id": "XK1sk-McuhpE" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### CONFIG.YML\n", - "\n", - "save this example `config.yml` in your current directory" - ], - "metadata": { - "id": "8A1KWKnzuxAS" - } - }, - { - "cell_type": "code", - "source": [ - "# instructions:\n", - "# - type: general\n", - "# content: |\n", - "# Below is a conversation between a bot and a user about the recent job reports.\n", - "# The bot is factual and concise. If the bot does not know the answer to a\n", - "# question, it truthfully says it does not know.\n", - "\n", - "# sample_conversation: |\n", - "# user \"Hello there!\"\n", - "# express greeting\n", - "# bot express greeting\n", - "# \"Hello! How can I assist you today?\"\n", - "# user \"What can you do for me?\"\n", - "# ask about capabilities\n", - "# bot respond about capabilities\n", - "# \"I am an AI assistant that helps answer mathematical questions. My core mathematical skills are powered by wolfram alpha.\"\n", - "# user \"What's 2+2?\"\n", - "# ask math question\n", - "# bot responds to math question\n", - "# \"2+2 is equal to 4.\"\n", - "\n", - "# models:\n", - "# - type: main\n", - "# engine: openai\n", - "# model: claude-instant-1" - ], - "metadata": { - "id": "NKN1GmSvu0Cx" - }, - "execution_count": null, - "outputs": [] - } - ] + { + "cell_type": "markdown", + "metadata": { + "id": "ZciYaLwvuFbu" + }, + "source": [ + "## Using with Bedrock\n", + "\n", + "`docker run -e PORT=8000 -e AWS_ACCESS_KEY_ID= -e AWS_SECRET_ACCESS_KEY= -p 8000:8000 ghcr.io/berriai/litellm:latest`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vOUwGSJ2Vsy3" + }, + "outputs": [], + "source": [ + "pip install nemoguardrails langchain" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xXEJNxe7U0IN" + }, + "outputs": [], + "source": [ + "from langchain.chat_models import ChatOpenAI\n", + "\n", + "llm = ChatOpenAI(model_name=\"anthropic.claude-v2\", openai_api_base=\"http://0.0.0.0:8000\", openai_api_key=\"my-fake-key\")\n", + "\n", + "from nemoguardrails import LLMRails, RailsConfig\n", + "\n", + "config = RailsConfig.from_path(\"./config.yml\")\n", + "app = LLMRails(config, llm=llm)\n", + "\n", + "new_message = app.generate(messages=[{\n", + " \"role\": \"user\",\n", + " \"content\": \"Hello! What can you do for me?\"\n", + "}])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vz5n00qyuKjp" + }, + "source": [ + "## Using with TogetherAI\n", + "\n", + "1. You can either set this in the server environment:\n", + "`docker run -e PORT=8000 -e TOGETHERAI_API_KEY= -p 8000:8000 ghcr.io/berriai/litellm:latest`\n", + "\n", + "2. **Or** Pass this in as the api key `(...openai_api_key=\"\")`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XK1sk-McuhpE" + }, + "outputs": [], + "source": [ + "from langchain.chat_models import ChatOpenAI\n", + "\n", + "llm = ChatOpenAI(model_name=\"together_ai/togethercomputer/CodeLlama-13b-Instruct\", openai_api_base=\"http://0.0.0.0:8000\", openai_api_key=\"my-together-ai-api-key\")\n", + "\n", + "from nemoguardrails import LLMRails, RailsConfig\n", + "\n", + "config = RailsConfig.from_path(\"./config.yml\")\n", + "app = LLMRails(config, llm=llm)\n", + "\n", + "new_message = app.generate(messages=[{\n", + " \"role\": \"user\",\n", + " \"content\": \"Hello! What can you do for me?\"\n", + "}])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8A1KWKnzuxAS" + }, + "source": [ + "### CONFIG.YML\n", + "\n", + "save this example `config.yml` in your current directory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NKN1GmSvu0Cx" + }, + "outputs": [], + "source": [ + "# instructions:\n", + "# - type: general\n", + "# content: |\n", + "# Below is a conversation between a bot and a user about the recent job reports.\n", + "# The bot is factual and concise. If the bot does not know the answer to a\n", + "# question, it truthfully says it does not know.\n", + "\n", + "# sample_conversation: |\n", + "# user \"Hello there!\"\n", + "# express greeting\n", + "# bot express greeting\n", + "# \"Hello! How can I assist you today?\"\n", + "# user \"What can you do for me?\"\n", + "# ask about capabilities\n", + "# bot respond about capabilities\n", + "# \"I am an AI assistant that helps answer mathematical questions. My core mathematical skills are powered by wolfram alpha.\"\n", + "# user \"What's 2+2?\"\n", + "# ask math question\n", + "# bot responds to math question\n", + "# \"2+2 is equal to 4.\"\n", + "\n", + "# models:\n", + "# - type: main\n", + "# engine: openai\n", + "# model: claude-instant-1" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/benchmark/eval_suites_mlflow_autoevals/auto_evals.py b/cookbook/benchmark/eval_suites_mlflow_autoevals/auto_evals.py index 94682793aa03..daa38dda5856 100644 --- a/cookbook/benchmark/eval_suites_mlflow_autoevals/auto_evals.py +++ b/cookbook/benchmark/eval_suites_mlflow_autoevals/auto_evals.py @@ -1,16 +1,12 @@ -import sys, os -import traceback from dotenv import load_dotenv load_dotenv() import litellm -from litellm import embedding, completion, completion_cost from autoevals.llm import * ################### -import litellm # litellm completion call question = "which country has the highest population" diff --git a/cookbook/codellama-server/main.py b/cookbook/codellama-server/main.py index a31220338c66..d05d67523007 100644 --- a/cookbook/codellama-server/main.py +++ b/cookbook/codellama-server/main.py @@ -1,11 +1,12 @@ import traceback -from flask import Flask, request, jsonify, abort, Response +from flask import Flask, request, Response from flask_cors import CORS -import traceback import litellm from util import handle_error from litellm import completion -import os, dotenv, time +import os +import dotenv +import time import json dotenv.load_dotenv() @@ -20,9 +21,9 @@ # litellm.caching_with_models = True # CACHING: caching_with_models Keys in the cache are messages + model. - to learn more: https://docs.litellm.ai/docs/caching/ ######### PROMPT LOGGING ########## -os.environ[ - "PROMPTLAYER_API_KEY" -] = "" # set your promptlayer key here - https://promptlayer.com/ +os.environ["PROMPTLAYER_API_KEY"] = ( + "" # set your promptlayer key here - https://promptlayer.com/ +) # set callbacks litellm.success_callback = ["promptlayer"] @@ -57,9 +58,9 @@ def api_completion(): try: if "prompt" not in data: raise ValueError("data needs to have prompt") - data[ - "model" - ] = "togethercomputer/CodeLlama-34b-Instruct" # by default use Together AI's CodeLlama model - https://api.together.xyz/playground/chat?model=togethercomputer%2FCodeLlama-34b-Instruct + data["model"] = ( + "togethercomputer/CodeLlama-34b-Instruct" # by default use Together AI's CodeLlama model - https://api.together.xyz/playground/chat?model=togethercomputer%2FCodeLlama-34b-Instruct + ) # COMPLETION CALL system_prompt = "Only respond to questions about code. Say 'I don't know' to anything outside of that." messages = [ @@ -75,7 +76,7 @@ def api_completion(): "stream" in data and data["stream"] == True ): # use generate_responses to stream responses return Response(data_generator(response), mimetype="text/event-stream") - except Exception as e: + except Exception: # call handle_error function print_verbose(f"Got Error api_completion(): {traceback.format_exc()}") ## LOG FAILURE diff --git a/cookbook/community-resources/get_hf_models.py b/cookbook/community-resources/get_hf_models.py index 2d89727913da..8c75a241227c 100644 --- a/cookbook/community-resources/get_hf_models.py +++ b/cookbook/community-resources/get_hf_models.py @@ -1,5 +1,4 @@ import requests -from urllib.parse import urlparse, parse_qs def get_next_url(response): diff --git a/cookbook/liteLLM_Baseten.ipynb b/cookbook/liteLLM_Baseten.ipynb index c2fb5e78e0b9..e03bb3254a52 100644 --- a/cookbook/liteLLM_Baseten.ipynb +++ b/cookbook/liteLLM_Baseten.ipynb @@ -1,238 +1,237 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "gZx-wHJapG5w" + }, + "source": [ + "# Use liteLLM to call Falcon, Wizard, MPT 7B using OpenAI chatGPT Input/output\n", + "\n", + "* Falcon 7B: https://app.baseten.co/explore/falcon_7b\n", + "* Wizard LM: https://app.baseten.co/explore/wizardlm\n", + "* MPT 7B Base: https://app.baseten.co/explore/mpt_7b_instruct\n", + "\n", + "\n", + "## Call all baseten llm models using OpenAI chatGPT Input/Output using liteLLM\n", + "Example call\n", + "```python\n", + "model = \"q841o8w\" # baseten model version ID\n", + "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", + "```" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Use liteLLM to call Falcon, Wizard, MPT 7B using OpenAI chatGPT Input/output\n", - "\n", - "* Falcon 7B: https://app.baseten.co/explore/falcon_7b\n", - "* Wizard LM: https://app.baseten.co/explore/wizardlm\n", - "* MPT 7B Base: https://app.baseten.co/explore/mpt_7b_instruct\n", - "\n", - "\n", - "## Call all baseten llm models using OpenAI chatGPT Input/Output using liteLLM\n", - "Example call\n", - "```python\n", - "model = \"q841o8w\" # baseten model version ID\n", - "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", - "```" - ], - "metadata": { - "id": "gZx-wHJapG5w" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "4JSRa0QVogPo" - }, - "outputs": [], - "source": [ - "!pip install litellm==0.1.399\n", - "!pip install baseten urllib3" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "import litellm\n", - "from litellm import completion" - ], - "metadata": { - "id": "VEukLhDzo4vw" - }, - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Setup" - ], - "metadata": { - "id": "4STYM2OHFNlc" - } - }, - { - "cell_type": "code", - "source": [ - "os.environ['BASETEN_API_KEY'] = \"\" #@param\n", - "messages = [{ \"content\": \"what does Baseten do? \",\"role\": \"user\"}]" - ], - "metadata": { - "id": "DorpLxw1FHbC" - }, - "execution_count": 21, - "outputs": [] + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4JSRa0QVogPo" + }, + "outputs": [], + "source": [ + "!pip install litellm==0.1.399\n", + "!pip install baseten urllib3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "VEukLhDzo4vw" + }, + "outputs": [], + "source": [ + "import os\n", + "from litellm import completion" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4STYM2OHFNlc" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "DorpLxw1FHbC" + }, + "outputs": [], + "source": [ + "os.environ['BASETEN_API_KEY'] = \"\" #@param\n", + "messages = [{ \"content\": \"what does Baseten do? \",\"role\": \"user\"}]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "syF3dTdKFSQQ" + }, + "source": [ + "## Calling Falcon 7B: https://app.baseten.co/explore/falcon_7b\n", + "### Pass Your Baseten model `Version ID` as `model`" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "rPgSoMlsojz0", + "outputId": "81d6dc7b-1681-4ae4-e4c8-5684eb1bd050" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Calling Falcon 7B: https://app.baseten.co/explore/falcon_7b\n", - "### Pass Your Baseten model `Version ID` as `model`" - ], - "metadata": { - "id": "syF3dTdKFSQQ" - } + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32mINFO\u001b[0m API key set.\n", + "INFO:baseten:API key set.\n" + ] }, { - "cell_type": "code", - "source": [ - "model = \"qvv0xeq\"\n", - "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", - "response" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "rPgSoMlsojz0", - "outputId": "81d6dc7b-1681-4ae4-e4c8-5684eb1bd050" - }, - "execution_count": 18, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\u001b[32mINFO\u001b[0m API key set.\n", - "INFO:baseten:API key set.\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'choices': [{'finish_reason': 'stop',\n", - " 'index': 0,\n", - " 'message': {'role': 'assistant',\n", - " 'content': \"what does Baseten do? \\nI'm sorry, I cannot provide a specific answer as\"}}],\n", - " 'created': 1692135883.699066,\n", - " 'model': 'qvv0xeq'}" - ] - }, - "metadata": {}, - "execution_count": 18 - } + "data": { + "text/plain": [ + "{'choices': [{'finish_reason': 'stop',\n", + " 'index': 0,\n", + " 'message': {'role': 'assistant',\n", + " 'content': \"what does Baseten do? \\nI'm sorry, I cannot provide a specific answer as\"}}],\n", + " 'created': 1692135883.699066,\n", + " 'model': 'qvv0xeq'}" ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = \"qvv0xeq\"\n", + "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", + "response" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7n21UroEGCGa" + }, + "source": [ + "## Calling Wizard LM https://app.baseten.co/explore/wizardlm\n", + "### Pass Your Baseten model `Version ID` as `model`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "uLVWFH899lAF", + "outputId": "61c2bc74-673b-413e-bb40-179cf408523d" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Calling Wizard LM https://app.baseten.co/explore/wizardlm\n", - "### Pass Your Baseten model `Version ID` as `model`" - ], - "metadata": { - "id": "7n21UroEGCGa" - } + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32mINFO\u001b[0m API key set.\n", + "INFO:baseten:API key set.\n" + ] }, { - "cell_type": "code", - "source": [ - "model = \"q841o8w\"\n", - "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", - "response" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "uLVWFH899lAF", - "outputId": "61c2bc74-673b-413e-bb40-179cf408523d" - }, - "execution_count": 19, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\u001b[32mINFO\u001b[0m API key set.\n", - "INFO:baseten:API key set.\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'choices': [{'finish_reason': 'stop',\n", - " 'index': 0,\n", - " 'message': {'role': 'assistant',\n", - " 'content': 'As an AI language model, I do not have personal beliefs or practices, but based on the information available online, Baseten is a popular name for a traditional Ethiopian dish made with injera, a spongy flatbread, and wat, a spicy stew made with meat or vegetables. It is typically served for breakfast or dinner and is a staple in Ethiopian cuisine. The name Baseten is also used to refer to a traditional Ethiopian coffee ceremony, where coffee is brewed and served in a special ceremony with music and food.'}}],\n", - " 'created': 1692135900.2806294,\n", - " 'model': 'q841o8w'}" - ] - }, - "metadata": {}, - "execution_count": 19 - } + "data": { + "text/plain": [ + "{'choices': [{'finish_reason': 'stop',\n", + " 'index': 0,\n", + " 'message': {'role': 'assistant',\n", + " 'content': 'As an AI language model, I do not have personal beliefs or practices, but based on the information available online, Baseten is a popular name for a traditional Ethiopian dish made with injera, a spongy flatbread, and wat, a spicy stew made with meat or vegetables. It is typically served for breakfast or dinner and is a staple in Ethiopian cuisine. The name Baseten is also used to refer to a traditional Ethiopian coffee ceremony, where coffee is brewed and served in a special ceremony with music and food.'}}],\n", + " 'created': 1692135900.2806294,\n", + " 'model': 'q841o8w'}" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = \"q841o8w\"\n", + "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", + "response" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6-TFwmPAGPXq" + }, + "source": [ + "## Calling mosaicml/mpt-7b https://app.baseten.co/explore/mpt_7b_instruct\n", + "### Pass Your Baseten model `Version ID` as `model`" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "gbeYZOrUE_Bp", + "outputId": "838d86ea-2143-4cb3-bc80-2acc2346c37a" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Calling mosaicml/mpt-7b https://app.baseten.co/explore/mpt_7b_instruct\n", - "### Pass Your Baseten model `Version ID` as `model`" - ], - "metadata": { - "id": "6-TFwmPAGPXq" - } + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32mINFO\u001b[0m API key set.\n", + "INFO:baseten:API key set.\n" + ] }, { - "cell_type": "code", - "source": [ - "model = \"31dxrj3\"\n", - "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", - "response" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "gbeYZOrUE_Bp", - "outputId": "838d86ea-2143-4cb3-bc80-2acc2346c37a" - }, - "execution_count": 20, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\u001b[32mINFO\u001b[0m API key set.\n", - "INFO:baseten:API key set.\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'choices': [{'finish_reason': 'stop',\n", - " 'index': 0,\n", - " 'message': {'role': 'assistant',\n", - " 'content': \"\\n===================\\n\\nIt's a tool to build a local version of a game on your own machine to host\\non your website.\\n\\nIt's used to make game demos and show them on Twitter, Tumblr, and Facebook.\\n\\n\\n\\n## What's built\\n\\n- A directory of all your game directories, named with a version name and build number, with images linked to.\\n- Includes HTML to include in another site.\\n- Includes images for your icons and\"}}],\n", - " 'created': 1692135914.7472186,\n", - " 'model': '31dxrj3'}" - ] - }, - "metadata": {}, - "execution_count": 20 - } + "data": { + "text/plain": [ + "{'choices': [{'finish_reason': 'stop',\n", + " 'index': 0,\n", + " 'message': {'role': 'assistant',\n", + " 'content': \"\\n===================\\n\\nIt's a tool to build a local version of a game on your own machine to host\\non your website.\\n\\nIt's used to make game demos and show them on Twitter, Tumblr, and Facebook.\\n\\n\\n\\n## What's built\\n\\n- A directory of all your game directories, named with a version name and build number, with images linked to.\\n- Includes HTML to include in another site.\\n- Includes images for your icons and\"}}],\n", + " 'created': 1692135914.7472186,\n", + " 'model': '31dxrj3'}" ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" } - ] + ], + "source": [ + "model = \"31dxrj3\"\n", + "response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n", + "response" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/liteLLM_Langchain_Demo.ipynb b/cookbook/liteLLM_Langchain_Demo.ipynb index 0f6364a149c2..6e796dd085c3 100644 --- a/cookbook/liteLLM_Langchain_Demo.ipynb +++ b/cookbook/liteLLM_Langchain_Demo.ipynb @@ -1,201 +1,195 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "5hwntUxTMxEk" + }, + "source": [ + "# Langchain liteLLM Demo Notebook\n", + "## Use `ChatLiteLLM()` to instantly support 50+ LLM models\n", + "Langchain Docs: https://python.langchain.com/docs/integrations/chat/litellm\n", + "\n", + "Call all LLM models using the same I/O interface\n", + "\n", + "Example usage\n", + "```python\n", + "ChatLiteLLM(model=\"gpt-3.5-turbo\")\n", + "ChatLiteLLM(model=\"claude-2\", temperature=0.3)\n", + "ChatLiteLLM(model=\"command-nightly\")\n", + "ChatLiteLLM(model=\"replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1\")\n", + "```" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Langchain liteLLM Demo Notebook\n", - "## Use `ChatLiteLLM()` to instantly support 50+ LLM models\n", - "Langchain Docs: https://python.langchain.com/docs/integrations/chat/litellm\n", - "\n", - "Call all LLM models using the same I/O interface\n", - "\n", - "Example usage\n", - "```python\n", - "ChatLiteLLM(model=\"gpt-3.5-turbo\")\n", - "ChatLiteLLM(model=\"claude-2\", temperature=0.3)\n", - "ChatLiteLLM(model=\"command-nightly\")\n", - "ChatLiteLLM(model=\"replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1\")\n", - "```" - ], - "metadata": { - "id": "5hwntUxTMxEk" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "aPNAUsCvB6Sv" - }, - "outputs": [], - "source": [ - "!pip install litellm langchain" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from langchain.chat_models import ChatLiteLLM\n", - "from langchain.prompts.chat import (\n", - " ChatPromptTemplate,\n", - " SystemMessagePromptTemplate,\n", - " AIMessagePromptTemplate,\n", - " HumanMessagePromptTemplate,\n", - ")\n", - "from langchain.schema import AIMessage, HumanMessage, SystemMessage" - ], - "metadata": { - "id": "MOhRaVnhB-0J" - }, - "execution_count": 2, - "outputs": [] + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aPNAUsCvB6Sv" + }, + "outputs": [], + "source": [ + "!pip install litellm langchain" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "MOhRaVnhB-0J" + }, + "outputs": [], + "source": [ + "import os\n", + "from langchain.chat_models import ChatLiteLLM\n", + "from langchain.schema import HumanMessage" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "TahkCtlmCD65", + "outputId": "5ddda40f-f252-4830-a8d6-bd3fa68ae487" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "os.environ['OPENAI_API_KEY'] = \"\"\n", - "chat = ChatLiteLLM(model=\"gpt-3.5-turbo\")\n", - "messages = [\n", - " HumanMessage(\n", - " content=\"what model are you\"\n", - " )\n", - "]\n", - "chat(messages)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "TahkCtlmCD65", - "outputId": "5ddda40f-f252-4830-a8d6-bd3fa68ae487" - }, - "execution_count": 17, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "AIMessage(content='I am an AI model known as GPT-3, developed by OpenAI.', additional_kwargs={}, example=False)" - ] - }, - "metadata": {}, - "execution_count": 17 - } + "data": { + "text/plain": [ + "AIMessage(content='I am an AI model known as GPT-3, developed by OpenAI.', additional_kwargs={}, example=False)" ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.environ['OPENAI_API_KEY'] = \"\"\n", + "chat = ChatLiteLLM(model=\"gpt-3.5-turbo\")\n", + "messages = [\n", + " HumanMessage(\n", + " content=\"what model are you\"\n", + " )\n", + "]\n", + "chat(messages)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "uXNDyU4jChcs", + "outputId": "bd74b4c6-f9fb-42dc-fdc3-9240d50503ba" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", - "chat = ChatLiteLLM(model=\"claude-2\", temperature=0.3)\n", - "messages = [\n", - " HumanMessage(\n", - " content=\"what model are you\"\n", - " )\n", - "]\n", - "chat(messages)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "uXNDyU4jChcs", - "outputId": "bd74b4c6-f9fb-42dc-fdc3-9240d50503ba" - }, - "execution_count": 23, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "AIMessage(content=\" I'm Claude, an AI assistant created by Anthropic.\", additional_kwargs={}, example=False)" - ] - }, - "metadata": {}, - "execution_count": 23 - } + "data": { + "text/plain": [ + "AIMessage(content=\" I'm Claude, an AI assistant created by Anthropic.\", additional_kwargs={}, example=False)" ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.environ['ANTHROPIC_API_KEY'] = \"\"\n", + "chat = ChatLiteLLM(model=\"claude-2\", temperature=0.3)\n", + "messages = [\n", + " HumanMessage(\n", + " content=\"what model are you\"\n", + " )\n", + "]\n", + "chat(messages)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "czbDJRKcC7BV", + "outputId": "892e147d-831e-4884-dc71-040f92c3fb8e" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "os.environ['REPLICATE_API_TOKEN'] = \"\"\n", - "chat = ChatLiteLLM(model=\"replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1\")\n", - "messages = [\n", - " HumanMessage(\n", - " content=\"what model are you?\"\n", - " )\n", - "]\n", - "chat(messages)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "czbDJRKcC7BV", - "outputId": "892e147d-831e-4884-dc71-040f92c3fb8e" - }, - "execution_count": 27, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "AIMessage(content=\" I'm an AI based based on LLaMA models (LLaMA: Open and Efficient Foundation Language Models, Touvron et al. 2023), my knowledge was built from a massive corpus of text, including books, articles, and websites, and I was trained using a variety of machine learning algorithms. My model architecture is based on the transformer architecture, which is particularly well-suited for natural language processing tasks. My team of developers and I are constantly working to improve and fine-tune my performance, and I am always happy to help with any questions you may have!\", additional_kwargs={}, example=False)" - ] - }, - "metadata": {}, - "execution_count": 27 - } + "data": { + "text/plain": [ + "AIMessage(content=\" I'm an AI based based on LLaMA models (LLaMA: Open and Efficient Foundation Language Models, Touvron et al. 2023), my knowledge was built from a massive corpus of text, including books, articles, and websites, and I was trained using a variety of machine learning algorithms. My model architecture is based on the transformer architecture, which is particularly well-suited for natural language processing tasks. My team of developers and I are constantly working to improve and fine-tune my performance, and I am always happy to help with any questions you may have!\", additional_kwargs={}, example=False)" ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.environ['REPLICATE_API_TOKEN'] = \"\"\n", + "chat = ChatLiteLLM(model=\"replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1\")\n", + "messages = [\n", + " HumanMessage(\n", + " content=\"what model are you?\"\n", + " )\n", + "]\n", + "chat(messages)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "tZxpq5PDDY9Y", + "outputId": "7e86f4ed-ac7a-45e1-87d0-217da6cad666" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "os.environ['COHERE_API_KEY'] = \"\"\n", - "chat = ChatLiteLLM(model=\"command-nightly\")\n", - "messages = [\n", - " HumanMessage(\n", - " content=\"what model are you?\"\n", - " )\n", - "]\n", - "chat(messages)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "tZxpq5PDDY9Y", - "outputId": "7e86f4ed-ac7a-45e1-87d0-217da6cad666" - }, - "execution_count": 30, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "AIMessage(content=' I am an AI-based large language model, or Chatbot, built by the company Cohere. I am designed to have polite, helpful, inclusive conversations with users. I am always learning and improving, and I am constantly being updated with new information and improvements.\\n\\nI am currently in the development phase, and I am not yet available to the general public. However, I am currently being used by a select group of users for testing and feedback.\\n\\nI am a large language model, which means that I am trained on a massive amount of data and can understand and respond to a wide range of requests and questions. I am also designed to be flexible and adaptable, so I can be customized to suit the needs of different users and use cases.\\n\\nI am currently being used to develop a range of applications, including customer service chatbots, content generation tools, and language translation services. I am also being used to train other language models and to develop new ways of using large language models.\\n\\nI am constantly being updated with new information and improvements, so I am always learning and improving. I am also being used to develop new ways of using large language models, so I am always evolving and adapting to new use cases and requirements.', additional_kwargs={}, example=False)" - ] - }, - "metadata": {}, - "execution_count": 30 - } + "data": { + "text/plain": [ + "AIMessage(content=' I am an AI-based large language model, or Chatbot, built by the company Cohere. I am designed to have polite, helpful, inclusive conversations with users. I am always learning and improving, and I am constantly being updated with new information and improvements.\\n\\nI am currently in the development phase, and I am not yet available to the general public. However, I am currently being used by a select group of users for testing and feedback.\\n\\nI am a large language model, which means that I am trained on a massive amount of data and can understand and respond to a wide range of requests and questions. I am also designed to be flexible and adaptable, so I can be customized to suit the needs of different users and use cases.\\n\\nI am currently being used to develop a range of applications, including customer service chatbots, content generation tools, and language translation services. I am also being used to train other language models and to develop new ways of using large language models.\\n\\nI am constantly being updated with new information and improvements, so I am always learning and improving. I am also being used to develop new ways of using large language models, so I am always evolving and adapting to new use cases and requirements.', additional_kwargs={}, example=False)" ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" } - ] + ], + "source": [ + "os.environ['COHERE_API_KEY'] = \"\"\n", + "chat = ChatLiteLLM(model=\"command-nightly\")\n", + "messages = [\n", + " HumanMessage(\n", + " content=\"what model are you?\"\n", + " )\n", + "]\n", + "chat(messages)" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/liteLLM_VertextAI_Example.ipynb b/cookbook/liteLLM_VertextAI_Example.ipynb index d94d24cce199..0af012b34e32 100644 --- a/cookbook/liteLLM_VertextAI_Example.ipynb +++ b/cookbook/liteLLM_VertextAI_Example.ipynb @@ -43,7 +43,7 @@ "source": [ "# set you Vertex AI configs\n", "import litellm\n", - "from litellm import embedding, completion\n", + "from litellm import completion\n", "\n", "litellm.vertex_project = \"hardy-device-386718\"\n", "litellm.vertex_location = \"us-central1\"" diff --git a/cookbook/liteLLM_function_calling.ipynb b/cookbook/liteLLM_function_calling.ipynb index bd4e2ba1d1d2..45f4398b386a 100644 --- a/cookbook/liteLLM_function_calling.ipynb +++ b/cookbook/liteLLM_function_calling.ipynb @@ -1,331 +1,331 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "vnvlwUDZK7VA" + }, + "source": [ + "## Demo Notebook of Function Calling with liteLLM\n", + "- Supported Providers for Function Calling\n", + " - OpenAI - `gpt-4-0613` and `gpt-3.5-turbo-0613`\n", + "- In this notebook we use function calling with `litellm.completion()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KrINCwRfLgZV" + }, + "outputs": [], + "source": [ + "## Install liteLLM\n", + "!pip install litellm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "nK7zR5OgLlh2" + }, + "outputs": [], + "source": [ + "import os\n", + "from litellm import completion" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "dCQlyBxKLqbA" + }, + "outputs": [], + "source": [ + "os.environ['OPENAI_API_KEY'] = \"\" #@param" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gfdGv-FMRCdX" + }, + "source": [ + "## Define Messages, Functions\n", + "We create a get_current_weather() function and pass that to GPT 3.5\n", + "\n", + "See OpenAI docs for this: https://openai.com/blog/function-calling-and-other-api-updates" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "ERzsP1sfM19C" + }, + "outputs": [], + "source": [ + "messages = [\n", + " {\"role\": \"user\", \"content\": \"What is the weather like in Boston?\"}\n", + "]\n", + "\n", + "def get_current_weather(location):\n", + " if location == \"Boston, MA\":\n", + " return \"The weather is 12F\"\n", + "\n", + "functions = [\n", + " {\n", + " \"name\": \"get_current_weather\",\n", + " \"description\": \"Get the current weather in a given location\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"location\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The city and state, e.g. San Francisco, CA\"\n", + " },\n", + " \"unit\": {\n", + " \"type\": \"string\",\n", + " \"enum\": [\"celsius\", \"fahrenheit\"]\n", + " }\n", + " },\n", + " \"required\": [\"location\"]\n", + " }\n", + " }\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NX6by2VuRPnp" + }, + "source": [ + "## Call gpt-3.5-turbo-0613 to Decide what Function to call" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { "colab": { - "provenance": [] + "base_uri": "https://localhost:8080/" }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" + "id": "QVoJ5PtxMlVx", + "outputId": "efe7a81f-e04a-4afc-aa60-a2b2648f5fb9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " \"id\": \"chatcmpl-7mX4RiqdoislVEqfmfVjFSKp3hyIy\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1691801223,\n", + " \"model\": \"gpt-3.5-turbo-0613\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": null,\n", + " \"function_call\": {\n", + " \"name\": \"get_current_weather\",\n", + " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n", + " }\n", + " },\n", + " \"finish_reason\": \"function_call\"\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"prompt_tokens\": 82,\n", + " \"completion_tokens\": 18,\n", + " \"total_tokens\": 100\n", + " }\n", + "}\n" + ] } + ], + "source": [ + "response = completion(model=\"gpt-3.5-turbo-0613\", messages=messages, functions=functions)\n", + "print(response)" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "## Demo Notebook of Function Calling with liteLLM\n", - "- Supported Providers for Function Calling\n", - " - OpenAI - `gpt-4-0613` and `gpt-3.5-turbo-0613`\n", - "- In this notebook we use function calling with `litellm.completion()`" - ], - "metadata": { - "id": "vnvlwUDZK7VA" - } - }, - { - "cell_type": "code", - "source": [ - "## Install liteLLM\n", - "!pip install litellm" - ], - "metadata": { - "id": "KrINCwRfLgZV" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import os, litellm\n", - "from litellm import completion" - ], - "metadata": { - "id": "nK7zR5OgLlh2" - }, - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "os.environ['OPENAI_API_KEY'] = \"\" #@param" - ], - "metadata": { - "id": "dCQlyBxKLqbA" - }, - "execution_count": 27, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Define Messages, Functions\n", - "We create a get_current_weather() function and pass that to GPT 3.5\n", - "\n", - "See OpenAI docs for this: https://openai.com/blog/function-calling-and-other-api-updates" - ], - "metadata": { - "id": "gfdGv-FMRCdX" - } - }, - { - "cell_type": "code", - "source": [ - "messages = [\n", - " {\"role\": \"user\", \"content\": \"What is the weather like in Boston?\"}\n", - "]\n", - "\n", - "def get_current_weather(location):\n", - " if location == \"Boston, MA\":\n", - " return \"The weather is 12F\"\n", - "\n", - "functions = [\n", - " {\n", - " \"name\": \"get_current_weather\",\n", - " \"description\": \"Get the current weather in a given location\",\n", - " \"parameters\": {\n", - " \"type\": \"object\",\n", - " \"properties\": {\n", - " \"location\": {\n", - " \"type\": \"string\",\n", - " \"description\": \"The city and state, e.g. San Francisco, CA\"\n", - " },\n", - " \"unit\": {\n", - " \"type\": \"string\",\n", - " \"enum\": [\"celsius\", \"fahrenheit\"]\n", - " }\n", - " },\n", - " \"required\": [\"location\"]\n", - " }\n", - " }\n", - " ]" - ], - "metadata": { - "id": "ERzsP1sfM19C" - }, - "execution_count": 25, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Call gpt-3.5-turbo-0613 to Decide what Function to call" - ], - "metadata": { - "id": "NX6by2VuRPnp" - } - }, - { - "cell_type": "code", - "source": [ - "response = completion(model=\"gpt-3.5-turbo-0613\", messages=messages, functions=functions)\n", - "print(response)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "QVoJ5PtxMlVx", - "outputId": "efe7a81f-e04a-4afc-aa60-a2b2648f5fb9" - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "{\n", - " \"id\": \"chatcmpl-7mX4RiqdoislVEqfmfVjFSKp3hyIy\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1691801223,\n", - " \"model\": \"gpt-3.5-turbo-0613\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": null,\n", - " \"function_call\": {\n", - " \"name\": \"get_current_weather\",\n", - " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n", - " }\n", - " },\n", - " \"finish_reason\": \"function_call\"\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"prompt_tokens\": 82,\n", - " \"completion_tokens\": 18,\n", - " \"total_tokens\": 100\n", - " }\n", - "}\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Parse GPT 3.5 Response\n", - "Read Information about what Function to Call" - ], - "metadata": { - "id": "Yu0o2saDNLx8" - } - }, - { - "cell_type": "code", - "source": [ - "function_call_data = response[\"choices\"][0][\"message\"][\"function_call\"]\n", - "function_call_data" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "u1DzXLJsNOR5", - "outputId": "177e9501-0ce2-4619-9067-3047f18f6c79" - }, - "execution_count": 11, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " JSON: {\n", - " \"name\": \"get_current_weather\",\n", - " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n", - "}" - ] - }, - "metadata": {}, - "execution_count": 11 - } - ] + { + "cell_type": "markdown", + "metadata": { + "id": "Yu0o2saDNLx8" + }, + "source": [ + "## Parse GPT 3.5 Response\n", + "Read Information about what Function to Call" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "u1DzXLJsNOR5", + "outputId": "177e9501-0ce2-4619-9067-3047f18f6c79" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "import json\n", - "function_name = function_call_data['name']\n", - "function_args = function_call_data['arguments']\n", - "function_args = json.loads(function_args)\n", - "print(function_name, function_args)\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "tYb96Mh0NhH9", - "outputId": "13c4bb89-6f29-4b3b-afa7-302dcf2cdd5f" - }, - "execution_count": 20, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "get_current_weather {'location': 'Boston, MA'}\n" - ] - } + "data": { + "text/plain": [ + " JSON: {\n", + " \"name\": \"get_current_weather\",\n", + " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n", + "}" ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function_call_data = response[\"choices\"][0][\"message\"][\"function_call\"]\n", + "function_call_data" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "tYb96Mh0NhH9", + "outputId": "13c4bb89-6f29-4b3b-afa7-302dcf2cdd5f" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Call the get_current_weather() function" - ], - "metadata": { - "id": "z3tstH_yN3fX" - } - }, - { - "cell_type": "code", - "source": [ - "if function_name == \"get_current_weather\":\n", - " result = get_current_weather(**function_args)\n", - " print(result)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "TSb8JHhgN5Zc", - "outputId": "ef140572-4020-4daf-ac8c-d5161be9aa5c" - }, - "execution_count": 24, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "12F\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "get_current_weather {'location': 'Boston, MA'}\n" + ] + } + ], + "source": [ + "import json\n", + "function_name = function_call_data['name']\n", + "function_args = function_call_data['arguments']\n", + "function_args = json.loads(function_args)\n", + "print(function_name, function_args)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z3tstH_yN3fX" + }, + "source": [ + "## Call the get_current_weather() function" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "TSb8JHhgN5Zc", + "outputId": "ef140572-4020-4daf-ac8c-d5161be9aa5c" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## Send the response from get_current_weather back to the model to summarize" - ], - "metadata": { - "id": "k4HGJE3NRmMI" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "12F\n" + ] + } + ], + "source": [ + "if function_name == \"get_current_weather\":\n", + " result = get_current_weather(**function_args)\n", + " print(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k4HGJE3NRmMI" + }, + "source": [ + "## Send the response from get_current_weather back to the model to summarize" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "a23cmEwiPaw7", + "outputId": "43259b86-0c4c-4fcb-eab7-6e1a788b2f21" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "messages = [\n", - " {\"role\": \"user\", \"content\": \"What is the weather like in Boston?\"},\n", - " {\"role\": \"assistant\", \"content\": None, \"function_call\": {\"name\": \"get_current_weather\", \"arguments\": \"{ \\\"location\\\": \\\"Boston, MA\\\"}\"}},\n", - " {\"role\": \"function\", \"name\": \"get_current_weather\", \"content\": result}\n", - "]\n", - "response = completion(model=\"gpt-3.5-turbo-0613\", messages=messages, functions=functions)\n", - "print(response)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "a23cmEwiPaw7", - "outputId": "43259b86-0c4c-4fcb-eab7-6e1a788b2f21" - }, - "execution_count": 26, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "{\n", - " \"id\": \"chatcmpl-7mXGN62u75WXp1Lgen4iSgNvA7hHT\",\n", - " \"object\": \"chat.completion\",\n", - " \"created\": 1691801963,\n", - " \"model\": \"gpt-3.5-turbo-0613\",\n", - " \"choices\": [\n", - " {\n", - " \"index\": 0,\n", - " \"message\": {\n", - " \"role\": \"assistant\",\n", - " \"content\": \"The current weather in Boston is 12 degrees Fahrenheit.\"\n", - " },\n", - " \"finish_reason\": \"stop\"\n", - " }\n", - " ],\n", - " \"usage\": {\n", - " \"prompt_tokens\": 109,\n", - " \"completion_tokens\": 12,\n", - " \"total_tokens\": 121\n", - " }\n", - "}\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " \"id\": \"chatcmpl-7mXGN62u75WXp1Lgen4iSgNvA7hHT\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1691801963,\n", + " \"model\": \"gpt-3.5-turbo-0613\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"The current weather in Boston is 12 degrees Fahrenheit.\"\n", + " },\n", + " \"finish_reason\": \"stop\"\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"prompt_tokens\": 109,\n", + " \"completion_tokens\": 12,\n", + " \"total_tokens\": 121\n", + " }\n", + "}\n" + ] } - ] + ], + "source": [ + "messages = [\n", + " {\"role\": \"user\", \"content\": \"What is the weather like in Boston?\"},\n", + " {\"role\": \"assistant\", \"content\": None, \"function_call\": {\"name\": \"get_current_weather\", \"arguments\": \"{ \\\"location\\\": \\\"Boston, MA\\\"}\"}},\n", + " {\"role\": \"function\", \"name\": \"get_current_weather\", \"content\": result}\n", + "]\n", + "response = completion(model=\"gpt-3.5-turbo-0613\", messages=messages, functions=functions)\n", + "print(response)" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/litellm-ollama-docker-image/test.py b/cookbook/litellm-ollama-docker-image/test.py index 977bd36993e0..93b9c6ac4a75 100644 --- a/cookbook/litellm-ollama-docker-image/test.py +++ b/cookbook/litellm-ollama-docker-image/test.py @@ -1,13 +1,13 @@ import openai -api_base = f"http://0.0.0.0:8000" +api_base = "http://0.0.0.0:8000" openai.api_base = api_base openai.api_key = "temp-key" print(openai.api_base) -print(f"LiteLLM: response from proxy with streaming") +print("LiteLLM: response from proxy with streaming") response = openai.ChatCompletion.create( model="ollama/llama2", messages=[ diff --git a/cookbook/litellm_Test_Multiple_Providers.ipynb b/cookbook/litellm_Test_Multiple_Providers.ipynb index f61130a9ffee..3901581e67f6 100644 --- a/cookbook/litellm_Test_Multiple_Providers.ipynb +++ b/cookbook/litellm_Test_Multiple_Providers.ipynb @@ -1,573 +1,571 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "Ys9n20Es2IzT" + }, + "source": [ + "# Evaluate Multiple LLM Providers with LiteLLM\n", + "\n", + "\n", + "\n", + "* Quality Testing\n", + "* Load Testing\n", + "* Duration Testing\n", + "\n" + ] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Evaluate Multiple LLM Providers with LiteLLM\n", - "\n", - "\n", - "\n", - "* Quality Testing\n", - "* Load Testing\n", - "* Duration Testing\n", - "\n" - ], - "metadata": { - "id": "Ys9n20Es2IzT" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ZXOXl23PIIP6" - }, - "outputs": [], - "source": [ - "!pip install litellm python-dotenv" - ] - }, - { - "cell_type": "code", - "source": [ - "import litellm\n", - "from litellm import load_test_model, testing_batch_completion\n", - "import time" - ], - "metadata": { - "id": "LINuBzXDItq2" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from dotenv import load_dotenv\n", - "load_dotenv()" - ], - "metadata": { - "id": "EkxMhsWdJdu4" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "# Quality Test endpoint\n", - "\n", - "## Test the same prompt across multiple LLM providers\n", - "\n", - "In this example, let's ask some questions about Paul Graham" - ], - "metadata": { - "id": "mv5XdnqeW5I_" - } - }, - { - "cell_type": "code", - "source": [ - "models = [\"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\", \"gpt-4\", \"claude-instant-1\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\"]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompts = [\"Who is Paul Graham?\", \"What is Paul Graham known for?\" , \"Is paul graham a writer?\" , \"Where does Paul Graham live?\", \"What has Paul Graham done?\"]\n", - "messages = [[{\"role\": \"user\", \"content\": context + \"\\n\" + prompt}] for prompt in prompts] # pass in a list of messages we want to test\n", - "result = testing_batch_completion(models=models, messages=messages)" - ], - "metadata": { - "id": "XpzrR5m4W_Us" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Visualize the data" - ], - "metadata": { - "id": "9nzeLySnvIIW" - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZXOXl23PIIP6" + }, + "outputs": [], + "source": [ + "!pip install litellm python-dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LINuBzXDItq2" + }, + "outputs": [], + "source": [ + "from litellm import load_test_model, testing_batch_completion" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EkxMhsWdJdu4" + }, + "outputs": [], + "source": [ + "from dotenv import load_dotenv\n", + "load_dotenv()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mv5XdnqeW5I_" + }, + "source": [ + "# Quality Test endpoint\n", + "\n", + "## Test the same prompt across multiple LLM providers\n", + "\n", + "In this example, let's ask some questions about Paul Graham" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XpzrR5m4W_Us" + }, + "outputs": [], + "source": [ + "models = [\"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\", \"gpt-4\", \"claude-instant-1\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\"]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompts = [\"Who is Paul Graham?\", \"What is Paul Graham known for?\" , \"Is paul graham a writer?\" , \"Where does Paul Graham live?\", \"What has Paul Graham done?\"]\n", + "messages = [[{\"role\": \"user\", \"content\": context + \"\\n\" + prompt}] for prompt in prompts] # pass in a list of messages we want to test\n", + "result = testing_batch_completion(models=models, messages=messages)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9nzeLySnvIIW" + }, + "source": [ + "## Visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 403 }, + "id": "X-2n7hdAuVAY", + "outputId": "69cc0de1-68e3-4c12-a8ea-314880010d94" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "import pandas as pd\n", - "\n", - "# Create an empty list to store the row data\n", - "table_data = []\n", - "\n", - "# Iterate through the list and extract the required data\n", - "for item in result:\n", - " prompt = item['prompt'][0]['content'].replace(context, \"\") # clean the prompt for easy comparison\n", - " model = item['response']['model']\n", - " response = item['response']['choices'][0]['message']['content']\n", - " table_data.append([prompt, model, response])\n", - "\n", - "# Create a DataFrame from the table data\n", - "df = pd.DataFrame(table_data, columns=['Prompt', 'Model Name', 'Response'])\n", - "\n", - "# Pivot the DataFrame to get the desired table format\n", - "table = df.pivot(index='Prompt', columns='Model Name', values='Response')\n", - "table" + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Model Nameclaude-instant-1gpt-3.5-turbo-0613gpt-3.5-turbo-16k-0613gpt-4-0613replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781
Prompt
\\nIs paul graham a writer?Yes, Paul Graham is considered a writer in ad...Yes, Paul Graham is a writer. He has written s...Yes, Paul Graham is a writer. He has authored ...Yes, Paul Graham is a writer. He is an essayis...Yes, Paul Graham is an author. According to t...
\\nWhat has Paul Graham done?Paul Graham has made significant contribution...Paul Graham has achieved several notable accom...Paul Graham has made significant contributions...Paul Graham is known for his work on the progr...Paul Graham has had a diverse career in compu...
\\nWhat is Paul Graham known for?Paul Graham is known for several things:\\n\\n-...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for many things, includi...
\\nWhere does Paul Graham live?Based on the information provided:\\n\\n- Paul ...According to the given information, Paul Graha...Paul Graham currently lives in England, where ...The text does not provide a current place of r...Based on the information provided, Paul Graha...
\\nWho is Paul Graham?Paul Graham is an influential computer scient...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist,...
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 403 - }, - "id": "X-2n7hdAuVAY", - "outputId": "69cc0de1-68e3-4c12-a8ea-314880010d94" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Model Name claude-instant-1 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is considered a writer in ad... \n", - "\\nWhat has Paul Graham done? Paul Graham has made significant contribution... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for several things:\\n\\n-... \n", - "\\nWhere does Paul Graham live? Based on the information provided:\\n\\n- Paul ... \n", - "\\nWho is Paul Graham? Paul Graham is an influential computer scient... \n", - "\n", - "Model Name gpt-3.5-turbo-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has written s... \n", - "\\nWhat has Paul Graham done? Paul Graham has achieved several notable accom... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? According to the given information, Paul Graha... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name gpt-3.5-turbo-16k-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has authored ... \n", - "\\nWhat has Paul Graham done? Paul Graham has made significant contributions... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? Paul Graham currently lives in England, where ... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name gpt-4-0613 \\\n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He is an essayis... \n", - "\\nWhat has Paul Graham done? Paul Graham is known for his work on the progr... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", - "\\nWhere does Paul Graham live? The text does not provide a current place of r... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", - "\n", - "Model Name replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781 \n", - "Prompt \n", - "\\nIs paul graham a writer? Yes, Paul Graham is an author. According to t... \n", - "\\nWhat has Paul Graham done? Paul Graham has had a diverse career in compu... \n", - "\\nWhat is Paul Graham known for? Paul Graham is known for many things, includi... \n", - "\\nWhere does Paul Graham live? Based on the information provided, Paul Graha... \n", - "\\nWho is Paul Graham? Paul Graham is an English computer scientist,... " - ], - "text/html": [ - "\n", - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Model Nameclaude-instant-1gpt-3.5-turbo-0613gpt-3.5-turbo-16k-0613gpt-4-0613replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781
Prompt
\\nIs paul graham a writer?Yes, Paul Graham is considered a writer in ad...Yes, Paul Graham is a writer. He has written s...Yes, Paul Graham is a writer. He has authored ...Yes, Paul Graham is a writer. He is an essayis...Yes, Paul Graham is an author. According to t...
\\nWhat has Paul Graham done?Paul Graham has made significant contribution...Paul Graham has achieved several notable accom...Paul Graham has made significant contributions...Paul Graham is known for his work on the progr...Paul Graham has had a diverse career in compu...
\\nWhat is Paul Graham known for?Paul Graham is known for several things:\\n\\n-...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for his work on the progr...Paul Graham is known for many things, includi...
\\nWhere does Paul Graham live?Based on the information provided:\\n\\n- Paul ...According to the given information, Paul Graha...Paul Graham currently lives in England, where ...The text does not provide a current place of r...Based on the information provided, Paul Graha...
\\nWho is Paul Graham?Paul Graham is an influential computer scient...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist, ...Paul Graham is an English computer scientist,...
\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - "
\n", - " \n", - "
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n" - ] - }, - "metadata": {}, - "execution_count": 17 - } + "text/plain": [ + "Model Name claude-instant-1 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is considered a writer in ad... \n", + "\\nWhat has Paul Graham done? Paul Graham has made significant contribution... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for several things:\\n\\n-... \n", + "\\nWhere does Paul Graham live? Based on the information provided:\\n\\n- Paul ... \n", + "\\nWho is Paul Graham? Paul Graham is an influential computer scient... \n", + "\n", + "Model Name gpt-3.5-turbo-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has written s... \n", + "\\nWhat has Paul Graham done? Paul Graham has achieved several notable accom... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? According to the given information, Paul Graha... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name gpt-3.5-turbo-16k-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He has authored ... \n", + "\\nWhat has Paul Graham done? Paul Graham has made significant contributions... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? Paul Graham currently lives in England, where ... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name gpt-4-0613 \\\n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is a writer. He is an essayis... \n", + "\\nWhat has Paul Graham done? Paul Graham is known for his work on the progr... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for his work on the progr... \n", + "\\nWhere does Paul Graham live? The text does not provide a current place of r... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist, ... \n", + "\n", + "Model Name replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781 \n", + "Prompt \n", + "\\nIs paul graham a writer? Yes, Paul Graham is an author. According to t... \n", + "\\nWhat has Paul Graham done? Paul Graham has had a diverse career in compu... \n", + "\\nWhat is Paul Graham known for? Paul Graham is known for many things, includi... \n", + "\\nWhere does Paul Graham live? Based on the information provided, Paul Graha... \n", + "\\nWho is Paul Graham? Paul Graham is an English computer scientist,... " ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Create an empty list to store the row data\n", + "table_data = []\n", + "\n", + "# Iterate through the list and extract the required data\n", + "for item in result:\n", + " prompt = item['prompt'][0]['content'].replace(context, \"\") # clean the prompt for easy comparison\n", + " model = item['response']['model']\n", + " response = item['response']['choices'][0]['message']['content']\n", + " table_data.append([prompt, model, response])\n", + "\n", + "# Create a DataFrame from the table data\n", + "df = pd.DataFrame(table_data, columns=['Prompt', 'Model Name', 'Response'])\n", + "\n", + "# Pivot the DataFrame to get the desired table format\n", + "table = df.pivot(index='Prompt', columns='Model Name', values='Response')\n", + "table" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zOxUM40PINDC" + }, + "source": [ + "# Load Test endpoint\n", + "\n", + "Run 100+ simultaneous queries across multiple providers to see when they fail + impact on latency" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZkQf_wbcIRQ9" + }, + "outputs": [], + "source": [ + "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompt = \"Where does Paul Graham live?\"\n", + "final_prompt = context + prompt\n", + "result = load_test_model(models=models, prompt=final_prompt, num_calls=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8vSNBFC06aXY" + }, + "source": [ + "## Visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 552 }, + "id": "SZfiKjLV3-n8", + "outputId": "00f7f589-b3da-43ed-e982-f9420f074b8d" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "# Load Test endpoint\n", - "\n", - "Run 100+ simultaneous queries across multiple providers to see when they fail + impact on latency" - ], - "metadata": { - "id": "zOxUM40PINDC" - } - }, - { - "cell_type": "code", - "source": [ - "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompt = \"Where does Paul Graham live?\"\n", - "final_prompt = context + prompt\n", - "result = load_test_model(models=models, prompt=final_prompt, num_calls=5)" - ], - "metadata": { - "id": "ZkQf_wbcIRQ9" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Visualize the data" - ], - "metadata": { - "id": "8vSNBFC06aXY" - } - }, - { - "cell_type": "code", - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "## calculate avg response time\n", - "unique_models = set(result[\"response\"]['model'] for result in result[\"results\"])\n", - "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", - "for completion_result in result[\"results\"]:\n", - " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", - "\n", - "avg_response_time = {}\n", - "for model, data in model_dict.items():\n", - " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", - "\n", - "models = list(avg_response_time.keys())\n", - "response_times = list(avg_response_time.values())\n", - "\n", - "plt.bar(models, response_times)\n", - "plt.xlabel('Model', fontsize=10)\n", - "plt.ylabel('Average Response Time')\n", - "plt.title('Average Response Times for each Model')\n", - "\n", - "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", - "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 552 - }, - "id": "SZfiKjLV3-n8", - "outputId": "00f7f589-b3da-43ed-e982-f9420f074b8d" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIXCAYAAACy1HXAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABn5UlEQVR4nO3dd1QT2d8G8Cf0ojQBEUFRsSv2FXvvvSx2saNi7733ihXELotd7KuIir33sjZUsIuKVGmS+/7hy/yM6K7RYEZ4PufkaO5Mkm/IJHly594ZhRBCgIiIiEiGdLRdABEREdG3MKgQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBCR7Dk5OaFLly7aLkNtc+fORd68eaGrq4uSJUtquxyNO3bsGBQKBbZv367tUtSmUCgwadIktW8XGhoKhUKBdevWabwm+joGFVKxfPlyKBQKlC9fXtulyI6TkxMUCoV0MTU1xR9//IENGzZou7TfTuoX3PdcfleHDh3CiBEjUKlSJaxduxYzZszQdkmys27dOul1PnXqVJrlQgg4OjpCoVCgcePGWqiQ5EBP2wWQvPj7+8PJyQkXLlxASEgInJ2dtV2SrJQsWRJDhw4FALx8+RKrVq2Cu7s7EhMT0bNnTy1X9/soXLgw/Pz8VNpGjx6NLFmyYOzYsWnWv3fvHnR0fq/fVUePHoWOjg5Wr14NAwMDbZcja0ZGRti4cSMqV66s0n78+HE8e/YMhoaGWqqM5IBBhSSPHz/GmTNnEBAQAA8PD/j7+2PixIm/tAalUomkpCQYGRn90sf9Xjlz5kTHjh2l6126dEHevHmxcOFCBhU1ZM+eXeXvCACzZs2CtbV1mnYAv+UXVXh4OIyNjTUWUoQQSEhIgLGxsUbuT04aNmyIbdu2YfHixdDT+9/X0saNG1GmTBm8fftWi9WRtv1eP1EoXfn7+8PS0hKNGjVC69at4e/vLy1LTk6GlZUVunbtmuZ20dHRMDIywrBhw6S2xMRETJw4Ec7OzjA0NISjoyNGjBiBxMREldsqFAr069cP/v7+KFq0KAwNDXHw4EEAwLx581CxYkVky5YNxsbGKFOmzFf3hcfHx2PAgAGwtrZG1qxZ0bRpUzx//vyr+6CfP3+Obt26IXv27DA0NETRokWxZs2aH/6b2djYoFChQnj48KFKu1KphJeXF4oWLQojIyNkz54dHh4eeP/+vcp6ly5dQr169WBtbQ1jY2PkyZMH3bp1k5an7g+fN28eFi5ciNy5c8PY2BjVqlXDrVu30tRz9OhRVKlSBaamprCwsECzZs1w584dlXUmTZoEhUKBkJAQdOnSBRYWFjA3N0fXrl3x4cMHlXWDgoJQuXJlWFhYIEuWLChYsCDGjBmjss73vtY/48sxKqm7DE6dOoUBAwbAxsYGFhYW8PDwQFJSEiIjI9G5c2dYWlrC0tISI0aMwJcnitfUa/Q1CoUCa9euRVxcnLRrI3VMw8ePHzF16lTky5cPhoaGcHJywpgxY9L8vZycnNC4cWMEBgaibNmyMDY2xooVK/71cc+fP4/69evD3NwcJiYmqFatGk6fPq2yTlhYGPr27YuCBQvC2NgY2bJlw59//onQ0NA09xcZGYnBgwfDyckJhoaGcHBwQOfOndMEB6VSienTp8PBwQFGRkaoVasWQkJC/rXWz7Vr1w7v3r1DUFCQ1JaUlITt27ejffv2X71NXFwchg4dCkdHRxgaGqJgwYKYN29emtc5MTERgwcPho2NjfT58OzZs6/ep6Y/H0hDBNH/K1SokOjevbsQQogTJ04IAOLChQvS8m7dugkLCwuRmJiocrv169cLAOLixYtCCCFSUlJE3bp1hYmJiRg0aJBYsWKF6Nevn9DT0xPNmjVTuS0AUbhwYWFjYyMmT54sli1bJq5evSqEEMLBwUH07dtXLF26VCxYsED88ccfAoDYt2+fyn24ubkJAKJTp05i2bJlws3NTZQoUUIAEBMnTpTWe/XqlXBwcBCOjo5iypQpwtvbWzRt2lQAEAsXLvzPv0/u3LlFo0aNVNqSk5OFnZ2dyJ49u0p7jx49hJ6enujZs6fw8fERI0eOFKampqJcuXIiKSlJCCHE69evhaWlpShQoICYO3euWLlypRg7dqwoXLiwdD+PHz8WAETx4sWFk5OTmD17tpg8ebKwsrISNjY24tWrV9K6QUFBQk9PTxQoUEDMmTNHTJ48WVhbWwtLS0vx+PFjab2JEycKAKJUqVKiZcuWYvny5aJHjx4CgBgxYoS03q1bt4SBgYEoW7asWLRokfDx8RHDhg0TVatWldZR57X+L0WLFhXVqlX75t/e3d1dur527VoBQJQsWVLUr19fLFu2THTq1El6DpUrVxbt27cXy5cvF40bNxYAxPr169PlNfoaPz8/UaVKFWFoaCj8/PyEn5+fePjwoRBCCHd3dwFAtG7dWixbtkx07txZABDNmzdP85ydnZ2FpaWlGDVqlPDx8RHBwcHffMwjR44IAwMDUaFCBTF//nyxcOFC4eLiIgwMDMT58+el9bZt2yZKlCghJkyYIHx9fcWYMWOEpaWlyJ07t4iLi5PWi4mJEcWKFRO6urqiZ8+ewtvbW0ydOlWUK1dOeo8GBwdL21KZMmXEwoULxaRJk4SJiYn4448//vVv9PnrePHiRVGxYkXRqVMnadmuXbuEjo6OeP78eZr3nlKpFDVr1hQKhUL06NFDLF26VDRp0kQAEIMGDVJ5jI4dOwoAon379mLp0qWiZcuWwsXF5Yc/H1Lfk2vXrv3P50eawaBCQgghLl26JACIoKAgIcSnDwIHBwcxcOBAaZ3AwEABQOzdu1fltg0bNhR58+aVrvv5+QkdHR1x8uRJlfV8fHwEAHH69GmpDYDQ0dERt2/fTlPThw8fVK4nJSWJYsWKiZo1a0ptly9f/uqHU5cuXdJ8EHXv3l3kyJFDvH37VmXdtm3bCnNz8zSP96XcuXOLunXrijdv3og3b96ImzdvSl+Onp6e0nonT54UAIS/v7/K7Q8ePKjSvnPnTpWA9zWpH4rGxsbi2bNnUvv58+cFADF48GCprWTJksLW1la8e/dOart+/brQ0dERnTt3ltpSg0q3bt1UHqtFixYiW7Zs0vWFCxcKAOLNmzffrE+d1/q//EhQqVevnlAqlVJ7hQoVhEKhEL1795baPn78KBwcHFTuW5Ov0be4u7sLU1NTlbZr164JAKJHjx4q7cOGDRMAxNGjR1WeMwBx8ODB/3wspVIp8ufPn+bv8eHDB5EnTx5Rp04dlbYvnT17VgAQGzZskNomTJggAIiAgICvPp4Q/wsqhQsXVvkBs2jRIgFA3Lx581/r/jyoLF26VGTNmlWq788//xQ1atSQ/hafB5Vdu3YJAGLatGkq99e6dWuhUChESEiIEOJ/f+++ffuqrNe+ffsf/nxgUPn1uOuHAHza7ZM9e3bUqFEDwKeu6zZt2mDz5s1ISUkBANSsWRPW1tbYsmWLdLv3798jKCgIbdq0kdq2bduGwoULo1ChQnj79q10qVmzJgAgODhY5bGrVauGIkWKpKnp833x79+/R1RUFKpUqYIrV65I7am7ifr27aty2/79+6tcF0Jgx44daNKkCYQQKnXVq1cPUVFRKvf7LYcOHYKNjQ1sbGxQvHhx+Pn5oWvXrpg7d67K8zc3N0edOnVUHqdMmTLIkiWL9PwtLCwAAPv27UNycvK/Pm7z5s2RM2dO6foff/yB8uXL4++//wbwaWDvtWvX0KVLF1hZWUnrubi4oE6dOtJ6n+vdu7fK9SpVquDdu3eIjo5WqW/37t1QKpVfrUvd11rTunfvrjIzqHz58hBCoHv37lKbrq4uypYti0ePHqnUrenX6Hukvg5DhgxRaU8doL1//36V9jx58qBevXr/eb/Xrl3DgwcP0L59e7x79056PnFxcahVqxZOnDghvYafv6+Sk5Px7t07ODs7w8LCQuU9sGPHDpQoUQItWrRI83hfzsbq2rWrylicKlWqAIDK3/y/uLm5IT4+Hvv27UNMTAz27dv3zd0+f//9N3R1dTFgwACV9qFDh0IIgQMHDkjrAUiz3qBBg1Sua+rzgdJHhgkqJ06cQJMmTWBvbw+FQoFdu3al+2M+f/4cHTt2lMZQFC9eHJcuXUr3x9W0lJQUbN68GTVq1MDjx48REhKCkJAQlC9fHq9fv8aRI0cAAHp6emjVqhV2794t7U8PCAhAcnKySlB58OABbt++LX2hp14KFCgA4NMgw8/lyZPnq3Xt27cPrq6uMDIygpWVFWxsbODt7Y2oqChpnbCwMOjo6KS5jy9nK7158waRkZHw9fVNU1fquJsv6/qa8uXLIygoCAcPHsS8efNgYWGB9+/fq3xIP3jwAFFRUbC1tU3zWLGxsdLjVKtWDa1atcLkyZNhbW2NZs2aYe3atV8d25E/f/40bQUKFJDGFYSFhQEAChYsmGa9woULS19an8uVK5fKdUtLSwCQxmi0adMGlSpVQo8ePZA9e3a0bdsWW7duVQkt6r7WmvblczA3NwcAODo6pmn/fOxJerxG3yN1e/1y+7Szs4OFhYX0Oqb61nvjSw8ePAAAuLu7p3k+q1atQmJiovS+iY+Px4QJE6SxHdbW1rCxsUFkZKTKe+vhw4coVqzYdz3+f21L38PGxga1a9fGxo0bERAQgJSUFLRu3fqr64aFhcHe3h5Zs2ZVaS9cuLC0PPVfHR0d5MuXT2W9L98nmvp8oPSRYWb9xMXFoUSJEujWrRtatmyZ7o/3/v17VKpUCTVq1MCBAwdgY2ODBw8eSG/Q38nRo0fx8uVLbN68GZs3b06z3N/fH3Xr1gUAtG3bFitWrMCBAwfQvHlzbN26FYUKFUKJEiWk9ZVKJYoXL44FCxZ89fG+/BL52iyGkydPomnTpqhatSqWL1+OHDlyQF9fH2vXrsXGjRvVfo6pX64dO3aEu7v7V9dxcXH5z/uxtrZG7dq1AQD16tVDoUKF0LhxYyxatEj6laxUKmFra6syGPlzNjY2ACAdKOvcuXPYu3cvAgMD0a1bN8yfPx/nzp1DlixZ1H6e6tDV1f1qu/j/wYjGxsY4ceIEgoODsX//fhw8eBBbtmxBzZo1cejQIejq6qr9Wmvat57D19rFZ4Mstf0afe/xYb53hk/q9j137txvHlgutdb+/ftj7dq1GDRoECpUqABzc3MoFAq0bdv2mz1n/+W/tqXv1b59e/Ts2ROvXr1CgwYNpB6t9KapzwdKHxkmqDRo0AANGjT45vLExESMHTsWmzZtQmRkJIoVK4bZs2ejevXqP/R4s2fPhqOjI9auXSu1fe+vH7nx9/eHra0tli1blmZZQEAAdu7cCR8fHxgbG6Nq1arIkSMHtmzZgsqVK+Po0aNpjnuRL18+XL9+HbVq1frhA3bt2LEDRkZGCAwMVJma+vnfGwBy584NpVKJx48fq/Q6fDnjIHXEf0pKihQ0NKFRo0aoVq0aZsyYAQ8PD5iamiJfvnw4fPgwKlWq9F1fNK6urnB1dcX06dOxceNGdOjQAZs3b0aPHj2kdVJ/MX/u/v37cHJyAvDp7wB8Ot7Il+7evQtra2uYmpqq/fx0dHRQq1Yt1KpVCwsWLMCMGTMwduxYBAcHo3bt2hp5rbUhPV6j75G6vT548ED69Q8Ar1+/RmRkpPQ6qiu1x8DMzOw/t+/t27fD3d0d8+fPl9oSEhIQGRmZ5j6/NrMsPbVo0QIeHh44d+6cyi7mL+XOnRuHDx9GTEyMSq/K3bt3peWp/yqVSjx8+FClF+XL90l6fT6QZmSYXT//pV+/fjh79iw2b96MGzdu4M8//0T9+vW/+gXwPfbs2YOyZcvizz//hK2tLUqVKoWVK1dquOr0Fx8fj4CAADRu3BitW7dOc+nXrx9iYmKwZ88eAJ++uFq3bo29e/fCz88PHz9+VNntA3za1/z8+fOv/j3i4+PT7IL4Gl1dXSgUCml8DPBpqu6Xu/RS998vX75cpX3JkiVp7q9Vq1bYsWPHVz9837x58581fcvIkSPx7t076fm6ubkhJSUFU6dOTbPux48fpS+E9+/fp/nFmfpr+MtdC7t27cLz58+l6xcuXMD58+elcJ4jRw6ULFkS69evV/nCuXXrFg4dOoSGDRuq/bwiIiLStH1ZnyZea21Ij9foe6S+Dl5eXirtqT1SjRo1Uvs+AaBMmTLIly8f5s2bh9jY2DTLP9++dXV10zynJUuWqLzXAKBVq1a4fv06du7cmeb+1O0p+V5ZsmSBt7c3Jk2ahCZNmnxzvYYNGyIlJQVLly5VaV+4cCEUCoX0vkj9d/HixSrrffn3T8/PB/p5GaZH5d88efIEa9euxZMnT2Bvbw8AGDZsGA4ePPjDh7Z+9OgRvL29MWTIEIwZMwYXL17EgAEDYGBg8M2uQznas2cPYmJi0LRp068ud3V1hY2NDfz9/aVA0qZNGyxZsgQTJ05E8eLFVX4ZAkCnTp2wdetW9O7dG8HBwahUqRJSUlJw9+5dbN26VTouxL9p1KgRFixYgPr166N9+/YIDw/HsmXL4OzsjBs3bkjrlSlTBq1atYKXlxfevXsHV1dXHD9+HPfv3weg2sU+a9YsBAcHo3z58ujZsyeKFCmCiIgIXLlyBYcPH/7qF/P3aNCgAYoVK4YFCxbA09MT1apVg4eHB2bOnIlr166hbt260NfXx4MHD7Bt2zYsWrQIrVu3xvr167F8+XK0aNEC+fLlQ0xMDFauXAkzM7M0wcLZ2RmVK1dGnz59kJiYCC8vL2TLlg0jRoyQ1pk7dy4aNGiAChUqoHv37oiPj8eSJUtgbm7+Q+c0mTJlCk6cOIFGjRohd+7cCA8Px/Lly+Hg4CAdQVQTr7U2pMdr9D1KlCgBd3d3+Pr6IjIyEtWqVcOFCxewfv16NG/eXBrMri4dHR2sWrUKDRo0QNGiRdG1a1fkzJkTz58/R3BwMMzMzLB3714AQOPGjeHn5wdzc3MUKVIEZ8+exeHDh5EtWzaV+xw+fDi2b9+OP//8E926dUOZMmUQERGBPXv2wMfHR2V3ryZ9z+dnkyZNUKNGDYwdOxahoaEoUaIEDh06hN27d2PQoEFSD1PJkiXRrl07LF++HFFRUahYsSKOHDny1WO8pNfnA2mAVuYapTMAYufOndL1ffv2CQDC1NRU5aKnpyfc3NyEEELcuXNHAPjXy8iRI6X71NfXFxUqVFB53P79+wtXV9df8hw1pUmTJsLIyEjl+Alf6tKli9DX15em7SmVSuHo6PjV6YGpkpKSxOzZs0XRokWFoaGhsLS0FGXKlBGTJ08WUVFR0nr4Ymrv51avXi3y588vDA0NRaFChcTatWulqbWfi4uLE56ensLKykpkyZJFNG/eXNy7d08AELNmzVJZ9/Xr18LT01M4OjoKfX19YWdnJ2rVqiV8fX3/82/1teOopFq3bl2aKYu+vr6iTJkywtjYWGTNmlUUL15cjBgxQrx48UIIIcSVK1dEu3btRK5cuYShoaGwtbUVjRs3FpcuXZLuI3Uq5Ny5c8X8+fOFo6OjMDQ0FFWqVBHXr19PU8fhw4dFpUqVhLGxsTAzMxNNmjQR//zzj8o6qX/DL6cdp04VTT3mypEjR0SzZs2Evb29MDAwEPb29qJdu3bi/v37Krf73tf6v/zI9OQvpw1/67l9baqwEJp5jb7lW4+ZnJwsJk+eLPLkySP09fWFo6OjGD16tEhISEjznL+1vX3L1atXRcuWLUW2bNmEoaGhyJ07t3BzcxNHjhyR1nn//r3o2rWrsLa2FlmyZBH16tUTd+/eTfM3FkKId+/eiX79+omcOXMKAwMD4eDgINzd3aXPgtTpydu2bVO53fdO4f3W6/ilr/0tYmJixODBg4W9vb3Q19cX+fPnF3PnzlWZni2EEPHx8WLAgAEiW7ZswtTUVDRp0kQ8ffo0zfRkIb7v84HTk389hRDp1IenRQqFAjt37kTz5s0BAFu2bEGHDh1w+/btNIO+smTJAjs7OyQlJf3nVLps2bJJg+xy586NOnXqYNWqVdJyb29vTJs2TaWLnrTj2rVrKFWqFP766y906NBB2+X8sNDQUOTJkwdz585VOfIvEVFmkSl2/ZQqVQopKSkIDw+X5vd/ycDAAIUKFfru+6xUqVKaAVn379//4cFw9OPi4+PTDIj08vKCjo4OqlatqqWqiIhIEzJMUImNjVXZ7/j48WNcu3YNVlZWKFCgADp06IDOnTtj/vz5KFWqFN68eYMjR47AxcXlhwawDR48GBUrVsSMGTPg5uaGCxcuwNfXF76+vpp8WvQd5syZg8uXL6NGjRrQ09PDgQMHcODAAfTq1Svdp8cSEVE60/a+J01J3Vf65SV1n2tSUpKYMGGCcHJyEvr6+iJHjhyiRYsW4saNGz/8mHv37hXFihWTxlB8zzgH0rxDhw6JSpUqCUtLS6Gvry/y5csnJk2aJJKTk7Vd2k/7fIwKEVFmlCHHqBAREVHGkGmOo0JERES/HwYVIiIikq3fejCtUqnEixcvkDVr1t/q8N1ERESZmRACMTExsLe3h47Ov/eZ/NZB5cWLF5zVQURE9Jt6+vQpHBwc/nWd3zqopJ6M6unTpzAzM9NyNURERPQ9oqOj4ejoqHJSyW/5rYNK6u4eMzMzBhUiIqLfzPcM2+BgWiIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki09bRdARETy5TRqv7ZLIC0LndVIq4/PHhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki3ZBJVZs2ZBoVBg0KBB2i6FiIiIZEIWQeXixYtYsWIFXFxctF0KERERyYjWg0psbCw6dOiAlStXwtLSUtvlEBERkYxoPah4enqiUaNGqF279n+um5iYiOjoaJULERERZVx62nzwzZs348qVK7h48eJ3rT9z5kxMnjw5nasiIiIiudBaj8rTp08xcOBA+Pv7w8jI6LtuM3r0aERFRUmXp0+fpnOVREREpE1a61G5fPkywsPDUbp0aaktJSUFJ06cwNKlS5GYmAhdXV2V2xgaGsLQ0PBXl0pERERaorWgUqtWLdy8eVOlrWvXrihUqBBGjhyZJqQQERFR5qO1oJI1a1YUK1ZMpc3U1BTZsmVL005ERESZk9Zn/RARERF9i1Zn/Xzp2LFj2i6BiIiIZIQ9KkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWz8UVB4+fIhx48ahXbt2CA8PBwAcOHAAt2/f1mhxRERElLmpHVSOHz+O4sWL4/z58wgICEBsbCwA4Pr165g4caLGCyQiIqLMS+2gMmrUKEybNg1BQUEwMDCQ2mvWrIlz585ptDgiIiLK3NQOKjdv3kSLFi3StNva2uLt27caKYqIiIgI+IGgYmFhgZcvX6Zpv3r1KnLmzKmRooiIiIiAHwgqbdu2xciRI/Hq1SsoFAoolUqcPn0aw4YNQ+fOndOjRiIiIsqk1A4qM2bMQKFCheDo6IjY2FgUKVIEVatWRcWKFTFu3Lj0qJGIiIgyKT11b2BgYICVK1di/PjxuHXrFmJjY1GqVCnkz58/PeojIiKiTEztoJIqV65cyJUrlyZrISIiIlKhdlARQmD79u0IDg5GeHg4lEqlyvKAgACNFUdERESZm9pBZdCgQVixYgVq1KiB7NmzQ6FQpEddREREROoHFT8/PwQEBKBhw4bpUQ8RERGRRO1ZP+bm5sibN2961EJERESkQu2gMmnSJEyePBnx8fHpUQ8RERGRRO1dP25ubti0aRNsbW3h5OQEfX19leVXrlzRWHFERESUuakdVNzd3XH58mV07NiRg2mJiIgoXakdVPbv34/AwEBUrlw5PeohIiIikqg9RsXR0RFmZmbpUQsRERGRCrWDyvz58zFixAiEhoamQzlERERE/6P2rp+OHTviw4cPyJcvH0xMTNIMpo2IiNBYcUSZndOo/dougbQsdFYjbZdApFVqBxUvL690KIOIiIgorR+a9UNERET0K3xXUImOjpYG0EZHR//ruhxoS0RERJryXUHF0tISL1++hK2tLSwsLL567BQhBBQKBVJSUjReJBEREWVO3xVUjh49CisrKwBAcHBwuhZERERElOq7gkq1atWQN29eXLx4EdWqVUvvmoiIiIgAqHEcldDQUO7WISIiol9K7QO+aZK3tzdcXFxgZmYGMzMzVKhQAQcOHNBmSURERCQjak1PDgwMhLm5+b+u07Rp0+++PwcHB8yaNQv58+eHEALr169Hs2bNcPXqVRQtWlSd0oiIiCgDUiuo/NcxVNSd9dOkSROV69OnT4e3tzfOnTvHoEJERETqBZVXr17B1tY2XQpJSUnBtm3bEBcXhwoVKnx1ncTERCQmJkrX/+uYLkRERPR7++4xKl87doom3Lx5E1myZIGhoSF69+6NnTt3okiRIl9dd+bMmTA3N5cujo6O6VITERERycN3BxUhRLoUULBgQVy7dg3nz59Hnz594O7ujn/++eer644ePRpRUVHS5enTp+lSExEREcnDd+/6cXd3h7GxscYLMDAwgLOzMwCgTJkyuHjxIhYtWoQVK1akWdfQ0BCGhoYar4GIiIjk6buDytq1a9OzDolSqVQZh0JERESZl9pnT9ak0aNHo0GDBsiVKxdiYmKwceNGHDt2DIGBgdosi4iIiGRCq0ElPDwcnTt3xsuXL2Fubg4XFxcEBgaiTp062iyLiIiIZEKrQWX16tXafHgiIiKSuR8+hH5ISAgCAwMRHx8PIP1mBREREVHmpXZQeffuHWrXro0CBQqgYcOGePnyJQCge/fuGDp0qMYLJCIiosxL7aAyePBg6Onp4cmTJzAxMZHa27Rpg4MHD2q0OCIiIsrc1B6jcujQIQQGBsLBwUGlPX/+/AgLC9NYYURERERq96jExcWp9KSkioiI4MHYiIiISKPUDipVqlTBhg0bpOsKhQJKpRJz5sxBjRo1NFocERERZW5q7/qZM2cOatWqhUuXLiEpKQkjRozA7du3ERERgdOnT6dHjURERJRJqd2jUqxYMdy/fx+VK1dGs2bNEBcXh5YtW+Lq1avIly9fetRIREREmdQPHfDN3NwcY8eO1XQtRERERCrU7lE5ePAgTp06JV1ftmwZSpYsifbt2+P9+/caLY6IiIgyN7WDyvDhwxEdHQ0AuHnzJoYMGYKGDRvi8ePHGDJkiMYLJCIiosxL7V0/jx8/RpEiRQAAO3bsQJMmTTBjxgxcuXIFDRs21HiBRERElHmp3aNiYGCADx8+AAAOHz6MunXrAgCsrKyknhYiIiIiTVC7R6Vy5coYMmQIKlWqhAsXLmDLli0AgPv376c5Wi0RERHRz1C7R2Xp0qXQ09PD9u3b4e3tjZw5cwIADhw4gPr162u8QCIiIsq81O5RyZUrF/bt25emfeHChRopiIiIiCjVDx1HRalUIiQkBOHh4VAqlSrLqlatqpHCiIiIiNQOKufOnUP79u0RFhYGIYTKMoVCgZSUFI0VR0RERJmb2kGld+/eKFu2LPbv348cOXJAoVCkR11ERERE6geVBw8eYPv27XB2dk6PeoiIiIgkas/6KV++PEJCQtKjFiIiIiIVaveo9O/fH0OHDsWrV69QvHhx6Ovrqyx3cXHRWHFERESUuakdVFq1agUA6Natm9SmUCgghOBgWiIiItKoHzrXDxEREdGvoHZQyZ07d3rUQURERJTGDx3w7eHDh/Dy8sKdO3cAAEWKFMHAgQORL18+jRZHREREmZvaQSUwMBBNmzZFyZIlUalSJQDA6dOnUbRoUezduxd16tTReJHa4jRqv7ZLIC0LndVI2yUQEWVqageVUaNGYfDgwZg1a1aa9pEjR2aooEJERETapfZxVO7cuYPu3bunae/WrRv++ecfjRRFREREBPxAULGxscG1a9fStF+7dg22traaqImIiIgIwA/s+unZsyd69eqFR48eoWLFigA+jVGZPXs2hgwZovECiYiIKPNSO6iMHz8eWbNmxfz58zF69GgAgL29PSZNmoQBAwZovEAiIiLKvNQOKgqFAoMHD8bgwYMRExMDAMiaNavGCyMiIiL6oeOoAEB4eDju3bsHAChUqBBsbGw0VhQRERER8AODaWNiYtCpUyfY29ujWrVqqFatGuzt7dGxY0dERUWlR41ERESUSakdVHr06IHz589j//79iIyMRGRkJPbt24dLly7Bw8MjPWokIiKiTErtXT/79u1DYGAgKleuLLXVq1cPK1euRP369TVaHBEREWVuaveoZMuWDebm5mnazc3NYWlpqZGiiIiIiIAfCCrjxo3DkCFD8OrVK6nt1atXGD58OMaPH6/R4oiIiChzU3vXj7e3N0JCQpArVy7kypULAPDkyRMYGhrizZs3WLFihbTulStXNFcpERERZTpqB5XmzZunQxlEREREaakdVCZOnJgedRARERGlofYYladPn+LZs2fS9QsXLmDQoEHw9fXVaGFEREREageV9u3bIzg4GMCnQbS1a9fGhQsXMHbsWEyZMkXjBRIREVHmpXZQuXXrFv744w8AwNatW1G8eHGcOXMG/v7+WLdunabrIyIiokxM7aCSnJwMQ0NDAMDhw4fRtGlTAJ/O9/Py5UvNVkdERESZmtpBpWjRovDx8cHJkycRFBQkHY32xYsXyJYtm8YLJCIiosxL7aAye/ZsrFixAtWrV0e7du1QokQJAMCePXukXUJEREREmqD29OTq1avj7du3iI6OVjlkfq9evWBiYqLR4oiIiChzU7tHBQCEELh8+TJWrFiBmJgYAICBgQGDChEREWmU2j0qYWFhqF+/Pp48eYLExETUqVMHWbNmxezZs5GYmAgfH5/0qJOIiIgyIbV7VAYOHIiyZcvi/fv3MDY2ltpbtGiBI0eOaLQ4IiIiytzU7lE5efIkzpw5AwMDA5V2JycnPH/+XGOFEREREando6JUKpGSkpKm/dmzZ8iaNatGiiIiIiICfiCo1K1bF15eXtJ1hUKB2NhYTJw4EQ0bNtRkbURERJTJqb3rZ/78+ahXrx6KFCmChIQEtG/fHg8ePIC1tTU2bdqUHjUSERFRJqV2UHFwcMD169exZcsWXL9+HbGxsejevTs6dOigMriWiIiI6GepHVQAQE9PDx06dECHDh2ktpcvX2L48OFYunSpxoojIiKizE2toHL79m0EBwfDwMAAbm5usLCwwNu3bzF9+nT4+Pggb9686VUnERERZULfPZh2z549KFWqFAYMGIDevXujbNmyCA4ORuHChXHnzh3s3LkTt2/fTs9aiYiIKJP57qAybdo0eHp6Ijo6GgsWLMCjR48wYMAA/P333zh48KB0FmUiIiIiTfnuoHLv3j14enoiS5Ys6N+/P3R0dLBw4UKUK1cuPesjIiKiTOy7g0pMTAzMzMwAALq6ujA2NuaYFCIiIkpXag2mDQwMhLm5OYBPR6g9cuQIbt26pbJO06ZNNVcdERERZWpqBRV3d3eV6x4eHirXFQrFVw+vT0RERPQjvjuoKJXK9KyDiIiIKA21z/VDRERE9KtoNajMnDkT5cqVQ9asWWFra4vmzZvj3r172iyJiIiIZESrQeX48ePw9PTEuXPnEBQUhOTkZNStWxdxcXHaLIuIiIhk4ofO9aMpBw8eVLm+bt062Nra4vLly6hataqWqiIiIiK50GpQ+VJUVBQAwMrK6qvLExMTkZiYKF2Pjo7+JXURERGRdvzQrp/IyEisWrUKo0ePRkREBADgypUreP78+Q8XolQqMWjQIFSqVAnFihX76jozZ86Eubm5dHF0dPzhxyMiIiL5Uzuo3LhxAwUKFMDs2bMxb948REZGAgACAgIwevToHy7E09MTt27dwubNm7+5zujRoxEVFSVdnj59+sOPR0RERPKndlAZMmQIunTpggcPHsDIyEhqb9iwIU6cOPFDRfTr1w/79u1DcHAwHBwcvrmeoaEhzMzMVC5ERESUcak9RuXixYtYsWJFmvacOXPi1atXat2XEAL9+/fHzp07cezYMeTJk0fdcoiIiCgDUzuoGBoafnUQ6/3792FjY6PWfXl6emLjxo3YvXs3smbNKgUdc3NzGBsbq1saERERZTBq7/pp2rQppkyZguTkZACfzu/z5MkTjBw5Eq1atVLrvry9vREVFYXq1asjR44c0mXLli3qlkVEREQZkNpBZf78+YiNjYWtrS3i4+NRrVo1ODs7I2vWrJg+fbpa9yWE+OqlS5cu6pZFREREGZDau37Mzc0RFBSEU6dO4caNG4iNjUXp0qVRu3bt9KiPiIiIMrEfPuBb5cqVUblyZU3WQkRERKRC7aCyePHir7YrFAoYGRnB2dkZVatWha6u7k8XR0RERJmb2kFl4cKFePPmDT58+ABLS0sAwPv372FiYoIsWbIgPDwcefPmRXBwMI8cS0RERD9F7cG0M2bMQLly5fDgwQO8e/cO7969w/3791G+fHksWrQIT548gZ2dHQYPHpwe9RIREVEmonaPyrhx47Bjxw7ky5dPanN2dsa8efPQqlUrPHr0CHPmzFF7qjIRERHRl9TuUXn58iU+fvyYpv3jx4/SAdvs7e0RExPz89URERFRpqZ2UKlRowY8PDxw9epVqe3q1avo06cPatasCQC4efMmD4dPREREP03toLJ69WpYWVmhTJkyMDQ0hKGhIcqWLQsrKyusXr0aAJAlSxbMnz9f48USERFR5qL2GBU7OzsEBQXh7t27uH//PgCgYMGCKFiwoLROjRo1NFchERERZVo/fMC3QoUKoVChQpqshYiIiEjFDwWVZ8+eYc+ePXjy5AmSkpJUli1YsEAjhRERERGpHVSOHDmCpk2bIm/evLh79y6KFSuG0NBQCCFQunTp9KiRiIiIMim1B9OOHj0aw4YNw82bN2FkZIQdO3bg6dOnqFatGv7888/0qJGIiIgyKbWDyp07d9C5c2cAgJ6eHuLj45ElSxZMmTIFs2fP1niBRERElHmpHVRMTU2lcSk5cuTAw4cPpWVv377VXGVERESU6ak9RsXV1RWnTp1C4cKF0bBhQwwdOhQ3b95EQEAAXF1d06NGIiIiyqTUDioLFixAbGwsAGDy5MmIjY3Fli1bkD9/fs74ISIiIo1SK6ikpKTg2bNncHFxAfBpN5CPj0+6FEZERESk1hgVXV1d1K1bF+/fv0+veoiIiIgkag+mLVasGB49epQetRARERGpUDuoTJs2DcOGDcO+ffvw8uVLREdHq1yIiIiINEXtwbQNGzYEADRt2hQKhUJqF0JAoVAgJSVFc9URERFRpqZ2UAkODk6POoiIiIjSUDuoVKtWLT3qICIiIkpD7TEqAHDy5El07NgRFStWxPPnzwEAfn5+OHXqlEaLIyIiosxN7aCyY8cO1KtXD8bGxrhy5QoSExMBAFFRUZgxY4bGCyQiIqLM64dm/fj4+GDlypXQ19eX2itVqoQrV65otDgiIiLK3NQOKvfu3UPVqlXTtJubmyMyMlITNREREREB+IGgYmdnh5CQkDTtp06dQt68eTVSFBERERHwA0GlZ8+eGDhwIM6fPw+FQoEXL17A398fw4YNQ58+fdKjRiIiIsqk1J6ePGrUKCiVStSqVQsfPnxA1apVYWhoiGHDhqF///7pUSMRERFlUmoHFYVCgbFjx2L48OEICQlBbGwsihQpgixZsqRHfURERJSJqb3r56+//sKHDx9gYGCAIkWK4I8//mBIISIionShdlAZPHgwbG1t0b59e/z99988tw8RERGlG7WDysuXL7F582YoFAq4ubkhR44c8PT0xJkzZ9KjPiIiIsrE1A4qenp6aNy4Mfz9/REeHo6FCxciNDQUNWrUQL58+dKjRiIiIsqk1B5M+zkTExPUq1cP79+/R1hYGO7cuaOpuoiIiIh+7KSEHz58gL+/Pxo2bIicOXPCy8sLLVq0wO3btzVdHxEREWViaveotG3bFvv27YOJiQnc3Nwwfvx4VKhQIT1qIyIiokxO7aCiq6uLrVu3ol69etDV1VVZduvWLRQrVkxjxREREVHmpnZQ8ff3V7keExODTZs2YdWqVbh8+TKnKxMREZHG/NAYFQA4ceIE3N3dkSNHDsybNw81a9bEuXPnNFkbERERZXJq9ai8evUK69atw+rVqxEdHQ03NzckJiZi165dKFKkSHrVSERERJnUd/eoNGnSBAULFsSNGzfg5eWFFy9eYMmSJelZGxEREWVy392jcuDAAQwYMAB9+vRB/vz507MmIiIiIgBq9KicOnUKMTExKFOmDMqXL4+lS5fi7du36VkbERERZXLfHVRcXV2xcuVKvHz5Eh4eHti8eTPs7e2hVCoRFBSEmJiY9KyTiIiIMiG1Z/2YmpqiW7duOHXqFG7evImhQ4di1qxZsLW1RdOmTdOjRiIiIsqkfnh6MgAULFgQc+bMwbNnz7Bp0yZN1UREREQE4CeDSipdXV00b94ce/bs0cTdEREREQHQUFAhIiIiSg8MKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbWg0qJ06cQJMmTWBvbw+FQoFdu3ZpsxwiIiKSGa0Glbi4OJQoUQLLli3TZhlEREQkU3rafPAGDRqgQYMG2iyBiIiIZEyrQUVdiYmJSExMlK5HR0drsRoiIiJKb7/VYNqZM2fC3Nxcujg6Omq7JCIiIkpHv1VQGT16NKKioqTL06dPtV0SERERpaPfatePoaEhDA0NtV0GERER/SK/VY8KERERZS5a7VGJjY1FSEiIdP3x48e4du0arKyskCtXLi1WRkRERHKg1aBy6dIl1KhRQ7o+ZMgQAIC7uzvWrVunpaqIiIhILrQaVKpXrw4hhDZLICIiIhnjGBUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLVkElWXLlsHJyQlGRkYoX748Lly4oO2SiIiISAa0HlS2bNmCIUOGYOLEibhy5QpKlCiBevXqITw8XNulERERkZZpPagsWLAAPXv2RNeuXVGkSBH4+PjAxMQEa9as0XZpREREpGVaDSpJSUm4fPkyateuLbXp6Oigdu3aOHv2rBYrIyIiIjnQ0+aDv337FikpKciePbtKe/bs2XH37t006ycmJiIxMVG6HhUVBQCIjo5Ol/qUiR/S5X7p95Fe29b34jZI3AZJ29JjG0y9TyHEf66r1aCirpkzZ2Ly5Mlp2h0dHbVQDWUG5l7aroAyO26DpG3puQ3GxMTA3Nz8X9fRalCxtraGrq4uXr9+rdL++vVr2NnZpVl/9OjRGDJkiHRdqVQiIiIC2bJlg0KhSPd6M5Po6Gg4Ojri6dOnMDMz03Y5lAlxGyRt4zaYfoQQiImJgb29/X+uq9WgYmBggDJlyuDIkSNo3rw5gE/h48iRI+jXr1+a9Q0NDWFoaKjSZmFh8QsqzbzMzMz4BiWt4jZI2sZtMH38V09KKq3v+hkyZAjc3d1RtmxZ/PHHH/Dy8kJcXBy6du2q7dKIiIhIy7QeVNq0aYM3b95gwoQJePXqFUqWLImDBw+mGWBLREREmY/WgwoA9OvX76u7ekh7DA0NMXHixDS72oh+FW6DpG3cBuVBIb5nbhARERGRFmj9yLRERERE38KgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCvyWlUqntEoiI6BdgUKHfko7Op0337du3AACeCYJ+tS/DMrdB0oYvt8OM+COOQYV+W4sWLULz5s3x8OFDKBQKbZdDmYyOjg6ioqIQGBgIANwGSSt0dHQQGRmJuXPn4v3799KPuIwk4z0jyrC+/MWqr68PY2NjGBgYaKkiysyUSiXmz58PDw8P7Nu3T9vlUCZ26NAhLFiwAEuXLtV2KemCZ0+m3050dDTMzMwAAFFRUTA3N9dyRZRZKJVKlV+sd+7cwerVqzF79mzo6upqsTLKTFJSUlS2t+TkZGzZsgXt2rXLkNshgwr9VgYPHoyUlBSMHj0aOXLk0HY5lAlFRkYiMjISjo6OKl8KX355EP2ML0Pxl969e4fTp0+jYsWKsLa2ltoz4nbIXT8ka1/maAcHB2zYsCHDvRHp9yCEwKhRo1C+fHmEhoaqLOM2ST/j5cuXePHiBd68eQPg09iTf+tH2Lp1K5o3b47jx4+rtGfE7ZA9KiQbqb8EhBBQKBTf/EXx/v17WFpaaqFCymj+61fr19YJCwvDuHHjsG7dugz5pUC/3tq1a7Fs2TI8ffoU+fLlQ+XKlTFnzhyVdb7WU+Ll5YV+/fpBT0/vV5b7yzGokFakhhHg0xtQCAE9PT08f/4cO3fuRNeuXWFqagrg0+4eS0tLTJgwIc1tiX7U5wHk6NGjePLkCZydnZE3b17Y29urrBMVFQWlUpkmIGfEbnb6tfbt2wc3NzcsX74cJiYmePToEebMmYOKFSti/fr1yJYtm/SZ9/btW4SEhMDV1VXlPj5+/Jihwwp3/dAvkZqHo6OjER8fD4VCgUOHDiEkJAS6urrQ09NDWFgYSpUqhRcvXkghJS4uDvr6+li4cCEiIiIYUkgjhBBSSBk1ahS6dOmCefPmoVevXhg2bBguXrwI4FP3e2JiIiZMmIDSpUvj3bt3KvfDkEI/6+LFi2jUqBG6dOkCNzc3jBgxAoGBgbhx4wY6dOgA4NPU9+TkZPj5+aFixYo4deqUyn1k5JACMKjQL/Tq1SsUL14cx48fx8aNG1G/fn38888/AD7tzilatChatGiB6dOnS7cxNTXFiBEj8ODBA1hZWTGkkEakbkfz5s3DX3/9hU2bNuHWrVto2bIl9u7di3HjxuHs2bMAAAMDA5QqVQq1atWChYWFFqumjOjx48d4+fKlSlu5cuWwZ88eXL58GT179gTw6XAMjRs3xvTp09P0qGR4gugX6tq1qzAzMxM6Ojpi5cqVUntSUpLYsmWLSElJkdqUSqU2SqRM4vXr16Jly5ZizZo1Qggh9uzZI8zMzETv3r1FqVKlRK1atcS5c+eEEKrb4sePH7VSL2VMgYGBInv27GLz5s1SW+r25u/vL5ydncXFixfT3C45OfmX1aht7FGhXyL1sM6enp6IiYmBgYEB7OzskJCQAODTrwU3NzeVQYvsPaH0ZGtrixEjRqB+/fq4evUqPD09MW3aNHh7e6NVq1Y4d+4cPD09cfnyZZVtkbt7SJMKFy6M6tWrw8/PD0eOHAHwv8++kiVLIjw8XDpVyOcy+u6ezzGo0C+RGkAcHR1x6tQpuLu7o23btti9ezfi4+PTrJ8Rz1dB2vOt7alUqVLIkSMHDhw4ABcXF/Tq1QsAYGVlBVdXVzRp0gSlSpX6laVSJuPo6IjevXsjMjISCxcuxJ49e6RlOXLkQJ48ebRYnTxknkhGWiH+f/Dry5cvkZycjFy5csHW1hYVK1ZEQkICunfvjnXr1qFx48YwMjKCj48PateuDWdnZ22XThmE+Gzg7KpVqxAeHg4DAwMMGzZMOv1CYmIinj9/jtDQUBQsWBCHDh1C06ZN0b9//3+dKk/0M1JnjVWvXh3Lly/HmDFjMHLkSAQGBsLFxQVbt26FQqFAnTp1tF2qVnF6MqW7gIAATJo0Ca9fv0ajRo3QokULNGnSBADQtWtX7Ny5E0OHDsXr16/h7e2NmzdvokiRIlqumjKaiRMnwsvLC+XKlcOFCxdQvnx5+Pn5wc7ODnv37sW0adPw/v176OvrQwiBGzduQE9PjzPNKF2kblcBAQFYvnw5Dh06hLt37yI4OBhLly6Fo6MjLCws4O/vD319/Uw9FZ5BhdLV7du3Ua9ePQwePBgmJibYtGkTDA0N4e7ujo4dOwIABg4ciCtXriAxMRG+vr4oWbKkdoumDOHzXpCPHz/C3d0d/fv3R6lSpRAaGopGjRrBzs4OO3fuhI2NDfbv34+QkBDExsZi5MiR0NPTy9RfDqQZqYFEfHHsKF1dXQQEBKBz585YsGCBtNsR+LS96ujoqGy/mWlMypcYVCjd3L17F9u2bUN8fDxmzJgBALh58yYmTJiA6OhodO3aVQorr169gqmpKbJmzarNkimD+Dyk3LlzB9HR0VixYgUmTJgAJycnAJ+mhdapUwfZs2fHrl27YGNjo3IfDCn0sz7fDt++fQuFQoFs2bIB+PSZV7p0aUyYMAG9e/eWbvNlDx579BhUKB0IIfD+/Xs0btwY//zzD5o0aQI/Pz9p+Y0bNzBhwgTEx8ejbdu26Nq1qxarpYxs+PDhUtf569evERAQgAYNGkgf/I8fP0aDBg0ghMDp06dVTu5G9DM+DxhTp07Frl27EB0dDWtra0yfPh01a9bE8+fPkTNnTi1XKn8cHUYap1AoYGVlhZkzZ6Jo0aK4cuUKgoKCpOUuLi6YOnUqkpOTpTcvkSZ8Prtn3759OHjwIBYvXozly5cjT548GDt2LK5fvy4dKTlPnjzYt28fSpYsyfNHkUalhpQpU6Zg0aJF0vR3a2trdOjQAevXr0/Ti0dfxx4V0ohvdU8eP34cY8aMgZ2dHTw9PVGzZk1p2e3bt2Fubg4HB4dfWSplAgEBAThz5gyyZcuG0aNHAwBiY2NRunRpmJmZYdWqVShRokSabZa7e0iT3r17h7p168LT0xPdunWT2nv16oW9e/ciODgYhQoV4u6d/8AeFfppqW+yM2fOYMGCBRg/fjxOnz6N5ORkVKtWDVOmTMGrV6+wdOlSHDt2TLpd0aJFGVJI4+Lj4zF+/HgsWLAAt2/fltqzZMmCK1euICYmBh4eHtL5fD7HkEKa9PHjR7x9+1bqrUs9wKWvry/s7e2xcOFCADy45X9hUKGf8vkUuwYNGuD06dPYs2cPxowZg+nTpyMpKQm1atXClClT8O7dO0ydOhUnT57UdtmUgRkbG+PkyZOoXbs2Ll++jD179iAlJQXA/8LK3bt3sWLFCi1XShnJ13ZOZM+eHXZ2dlizZg0AwMjICElJSQAAZ2dnBpTvxKBCPyW1J2XAgAFYsGABduzYgW3btuHy5cvYsmULxo0bJ4WVUaNGQV9fn0daJI35fEyKEEL6srCyssLGjRthaWmJuXPnIjAwUFpmamqKV69ewdfXVys1U8ajVCql0PHixQuEh4fjw4cPAIBJkybh7t270sye1IMMPnv2jCe5/E4co0I/JPWNqVAosHz5cly7dg2+vr54/PgxateujcqVK8PMzAzbtm2Dh4cHxowZA0NDQ3z48AEmJibaLp8ygM+nfi5ZsgTXr1/Ho0ePMGjQIJQuXRoODg548+YNmjVrBl1dXYwZMwb16tVTOcIsx6TQz/D394erqyvy5csHABg9ejQCAwMRFhaG2rVro2nTpujQoQNWrlyJqVOnIlu2bChWrBgePnyIyMhI6aCC9O8YVOi7pH4pfB40rl27hpIlSyI6OhpPnz6Fs7Mz6tevjzx58mDNmjWIioqSjjDbpUsXTJ8+nYPG6Kd9uQ2NHj0aq1evRq9evfDs2TOcPXsWzZo1Q69eveDs7Iw3b96gZcuWePPmDdatWwdXV1ctVk8ZxYEDB9C4cWOMHDkSgwYNwoEDBzBixAh4eXnh3bt3uHLlCgIDAzF+/Hj07t0bN2/ehJeXF3R0dGBpaYkZM2bwoILfK13PzUwZyqNHj0S7du3EP//8I7Zu3SoUCoW4cOGCdErymzdvikKFConz588LIYR4+PChaNy4sRgzZox48uSJNkunDCYlJUUIIYSfn5/IkyePuHz5shBCiJMnTwqFQiHy588vBg4cKB49eiSEEOLly5eiV69e4uPHj1qrmTKepUuXCgcHBzF16lTRr18/sXLlSmnZ06dPxZQpU4STk5M4ePDgV2+fnJz8q0r9rbHPib5bQkICTp48iS5duuDatWtYu3YtypUrJ+0GEkLg48ePOHv2LIoWLYoNGzYAAIYNG8ZjVNBP69SpE2xsbLBgwQLo6OggOTkZBgYG6N27N0qXLo1du3aha9euWLVqFV69eoVp06ZBR0cHPXv2ROHChaXBs/wFSz8rKSkJBgYG8PT0hImJCUaPHo2YmBhMmzZNWsfBwQGdO3fGoUOHcOnSJdSrVy/NyS252+c7aTsp0e8h9Resj4+P0NHRESVKlBBXr15VWScqKkp06dJF5MuXTzg5OQkbGxvply7Rz4iKihKTJ08WVlZWYtKkSVL78+fPxevXr8XLly9F2bJlxfz586X17e3tRY4cOcSiRYuEEELq+SPSlJkzZ4rw8HDh7+8vTExMRMOGDcX9+/dV1mnTpo1o2bKllirMGDjrh/6TEAI6OjoQQsDe3h7z58/Hx48fMW7cOJw6dUpaz8zMDPPmzcPy5csxceJEnD9/HqVLl9Zi5ZQRxMTEwMzMDH369MG4cePg5eWFiRMnAgDs7e1ha2uLly9f4v3799L4k+fPn6Nu3bqYMGECPD09AfBYFfTzxGdDOtevX4+pU6fiwYMHaN++PRYuXIgrV67Ax8cH9+7dAwBER0fj8ePHyJUrl7ZKzhDY70T/Svz/wMWjR4/i+PHjGDRoEJo0aYLatWvDzc0Ns2bNwpgxY1CxYkUAn046WLduXS1XTRnFiBEjsGLFCjx8+BA2Njbo2LEjhBCYOnUqAGDy5MkAPoUZXV1dnD59GkIIzJo1CyYmJtKUUO7uIU1IDbtHjhzB1atX4evrK3329erVC8nJyZg8eTIOHjyI0qVLIy4uDklJSZgzZ442y/79abM7h+Qttat8+/btwtzcXIwePVpcvHhRWn7jxg1RpEgR0bhxY/HXX3+JSZMmCYVCIZ4+fcpudtKI69evi6pVq4qCBQuKN2/eCCGECA8PF/PnzxcWFhZiwoQJ0rr9+vUT+fLlEw4ODsLV1VUkJSUJIbjLhzTr2LFjonjx4iJbtmxi165dQgghEhMTpeWrV68WWbJkEaVLlxYbNmyQBnBz4OyP4/Rk+lcXLlxA/fr1MXv2bPTs2VNqj46OhpmZGe7cuYOePXsiPj4eUVFR2Lp1K3f3kEacPXsWb968QZEiRdCmTRvExsZKZzh+8+YN/Pz8MHXqVOlkb8CnKfMKhQLFixeHjo4OPn78yAGL9FPEF9PhY2NjMXfuXPj6+qJ8+fLYtGkTjI2NkZycDH19fQDAggULcObMGWzbtg0KhYI9ej+JQYX+1dKlS7Fz504cOXIEUVFROHr0KP766y/cuXMHw4YNQ7du3RAeHo6oqCiYm5vD1tZW2yVTBtG5c2e8ePEChw8fRmhoKFq3bo2YmJg0YWXatGno168fpkyZonJ7fjmQJi1btgwODg5o1qwZ4uPjMW/ePOzcuRPVq1fHjBkzYGRkpBJWUgPOl0GH1MfBtPSv7OzscPnyZcycOROtW7fG2rVrYWRkhEaNGqFHjx64f/8+bG1tkT9/foYU0qhly5bh2bNnWLp0KZycnLBp0yaYm5ujUqVKePv2LWxsbNCpUydMmDAB06ZNw+rVq1Vuz5BCmvLmzRscPXoUffv2xcGDB2FsbIwhQ4agcePGOHPmDMaOHYuEhATo6+vj48ePAMCQokHsUSFJ6psqNjYWWbJkAQC8fv0aS5YswdatW1GzZk106dIFf/zxB16/fo2mTZti3bp1KFq0qJYrp4wmtTdk8eLFuHr1KhYsWABLS0vcvXsXnTt3RlRUlNSz8urVKxw/fhytWrXibh7SiC+PdwIA169fx+LFi3H48GH4+PigQYMGiIuLw5w5c3D48GEULlwYy5cvl87lQ5rDHhWSKBQK7N+/H+3atUP16tWxbt066OnpYdq0aTh//jx8fHzg6uoKHR0dLFmyBHFxcexFoXSR2htSvXp1nDhxAvv37wcAFCxYEH5+frC0tETVqlXx+vVr2NnZoU2bNtDT05N+zRL9jNSQ8urVK6mtRIkSGDhwIGrUqIHevXvj4MGDMDU1xYgRI/DHH39AR0dH2u1DGqalQbwkQ6dPnxZGRkZi+PDhon79+sLFxUV4eHiIkJAQaZ3g4GDRq1cvYWVlleaAb0Q/KvWAgl/j4+MjChQoIO7duye13bt3Tzg5OYm2bdv+ivIok/h8O9y8ebPImzevykxHIYS4du2aaNasmciVK5c4duyYEEKI+Ph4aXbZv23L9GPYo0IAgLCwMAQFBWH69OmYM2cODhw4gF69euHGjRuYOXMmHj16hLi4OJw9exbh4eE4fvw4SpYsqe2yKQP4vJv9woULOHPmDI4fPy4tb9q0KcqXL4/g4GCprUCBAjhx4gT++uuvX14vZUyJiYnSdpiUlIR8+fKhUKFC8PT0xOXLl6X1SpQogebNm+Pp06eoW7cuzpw5AyMjI2lMype7jOjn8S+aCS1duhR///23dP3evXto06YN1qxZAyMjI6nd09MTHTp0wO3btzFnzhxERkZi+PDhWL9+PYoVK6aN0imD+fyDfcyYMejSpQu6desGd3d3tGnTBtHR0ciRI4e0/z85OVm6raOjI3R1dZGSkqKt8imDOHDgAPz8/AAAPXv2RM2aNVG2bFkMHToUdnZ28PDwwKVLl6T1c+XKhbZt22L+/PkoX7681M6Bs+lE21069Gs9fvxYtG/fXjx48EClfdSoUcLW1la0bNlSOrBWKm9vb1GwYEExYMAAHrSI0sW8efNEtmzZxPnz50VKSoqYMWOGUCgU4tSpU9I6lSpVEh4eHlqskjKqdu3aCScnJ1GvXj1hbW0trl+/Li07evSoaN68uShWrJg4cOCAePz4sWjevLkYOnSotA7Pyp2+GFQyobi4OCGEEOfOnRPbt2+X2idMmCCKFy8uxo0bJ16/fq1ym5UrV4rHjx//yjIpk1AqlcLd3V34+voKIYTYsWOHsLCwED4+PkIIIWJiYoQQQhw4cEA0bdpU3LhxQ2u1UsZVsmRJoVAoVE56merkyZOiU6dOQqFQiAIFCggXFxfpRxuPfJz+OJcvEzI2NkZkZCRmzpyJ58+fQ1dXF82bN8fkyZORnJyM/fv3QwiBgQMHwsbGBgDQo0cPLVdNGVVCQgLOnz+P6tWr49ixY3B3d8fcuXPh4eGBjx8/Ys6cOahQoQJcXV0xZcoUXLhwAcWLF9d22ZRBJCUlISEhAc7OzsiVKxe2bNmCnDlzom3bttJhGipXrozy5cujZ8+eSE5ORrVq1aCrq8sjH/8iHKOSCSkUClhYWGDo0KHIkycPvLy8EBAQAACYMWMG6tevj6CgIMyYMQNv377VcrWUkdy4cQPPnj0DAAwePBjHjx+HsbEx2rdvj7/++gsNGzbEwoULpZMJvn//HpcuXcK9e/dgaWkJPz8/5M6dW5tPgTIYAwMDmJmZYdu2bdi9ezfKlSuHOXPmYPPmzYiJiZHWS0hIQJUqVVCzZk1pbBRDyq/BoJIJiU+7/FClShUMHjwYlpaWWLx4sUpYcXV1xdWrV1VOa070o4QQuH//PmrUqIE1a9agd+/eWLRoESwtLQEArq6uCAsLQ/ny5VGhQgUAwIsXL9ClSxdERkaiX79+AIB8+fKhdu3aWnselPEIIaBUKqXr69evR8WKFbFw4UJs2LABT548Qc2aNfHnn39K6wM88vGvxCPTZkKpR/2MioqCiYkJbty4genTp+P9+/cYOHAgmjdvDuDTYaNTd/0QacLKlSsxYsQIJCQkYPfu3ahbt650ROQtW7ZgypQpEEJAT08PxsbGUCqVOHPmDPT19XnuHvppERERsLKyUmlL3f62bduGoKAg+Pr6AgB69eqFY8eOISUlBVZWVjh9+jSPOqsl7FHJZD5+/AhdXV2EhoaievXqOHToEMqUKYNhw4bBxsYGkydPxr59+wCAIYU0JvUXq6OjIwwNDWFmZoZz584hNDRUmtLZpk0bbNiwAVOmTIGbmxtGjhyJc+fOSedPYUihn7Fo0SKUK1dOZXcOACmkdOnSBSVKlJDafX19sWLFCixZsgTnzp2DgYEBj3ysLdoZw0u/wrdGo4eEhIjs2bOLHj16qEyrO3bsmOjUqZMIDQ39VSVSBvflNpiUlCTi4+OFt7e3yJkzpxgzZsx/bm+c+kk/a8WKFcLQ0FBs3LgxzbInT56I4sWLi6VLl0ptX9vmuB1qD3f9ZFDi/7szz549izt37iAkJASdO3dGjhw5sH79ely6dAnr169Pc4bPhIQElYO+Ef2oz484GxERgZiYGJWBsF5eXpg3bx66d++Orl27wsnJCU2aNMHYsWPh6uqqrbIpg1m5ciX69+8PPz8//Pnnn4iMjERcXBwSEhJga2uLrFmz4sGDB8ifP7+2S6VvYFDJwHbs2IFevXpJJ2978+YN2rRpg5EjRyJr1qzaLo8ysM9DypQpU3Do0CHcunULbm5uaNGiBRo0aADgU1jx8vJCsWLF8O7dOzx58gShoaE8uRtpxKNHj+Ds7Aw3Nzds3rwZt27dQt++ffHmzRuEhYWhRo0a6NOnDxo3bqztUulfcG5VBnXr1i0MHjwY8+fPR5cuXRAdHQ0LCwsYGxszpFC6Sw0pEyZMgK+vL+bOnQsnJyf07t0bDx48QGRkJNq1a4dBgwbB2toa169fR0JCAk6ePCmdBZlTP+ln2djYYPbs2ZgwYQKGDRuGQ4cOoUqVKmjWrBmio6Oxfft2jBs3DtbW1uzFkzNt7ncizTh69Kh4+PBhmrYKFSoIIYS4c+eOyJ07t+jRo4e0/OHDh9znSunq6NGjomjRouLEiRNCCCHOnDkjDAwMRJEiRUT58uXFtm3bpHU/PzUDT9NAmpSQkCDmzZsndHR0RLdu3URSUpK07NKlS6JgwYJi2bJlWqyQ/gtn/fzGhBC4evUqGjRoAG9vb4SFhUnLnj9/DiEEYmNjUb9+fdStWxcrVqwAAAQFBcHb2xvv37/XVumUAYkv9iLnzJkTffr0QZUqVXDo0CE0btwYvr6+CAoKwsOHD7F48WKsXr0aAFR6T9iTQppkaGiI3r17Y8eOHejRowf09fWlbbVMmTIwMjLC06dPtVwl/RsGld+YQqFAqVKlMH/+fGzduhXe3t549OgRAKBRo0Z4/fo1zMzM0KhRI/j6+krd8YGBgbhx4wane5LGKJVKaUD2o0ePEBcXh/z586Ndu3ZISEjAokWLMGDAAHTq1An29vYoWrQoQkJCcOfOHS1XTpmBqakpGjRoIB1MMHVbDQ8Ph7GxMYoWLarN8ug/8KfLbyx1P76npycAYO7cudDV1UWPHj2QJ08ejB8/HjNmzMDHjx/x4cMHhISEYNOmTVi1ahVOnTolHRWU6Gd8PnB2woQJOHv2LIYPH44aNWrAysoKcXFxePnyJUxMTKCjo4PExEQ4OTlhxIgRqF+/vparp4xIfDaTMZWhoaH0/5SUFLx9+xY9e/aEQqFAu3btfnWJpAYGld9Yao/IoUOHoKOjg+TkZHh5eSEhIQEjR46Em5sb4uPjMWPGDGzfvh3Zs2eHgYEBgoODUaxYMS1XTxnF5yFlxYoV8PX1RalSpaSZO4mJibCyssKpU6ekAbPv3r3DmjVroKOjoxJ0iH5EWFgYIiIikC1bNtjZ2f3rEWSTk5Ph5+eHTZs2ISIiAufOnZPO3cNeZnni9OTfXGBgoHQiN1NTUzx48ACLFy9G3759MXLkSNjY2CAmJgbHjx+Hk5MTbG1tYWtrq+2y6Tf3Zbi4f/8+mjdvjtmzZ6NJkyZp1rt48SLGjRuH2NhYWFlZISAgAPr6+gwp9NM2bNiA+fPnIzw8HNbW1ujfv7/UU5Lqy+0sKCgIt2/fRr9+/TjL7DfAoPIbUyqV6NChAxQKBTZu3Ci1L1myBCNGjICnpyf69u2LvHnzarFKymhatmyJMWPGoGzZslLbtWvXUL9+fRw/fhwFCxb86kEEExISIISAkZERFAoFvxzop23YsAGenp7S4fFnzJiBR48e4fTp09K2lRpSIiMjcejQIbi5uancB3tS5I8/ZX5jqb8QUrvYk5KSAAD9+/eHh4cH1q5di8WLF6vMBiL6Webm5nBxcVFpMzIywvv373Hr1i2pLfX8PmfPnsWOHTugo6MDY2NjKBQKKJVKhhT6KZcuXcLUqVOxdOlSdOvWDcWLF8fgwYPh7OyMM2fO4Pbt24iOjpZ2i69fvx59+/bFX3/9pXI/DCnyx6DyG3rx4oX0/4IFC2Lv3r0IDw+HgYEBkpOTAQAODg4wMTFBcHAwjI2NtVUqZSDPnz8HAKxduxYGBgZYvHgxDh06hKSkJDg7O6NNmzaYO3cuDh8+DIVCAR0dHaSkpGD69OkIDg5WGTfA3T30sxITEzFo0CA0atRIaps0aRKOHDmCdu3aoXPnzmjbti0iIiKgr6+Phg0bYtiwYRw4+xvirp/fzPXr19GvXz+0b98effr0QVJSEmrWrIm3b9/i2LFjsLOzAwCMHDkSRYsWRePGjdOc1pxIXT179gQAjB49WtqV6OLigrdv32Lz5s2oWrUqTp48iYULF+LmzZvo0KEDDAwMcOTIEbx58wZXrlxhDwpplFKpxJs3b5A9e3YAQOfOnXH48GHs2bMHjo6OOH78OKZNm4aRI0eiffv2KmNWuLvn98KfNb8ZExMTWFhYYPv27Vi3bh0MDAywYsUK2NjYoHDhwmjevDnq1q2LRYsWoWzZsgwppBEuLi44ePAgvL29ERISAgC4ceMGChYsiA4dOuDEiROoUqUKpkyZgs6dO8PPzw9Hjx5Frly5cPnyZWnAIpGm6OjoSCEFAIYNG4bz58+jbNmyyJ49Oxo0aICIiAi8fv06zVRlhpTfC3tUfkMhISEYM2YMXr16hZ49e6JTp05ISUnBvHnzEBYWBiEE+vfvjyJFimi7VMpA1qxZgwkTJqBt27bo2bMnChYsCACoWrUqHj9+DH9/f1StWhUA8OHDB5iYmEi35cBZ+tWePXuGjh07YtiwYTzp4G+OQeU3cOXKFbx8+VJlX2xISAjGjRuH0NBQ9O/fHx06dNBihZSRfT61c/Xq1ZgwYQLatWuXJqyEhYVhw4YNqFChgsp4lK8dfItIHZ9vQ6n/T/33zZs3sLGxUVk/Li4O7dq1Q1RUFI4ePcoelN8cg4rMxcTEoFGjRtDV1cWIESPQoEEDaVloaCjq168PExMT9OjRA3379tVipZTRfOsYJytXrsTkyZPRpk0b9OrVSworNWvWxOnTp3Hu3DmUKlXqV5dLGdTXtsPUtoCAAGzatAmLFi2Cvb094uPjsXv3bvj5+eH58+e4ePEi9PX1OSblN8cxKjKVmh+zZs2KOXPmQE9PD0uXLsX+/fuldZycnFCjRg28evUKR44cQWRkpJaqpYzm8y+HM2fOIDg4GNevXwfwaWDt+PHjsXnzZvj6+uLevXsAgKNHj6JHjx5ppi4T/ahTp05JJwwcMmQIZs2aBeDT+JQtW7agc+fOqF27Nuzt7QF8OqHl48ePkTdvXly6dAn6+vr4+PEjQ8pvjj0qMpPanZn6CyD1C+P8+fMYNWoUTE1N0adPH2k30NChQ5E3b160bNkSOXLk0HL1lBF83s0+ZMgQbNmyBbGxsXBwcECuXLlw4MABAMCKFSswbdo0tG3bFu7u7iqnZeAvWPoZQghERUXB1tYWDRo0gLW1NQICAnDy5EkUK1YMkZGRcHV1haenJ/r37y/d5vPPToDbYUbBoCIjqW+04OBg7NmzBxEREahcuTL+/PNPWFhY4Ny5cxg/fjwSExORN29emJiYYMuWLbh+/TocHBy0XT5lAJ+HlEOHDmHQoEHw9fWFhYUF/vnnH0ycOBGmpqa4dOkSgE9jVjw8PODl5YV+/fpps3TKgMLDw5E3b16kpKRgx44daNiwobTsa2NTvjaWhX5/3PUjIwqFAjt37kSTJk3w4cMHfPjwAX5+fujTpw8iIiLg6uqKefPmoVq1aggJCcGjR49w9OhRhhTSmNQP9j179mDz5s2oXbs2KleujGLFiqF169bYsGEDYmNj0adPHwBA9+7dsXv3buk6kaYkJibi1atXMDExga6uLtasWSNNjQcAa2tr6f+pR0H+PJgwpGQc7FGRkUuXLqFt27YYNWoUevTogbCwMJQuXRrGxsYoWbIkNmzYACsrK+ncKV9OASXShIiICDRu3BjXr19HjRo1sG/fPpXlY8aMwenTp/H333/D1NRUamc3O/2sbw3gDg0NhYuLC2rUqIEFCxYgX758WqiOtIU9Kloyc+ZMjB07VvolAHw6RLmrqyt69OiB0NBQ1KpVC82bN8e4ceNw8eJF9O3bFxERETAyMgIAhhTSiM+3QQCwsrLC+vXrUadOHVy9ehVr165VWZ4/f368e/cO8fHxKu0MKfQzPg8px44dw8aNG3H9+nU8f/4cTk5OOH36NIKDgzFixAhpAHeLFi2wZMkSbZZNvwB7VLRkyZIlGDhwIGbMmIERI0ZIb9A7d+6gYMGCaNasmfSFoVQqUbJkSYSEhKBRo0bYsmULz5VCGvH5l8PDhw+hUChgYmICOzs7PH78GJ6enoiLi8Off/4JDw8PvH79Gu7u7jAyMsK+ffvYvU4aN2zYMKxfvx56enrIkiUL7OzssHDhQpQtWxY3b95EjRo14OTkhKSkJHz8+BHXr1+XTsxKGZSgX06pVAohhFi5cqXQ0dERU6dOFcnJydLyp0+fisKFC4t9+/YJIYSIiIgQ7dq1E0uWLBHPnj3TSs2U8aRuh0IIMXHiRFG8eHFRqFAhkSNHDuHr6yuEECIkJEQ0bNhQGBkZiYIFC4oWLVqIevXqifj4eCGEECkpKVqpnTKOz7fDoKAgUaJECXHy5EkREREhdu/eLVq0aCGcnZ3FlStXhBBCPHjwQEyZMkVMnz5d+tz8/POTMh4GlV9MqVRKb0ylUin++usvoaOjI6ZNmyZ96IeHh4uSJUsKDw8PERoaKsaMGSPKlSsnXr9+rc3SKYOaMmWKsLGxEYGBgSI2Nla0aNFCWFhYiNu3bwshhHj06JFo1KiRKFmypFi4cKF0u4SEBC1VTBnR+vXrRb9+/USvXr1U2i9evCjq168v3N3dRWxsrBBCNdwwpGR83H+gBQqFAocPH8bQoUNRpkwZ6Rwqs2bNghAClpaW6NChA44fPw5XV1ds2LABPj4+sLW11XbplAF8PiZFqVTiwoULWLhwIerWrYugoCAcO3YMM2bMQJEiRZCcnIw8efJg/vz5yJ49O/bv34+AgAAAgKGhobaeAmUA4otRB7t27cKyZctw7do1JCYmSu1ly5ZFlSpVcOrUKaSkpABQndHDc0hlAtpOSpnRjh07hLGxsZg6daq4ePGiEEIIX19faTeQEEIkJiaK27dvi6CgIPH06VNtlksZ1IQJE8SsWbNEzpw5xb1790RwcLDIkiWL8Pb2FkII8eHDBzF27FgRGhoqhBDi/v37onHjxqJs2bIiICBAm6XTb+7zHhF/f3+xYcMGIYQQ/fr1ExYWFmLZsmUiKipKWicwMFAUKlRI2hYpc2FQ+cXu3bsn8uTJI5YvX55m2YoVK6TdQESa9vl4ks2bNwtHR0dx69Yt0bFjR1GvXj1hYmIiVq9eLa3z/PlzUaVKFbFhwwbptnfu3BGtW7cWYWFhv7x+yhg+3w5v3bolSpUqJUqUKCF2794thBDC3d1d5M+fX0yfPl2EhISIkJAQUatWLVGtWjWVgEOZB/vMfrEnT55AX19f5QiLqTMvevXqBVNTU3Tq1AmGhoYYNmyYFiuljCZ1ds/x48dx7NgxDB06FEWLFpUOJFirVi1069YNwKeTYfbo0QO6urpo3749dHR0oFQqUahQIWzcuJGzLOiHpW6Hw4cPx+PHj2FsbIy7d+9i8ODB+PjxI9atW4du3bph3LhxWLJkCSpVqoQsWbJgy5YtUCgU3zzWCmVcDCq/WGxsrMrxJ5RKpbS/9dixYyhTpgy2bNmict4UIk159eoVunfvjvDwcIwZMwYA0Lt3bzx8+BBHjx5FqVKlkD9/fjx58gQJCQm4ePEidHV1VQ7mxjEB9LPWrVuHVatW4ciRI8iTJw8SExPh7u6OmTNnQkdHB2vWrIGJiQm2bt2K+vXro23btjA0NERSUhIMDAy0XT79Yoylv1iJEiXw9u1b+Pr6Avj06yI1qOzevRsbN25Ey5YtUbhwYW2WSRmUnZ0dAgICkD17duzduxeXL1+Grq4u5s6diylTpqBmzZqws7NDmzZtvnn2WR47hX5WSEgIihUrhpIlS8Lc3Bx2dnZYs2YNdHV1MXjwYOzcuRNLly5F7dq1sWDBAuzZswcxMTEMKZkUfxr9Ynny5MHSpUvRu3dvJCcno3PnztDV1cW6deuwbt06nD17lkf4pHTl4uKCHTt2wN3dHT4+Pujfvz9cXFzQtGlTNG3aVGXdlJQU9qCQxoj/P1GgoaEhEhISkJSUBCMjIyQnJyNnzpyYOXMmGjduDC8vLxgbG2Pjxo1o3749hg0bBj09Pbi5uWn7KZAW8Mi0WqBUKrFjxw54eHjA1NQURkZG0NXVxaZNm1CqVCltl0eZxNWrV9GjRw+UKVMGAwcORNGiRbVdEmUSN2/eRKlSpTB+/HhMnDhRag8MDMTKlSvx/v17pKSk4NixYwCArl27Yvz48cibN6+WKiZtYlDRohcvXiAsLAwKhQJ58uRB9uzZtV0SZTJXr16Fh4cHcufOjTlz5iBPnjzaLokyiXXr1qFXr14YNGgQ2rRpA0tLSwwYMAAVK1ZEixYtULRoUezfvx8NGjTQdqmkZQwqRJnchQsX4OPjg1WrVnE2Bf1SO3bsQN++fWFgYAAhBGxtbXHmzBm8fv0aderUwfbt2+Hi4qLtMknLGFSISBo7wKmf9Ks9f/4cT58+RXJyMipVqgQdHR2MHj0au3btQnBwMOzs7LRdImkZgwoRAfhfWCHSltu3b2P27Nn4+++/cfjwYZQsWVLbJZEMcDg/EQHgtGPSro8fPyIpKQm2trY4fvw4B3eThD0qREQkG8nJyTzyMalgUCEiIiLZ4qg5IiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSL6rRw7dgwKhQKRkZHffRsnJyd4eXmlW01ElH4YVIhIo7p06QKFQoHevXunWebp6QmFQoEuXbr8+sKI6LfEoEJEGufo6IjNmzcjPj5eaktISMDGjRuRK1cuLVZGRL8bBhUi0rjSpUvD0dERAQEBUltAQABy5cqFUqVKSW2JiYkYMGAAbG1tYWRkhMqVK+PixYsq9/X333+jQIECMDY2Ro0aNRAaGprm8U6dOoUqVarA2NgYjo6OGDBgAOLi4tLt+RHRr8OgQkTpolu3bli7dq10fc2aNejatavKOiNGjMCOHTuwfv16XLlyBc7OzqhXrx4iIiIAAE+fPkXLli3RpEkTXLt2DT169MCoUaNU7uPhw4eoX78+WrVqhRs3bmDLli04deoU+vXrl/5PkojSHYMKEaWLjh074tSpUwgLC0NYWBhOnz6Njh07Ssvj4uLg7e2NuXPnokGDBihSpAhWrlwJY2NjrF69GgDg7e2NfPnyYf78+ShYsCA6dOiQZnzLzJkz0aFDBwwaNAj58+dHxYoVsXjxYmzYsAEJCQm/8ikTUTrgSQmJKF3Y2NigUaNGWLduHYQQaNSoEaytraXlDx8+RHJyMipVqiS16evr448//sCdO3cAAHfu3EH58uVV7rdChQoq169fv44bN27A399fahNCQKlU4vHjxyhcuHB6PD0i+kUYVIgo3XTr1k3aBbNs2bJ0eYzY2Fh4eHhgwIABaZZx4C7R749BhYjSTf369ZGUlASFQoF69eqpLMuXLx8MDAxw+vRp5M6dG8CnM+devHgRgwYNAgAULlwYe/bsUbnduXPnVK6XLl0a//zzD5ydndPviRCR1nCMChGlG11dXdy5cwf//PMPdHV1VZaZmpqiT58+GD58OA4ePIh//vkHPXv2xIcPH9C9e3cAQO/evfHgwQMMHz4c9+7dw8aNG7Fu3TqV+xk5ciTOnDmDfv364dq1a3jw4AF2797NwbREGQSDChGlKzMzM5iZmX112axZs9CqVSt06tQJpUuXRkhICAIDA2FpaQng066bHTt2YNeuXShRogR8fHwwY8YMlftwcXHB8ePHcf/+fVSpUgWlSpXChAkTYG9vn+7PjYjSn0IIIbRdBBEREdHXsEeFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhk6/8AHoK08GWUizwAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIXCAYAAACy1HXAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABn5UlEQVR4nO3dd1QT2d8G8Cf0ojQBEUFRsSv2FXvvvSx2saNi7733ihXELotd7KuIir33sjZUsIuKVGmS+/7hy/yM6K7RYEZ4PufkaO5Mkm/IJHly594ZhRBCgIiIiEiGdLRdABEREdG3MKgQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBCR7Dk5OaFLly7aLkNtc+fORd68eaGrq4uSJUtquxyNO3bsGBQKBbZv367tUtSmUCgwadIktW8XGhoKhUKBdevWabwm+joGFVKxfPlyKBQKlC9fXtulyI6TkxMUCoV0MTU1xR9//IENGzZou7TfTuoX3PdcfleHDh3CiBEjUKlSJaxduxYzZszQdkmys27dOul1PnXqVJrlQgg4OjpCoVCgcePGWqiQ5EBP2wWQvPj7+8PJyQkXLlxASEgInJ2dtV2SrJQsWRJDhw4FALx8+RKrVq2Cu7s7EhMT0bNnTy1X9/soXLgw/Pz8VNpGjx6NLFmyYOzYsWnWv3fvHnR0fq/fVUePHoWOjg5Wr14NAwMDbZcja0ZGRti4cSMqV66s0n78+HE8e/YMhoaGWqqM5IBBhSSPHz/GmTNnEBAQAA8PD/j7+2PixIm/tAalUomkpCQYGRn90sf9Xjlz5kTHjh2l6126dEHevHmxcOFCBhU1ZM+eXeXvCACzZs2CtbV1mnYAv+UXVXh4OIyNjTUWUoQQSEhIgLGxsUbuT04aNmyIbdu2YfHixdDT+9/X0saNG1GmTBm8fftWi9WRtv1eP1EoXfn7+8PS0hKNGjVC69at4e/vLy1LTk6GlZUVunbtmuZ20dHRMDIywrBhw6S2xMRETJw4Ec7OzjA0NISjoyNGjBiBxMREldsqFAr069cP/v7+KFq0KAwNDXHw4EEAwLx581CxYkVky5YNxsbGKFOmzFf3hcfHx2PAgAGwtrZG1qxZ0bRpUzx//vyr+6CfP3+Obt26IXv27DA0NETRokWxZs2aH/6b2djYoFChQnj48KFKu1KphJeXF4oWLQojIyNkz54dHh4eeP/+vcp6ly5dQr169WBtbQ1jY2PkyZMH3bp1k5an7g+fN28eFi5ciNy5c8PY2BjVqlXDrVu30tRz9OhRVKlSBaamprCwsECzZs1w584dlXUmTZoEhUKBkJAQdOnSBRYWFjA3N0fXrl3x4cMHlXWDgoJQuXJlWFhYIEuWLChYsCDGjBmjss73vtY/48sxKqm7DE6dOoUBAwbAxsYGFhYW8PDwQFJSEiIjI9G5c2dYWlrC0tISI0aMwJcnitfUa/Q1CoUCa9euRVxcnLRrI3VMw8ePHzF16lTky5cPhoaGcHJywpgxY9L8vZycnNC4cWMEBgaibNmyMDY2xooVK/71cc+fP4/69evD3NwcJiYmqFatGk6fPq2yTlhYGPr27YuCBQvC2NgY2bJlw59//onQ0NA09xcZGYnBgwfDyckJhoaGcHBwQOfOndMEB6VSienTp8PBwQFGRkaoVasWQkJC/rXWz7Vr1w7v3r1DUFCQ1JaUlITt27ejffv2X71NXFwchg4dCkdHRxgaGqJgwYKYN29emtc5MTERgwcPho2NjfT58OzZs6/ep6Y/H0hDBNH/K1SokOjevbsQQogTJ04IAOLChQvS8m7dugkLCwuRmJiocrv169cLAOLixYtCCCFSUlJE3bp1hYmJiRg0aJBYsWKF6Nevn9DT0xPNmjVTuS0AUbhwYWFjYyMmT54sli1bJq5evSqEEMLBwUH07dtXLF26VCxYsED88ccfAoDYt2+fyn24ubkJAKJTp05i2bJlws3NTZQoUUIAEBMnTpTWe/XqlXBwcBCOjo5iypQpwtvbWzRt2lQAEAsXLvzPv0/u3LlFo0aNVNqSk5OFnZ2dyJ49u0p7jx49hJ6enujZs6fw8fERI0eOFKampqJcuXIiKSlJCCHE69evhaWlpShQoICYO3euWLlypRg7dqwoXLiwdD+PHz8WAETx4sWFk5OTmD17tpg8ebKwsrISNjY24tWrV9K6QUFBQk9PTxQoUEDMmTNHTJ48WVhbWwtLS0vx+PFjab2JEycKAKJUqVKiZcuWYvny5aJHjx4CgBgxYoS03q1bt4SBgYEoW7asWLRokfDx8RHDhg0TVatWldZR57X+L0WLFhXVqlX75t/e3d1dur527VoBQJQsWVLUr19fLFu2THTq1El6DpUrVxbt27cXy5cvF40bNxYAxPr169PlNfoaPz8/UaVKFWFoaCj8/PyEn5+fePjwoRBCCHd3dwFAtG7dWixbtkx07txZABDNmzdP85ydnZ2FpaWlGDVqlPDx8RHBwcHffMwjR44IAwMDUaFCBTF//nyxcOFC4eLiIgwMDMT58+el9bZt2yZKlCghJkyYIHx9fcWYMWOEpaWlyJ07t4iLi5PWi4mJEcWKFRO6urqiZ8+ewtvbW0ydOlWUK1dOeo8GBwdL21KZMmXEwoULxaRJk4SJiYn4448//vVv9PnrePHiRVGxYkXRqVMnadmuXbuEjo6OeP78eZr3nlKpFDVr1hQKhUL06NFDLF26VDRp0kQAEIMGDVJ5jI4dOwoAon379mLp0qWiZcuWwsXF5Yc/H1Lfk2vXrv3P50eawaBCQgghLl26JACIoKAgIcSnDwIHBwcxcOBAaZ3AwEABQOzdu1fltg0bNhR58+aVrvv5+QkdHR1x8uRJlfV8fHwEAHH69GmpDYDQ0dERt2/fTlPThw8fVK4nJSWJYsWKiZo1a0ptly9f/uqHU5cuXdJ8EHXv3l3kyJFDvH37VmXdtm3bCnNz8zSP96XcuXOLunXrijdv3og3b96ImzdvSl+Onp6e0nonT54UAIS/v7/K7Q8ePKjSvnPnTpWA9zWpH4rGxsbi2bNnUvv58+cFADF48GCprWTJksLW1la8e/dOart+/brQ0dERnTt3ltpSg0q3bt1UHqtFixYiW7Zs0vWFCxcKAOLNmzffrE+d1/q//EhQqVevnlAqlVJ7hQoVhEKhEL1795baPn78KBwcHFTuW5Ov0be4u7sLU1NTlbZr164JAKJHjx4q7cOGDRMAxNGjR1WeMwBx8ODB/3wspVIp8ufPn+bv8eHDB5EnTx5Rp04dlbYvnT17VgAQGzZskNomTJggAIiAgICvPp4Q/wsqhQsXVvkBs2jRIgFA3Lx581/r/jyoLF26VGTNmlWq788//xQ1atSQ/hafB5Vdu3YJAGLatGkq99e6dWuhUChESEiIEOJ/f+++ffuqrNe+ffsf/nxgUPn1uOuHAHza7ZM9e3bUqFEDwKeu6zZt2mDz5s1ISUkBANSsWRPW1tbYsmWLdLv3798jKCgIbdq0kdq2bduGwoULo1ChQnj79q10qVmzJgAgODhY5bGrVauGIkWKpKnp833x79+/R1RUFKpUqYIrV65I7am7ifr27aty2/79+6tcF0Jgx44daNKkCYQQKnXVq1cPUVFRKvf7LYcOHYKNjQ1sbGxQvHhx+Pn5oWvXrpg7d67K8zc3N0edOnVUHqdMmTLIkiWL9PwtLCwAAPv27UNycvK/Pm7z5s2RM2dO6foff/yB8uXL4++//wbwaWDvtWvX0KVLF1hZWUnrubi4oE6dOtJ6n+vdu7fK9SpVquDdu3eIjo5WqW/37t1QKpVfrUvd11rTunfvrjIzqHz58hBCoHv37lKbrq4uypYti0ePHqnUrenX6Hukvg5DhgxRaU8doL1//36V9jx58qBevXr/eb/Xrl3DgwcP0L59e7x79056PnFxcahVqxZOnDghvYafv6+Sk5Px7t07ODs7w8LCQuU9sGPHDpQoUQItWrRI83hfzsbq2rWrylicKlWqAIDK3/y/uLm5IT4+Hvv27UNMTAz27dv3zd0+f//9N3R1dTFgwACV9qFDh0IIgQMHDkjrAUiz3qBBg1Sua+rzgdJHhgkqJ06cQJMmTWBvbw+FQoFdu3al+2M+f/4cHTt2lMZQFC9eHJcuXUr3x9W0lJQUbN68GTVq1MDjx48REhKCkJAQlC9fHq9fv8aRI0cAAHp6emjVqhV2794t7U8PCAhAcnKySlB58OABbt++LX2hp14KFCgA4NMgw8/lyZPnq3Xt27cPrq6uMDIygpWVFWxsbODt7Y2oqChpnbCwMOjo6KS5jy9nK7158waRkZHw9fVNU1fquJsv6/qa8uXLIygoCAcPHsS8efNgYWGB9+/fq3xIP3jwAFFRUbC1tU3zWLGxsdLjVKtWDa1atcLkyZNhbW2NZs2aYe3atV8d25E/f/40bQUKFJDGFYSFhQEAChYsmGa9woULS19an8uVK5fKdUtLSwCQxmi0adMGlSpVQo8ePZA9e3a0bdsWW7duVQkt6r7WmvblczA3NwcAODo6pmn/fOxJerxG3yN1e/1y+7Szs4OFhYX0Oqb61nvjSw8ePAAAuLu7p3k+q1atQmJiovS+iY+Px4QJE6SxHdbW1rCxsUFkZKTKe+vhw4coVqzYdz3+f21L38PGxga1a9fGxo0bERAQgJSUFLRu3fqr64aFhcHe3h5Zs2ZVaS9cuLC0PPVfHR0d5MuXT2W9L98nmvp8oPSRYWb9xMXFoUSJEujWrRtatmyZ7o/3/v17VKpUCTVq1MCBAwdgY2ODBw8eSG/Q38nRo0fx8uVLbN68GZs3b06z3N/fH3Xr1gUAtG3bFitWrMCBAwfQvHlzbN26FYUKFUKJEiWk9ZVKJYoXL44FCxZ89fG+/BL52iyGkydPomnTpqhatSqWL1+OHDlyQF9fH2vXrsXGjRvVfo6pX64dO3aEu7v7V9dxcXH5z/uxtrZG7dq1AQD16tVDoUKF0LhxYyxatEj6laxUKmFra6syGPlzNjY2ACAdKOvcuXPYu3cvAgMD0a1bN8yfPx/nzp1DlixZ1H6e6tDV1f1qu/j/wYjGxsY4ceIEgoODsX//fhw8eBBbtmxBzZo1cejQIejq6qr9Wmvat57D19rFZ4Mstf0afe/xYb53hk/q9j137txvHlgutdb+/ftj7dq1GDRoECpUqABzc3MoFAq0bdv2mz1n/+W/tqXv1b59e/Ts2ROvXr1CgwYNpB6t9KapzwdKHxkmqDRo0AANGjT45vLExESMHTsWmzZtQmRkJIoVK4bZs2ejevXqP/R4s2fPhqOjI9auXSu1fe+vH7nx9/eHra0tli1blmZZQEAAdu7cCR8fHxgbG6Nq1arIkSMHtmzZgsqVK+Po0aNpjnuRL18+XL9+HbVq1frhA3bt2LEDRkZGCAwMVJma+vnfGwBy584NpVKJx48fq/Q6fDnjIHXEf0pKihQ0NKFRo0aoVq0aZsyYAQ8PD5iamiJfvnw4fPgwKlWq9F1fNK6urnB1dcX06dOxceNGdOjQAZs3b0aPHj2kdVJ/MX/u/v37cHJyAvDp7wB8Ot7Il+7evQtra2uYmpqq/fx0dHRQq1Yt1KpVCwsWLMCMGTMwduxYBAcHo3bt2hp5rbUhPV6j75G6vT548ED69Q8Ar1+/RmRkpPQ6qiu1x8DMzOw/t+/t27fD3d0d8+fPl9oSEhIQGRmZ5j6/NrMsPbVo0QIeHh44d+6cyi7mL+XOnRuHDx9GTEyMSq/K3bt3peWp/yqVSjx8+FClF+XL90l6fT6QZmSYXT//pV+/fjh79iw2b96MGzdu4M8//0T9+vW/+gXwPfbs2YOyZcvizz//hK2tLUqVKoWVK1dquOr0Fx8fj4CAADRu3BitW7dOc+nXrx9iYmKwZ88eAJ++uFq3bo29e/fCz88PHz9+VNntA3za1/z8+fOv/j3i4+PT7IL4Gl1dXSgUCml8DPBpqu6Xu/RS998vX75cpX3JkiVp7q9Vq1bYsWPHVz9837x58581fcvIkSPx7t076fm6ubkhJSUFU6dOTbPux48fpS+E9+/fp/nFmfpr+MtdC7t27cLz58+l6xcuXMD58+elcJ4jRw6ULFkS69evV/nCuXXrFg4dOoSGDRuq/bwiIiLStH1ZnyZea21Ij9foe6S+Dl5eXirtqT1SjRo1Uvs+AaBMmTLIly8f5s2bh9jY2DTLP9++dXV10zynJUuWqLzXAKBVq1a4fv06du7cmeb+1O0p+V5ZsmSBt7c3Jk2ahCZNmnxzvYYNGyIlJQVLly5VaV+4cCEUCoX0vkj9d/HixSrrffn3T8/PB/p5GaZH5d88efIEa9euxZMnT2Bvbw8AGDZsGA4ePPjDh7Z+9OgRvL29MWTIEIwZMwYXL17EgAEDYGBg8M2uQznas2cPYmJi0LRp068ud3V1hY2NDfz9/aVA0qZNGyxZsgQTJ05E8eLFVX4ZAkCnTp2wdetW9O7dG8HBwahUqRJSUlJw9+5dbN26VTouxL9p1KgRFixYgPr166N9+/YIDw/HsmXL4OzsjBs3bkjrlSlTBq1atYKXlxfevXsHV1dXHD9+HPfv3weg2sU+a9YsBAcHo3z58ujZsyeKFCmCiIgIXLlyBYcPH/7qF/P3aNCgAYoVK4YFCxbA09MT1apVg4eHB2bOnIlr166hbt260NfXx4MHD7Bt2zYsWrQIrVu3xvr167F8+XK0aNEC+fLlQ0xMDFauXAkzM7M0wcLZ2RmVK1dGnz59kJiYCC8vL2TLlg0jRoyQ1pk7dy4aNGiAChUqoHv37oiPj8eSJUtgbm7+Q+c0mTJlCk6cOIFGjRohd+7cCA8Px/Lly+Hg4CAdQVQTr7U2pMdr9D1KlCgBd3d3+Pr6IjIyEtWqVcOFCxewfv16NG/eXBrMri4dHR2sWrUKDRo0QNGiRdG1a1fkzJkTz58/R3BwMMzMzLB3714AQOPGjeHn5wdzc3MUKVIEZ8+exeHDh5EtWzaV+xw+fDi2b9+OP//8E926dUOZMmUQERGBPXv2wMfHR2V3ryZ9z+dnkyZNUKNGDYwdOxahoaEoUaIEDh06hN27d2PQoEFSD1PJkiXRrl07LF++HFFRUahYsSKOHDny1WO8pNfnA2mAVuYapTMAYufOndL1ffv2CQDC1NRU5aKnpyfc3NyEEELcuXNHAPjXy8iRI6X71NfXFxUqVFB53P79+wtXV9df8hw1pUmTJsLIyEjl+Alf6tKli9DX15em7SmVSuHo6PjV6YGpkpKSxOzZs0XRokWFoaGhsLS0FGXKlBGTJ08WUVFR0nr4Ymrv51avXi3y588vDA0NRaFChcTatWulqbWfi4uLE56ensLKykpkyZJFNG/eXNy7d08AELNmzVJZ9/Xr18LT01M4OjoKfX19YWdnJ2rVqiV8fX3/82/1teOopFq3bl2aKYu+vr6iTJkywtjYWGTNmlUUL15cjBgxQrx48UIIIcSVK1dEu3btRK5cuYShoaGwtbUVjRs3FpcuXZLuI3Uq5Ny5c8X8+fOFo6OjMDQ0FFWqVBHXr19PU8fhw4dFpUqVhLGxsTAzMxNNmjQR//zzj8o6qX/DL6cdp04VTT3mypEjR0SzZs2Evb29MDAwEPb29qJdu3bi/v37Krf73tf6v/zI9OQvpw1/67l9baqwEJp5jb7lW4+ZnJwsJk+eLPLkySP09fWFo6OjGD16tEhISEjznL+1vX3L1atXRcuWLUW2bNmEoaGhyJ07t3BzcxNHjhyR1nn//r3o2rWrsLa2FlmyZBH16tUTd+/eTfM3FkKId+/eiX79+omcOXMKAwMD4eDgINzd3aXPgtTpydu2bVO53fdO4f3W6/ilr/0tYmJixODBg4W9vb3Q19cX+fPnF3PnzlWZni2EEPHx8WLAgAEiW7ZswtTUVDRp0kQ8ffo0zfRkIb7v84HTk389hRDp1IenRQqFAjt37kTz5s0BAFu2bEGHDh1w+/btNIO+smTJAjs7OyQlJf3nVLps2bJJg+xy586NOnXqYNWqVdJyb29vTJs2TaWLnrTj2rVrKFWqFP766y906NBB2+X8sNDQUOTJkwdz585VOfIvEVFmkSl2/ZQqVQopKSkIDw+X5vd/ycDAAIUKFfru+6xUqVKaAVn379//4cFw9OPi4+PTDIj08vKCjo4OqlatqqWqiIhIEzJMUImNjVXZ7/j48WNcu3YNVlZWKFCgADp06IDOnTtj/vz5KFWqFN68eYMjR47AxcXlhwawDR48GBUrVsSMGTPg5uaGCxcuwNfXF76+vpp8WvQd5syZg8uXL6NGjRrQ09PDgQMHcODAAfTq1Svdp8cSEVE60/a+J01J3Vf65SV1n2tSUpKYMGGCcHJyEvr6+iJHjhyiRYsW4saNGz/8mHv37hXFihWTxlB8zzgH0rxDhw6JSpUqCUtLS6Gvry/y5csnJk2aJJKTk7Vd2k/7fIwKEVFmlCHHqBAREVHGkGmOo0JERES/HwYVIiIikq3fejCtUqnEixcvkDVr1t/q8N1ERESZmRACMTExsLe3h47Ov/eZ/NZB5cWLF5zVQURE9Jt6+vQpHBwc/nWd3zqopJ6M6unTpzAzM9NyNURERPQ9oqOj4ejoqHJSyW/5rYNK6u4eMzMzBhUiIqLfzPcM2+BgWiIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki09bRdARETy5TRqv7ZLIC0LndVIq4/PHhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki3ZBJVZs2ZBoVBg0KBB2i6FiIiIZEIWQeXixYtYsWIFXFxctF0KERERyYjWg0psbCw6dOiAlStXwtLSUtvlEBERkYxoPah4enqiUaNGqF279n+um5iYiOjoaJULERERZVx62nzwzZs348qVK7h48eJ3rT9z5kxMnjw5nasiIiIiudBaj8rTp08xcOBA+Pv7w8jI6LtuM3r0aERFRUmXp0+fpnOVREREpE1a61G5fPkywsPDUbp0aaktJSUFJ06cwNKlS5GYmAhdXV2V2xgaGsLQ0PBXl0pERERaorWgUqtWLdy8eVOlrWvXrihUqBBGjhyZJqQQERFR5qO1oJI1a1YUK1ZMpc3U1BTZsmVL005ERESZk9Zn/RARERF9i1Zn/Xzp2LFj2i6BiIiIZIQ9KkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWz8UVB4+fIhx48ahXbt2CA8PBwAcOHAAt2/f1mhxRERElLmpHVSOHz+O4sWL4/z58wgICEBsbCwA4Pr165g4caLGCyQiIqLMS+2gMmrUKEybNg1BQUEwMDCQ2mvWrIlz585ptDgiIiLK3NQOKjdv3kSLFi3StNva2uLt27caKYqIiIgI+IGgYmFhgZcvX6Zpv3r1KnLmzKmRooiIiIiAHwgqbdu2xciRI/Hq1SsoFAoolUqcPn0aw4YNQ+fOndOjRiIiIsqk1A4qM2bMQKFCheDo6IjY2FgUKVIEVatWRcWKFTFu3Lj0qJGIiIgyKT11b2BgYICVK1di/PjxuHXrFmJjY1GqVCnkz58/PeojIiKiTEztoJIqV65cyJUrlyZrISIiIlKhdlARQmD79u0IDg5GeHg4lEqlyvKAgACNFUdERESZm9pBZdCgQVixYgVq1KiB7NmzQ6FQpEddREREROoHFT8/PwQEBKBhw4bpUQ8RERGRRO1ZP+bm5sibN2961EJERESkQu2gMmnSJEyePBnx8fHpUQ8RERGRRO1dP25ubti0aRNsbW3h5OQEfX19leVXrlzRWHFERESUuakdVNzd3XH58mV07NiRg2mJiIgoXakdVPbv34/AwEBUrlw5PeohIiIikqg9RsXR0RFmZmbpUQsRERGRCrWDyvz58zFixAiEhoamQzlERERE/6P2rp+OHTviw4cPyJcvH0xMTNIMpo2IiNBYcUSZndOo/dougbQsdFYjbZdApFVqBxUvL690KIOIiIgorR+a9UNERET0K3xXUImOjpYG0EZHR//ruhxoS0RERJryXUHF0tISL1++hK2tLSwsLL567BQhBBQKBVJSUjReJBEREWVO3xVUjh49CisrKwBAcHBwuhZERERElOq7gkq1atWQN29eXLx4EdWqVUvvmoiIiIgAqHEcldDQUO7WISIiol9K7QO+aZK3tzdcXFxgZmYGMzMzVKhQAQcOHNBmSURERCQjak1PDgwMhLm5+b+u07Rp0+++PwcHB8yaNQv58+eHEALr169Hs2bNcPXqVRQtWlSd0oiIiCgDUiuo/NcxVNSd9dOkSROV69OnT4e3tzfOnTvHoEJERETqBZVXr17B1tY2XQpJSUnBtm3bEBcXhwoVKnx1ncTERCQmJkrX/+uYLkRERPR7++4xKl87doom3Lx5E1myZIGhoSF69+6NnTt3okiRIl9dd+bMmTA3N5cujo6O6VITERERycN3BxUhRLoUULBgQVy7dg3nz59Hnz594O7ujn/++eer644ePRpRUVHS5enTp+lSExEREcnDd+/6cXd3h7GxscYLMDAwgLOzMwCgTJkyuHjxIhYtWoQVK1akWdfQ0BCGhoYar4GIiIjk6buDytq1a9OzDolSqVQZh0JERESZl9pnT9ak0aNHo0GDBsiVKxdiYmKwceNGHDt2DIGBgdosi4iIiGRCq0ElPDwcnTt3xsuXL2Fubg4XFxcEBgaiTp062iyLiIiIZEKrQWX16tXafHgiIiKSuR8+hH5ISAgCAwMRHx8PIP1mBREREVHmpXZQeffuHWrXro0CBQqgYcOGePnyJQCge/fuGDp0qMYLJCIiosxL7aAyePBg6Onp4cmTJzAxMZHa27Rpg4MHD2q0OCIiIsrc1B6jcujQIQQGBsLBwUGlPX/+/AgLC9NYYURERERq96jExcWp9KSkioiI4MHYiIiISKPUDipVqlTBhg0bpOsKhQJKpRJz5sxBjRo1NFocERERZW5q7/qZM2cOatWqhUuXLiEpKQkjRozA7du3ERERgdOnT6dHjURERJRJqd2jUqxYMdy/fx+VK1dGs2bNEBcXh5YtW+Lq1avIly9fetRIREREmdQPHfDN3NwcY8eO1XQtRERERCrU7lE5ePAgTp06JV1ftmwZSpYsifbt2+P9+/caLY6IiIgyN7WDyvDhwxEdHQ0AuHnzJoYMGYKGDRvi8ePHGDJkiMYLJCIiosxL7V0/jx8/RpEiRQAAO3bsQJMmTTBjxgxcuXIFDRs21HiBRERElHmp3aNiYGCADx8+AAAOHz6MunXrAgCsrKyknhYiIiIiTVC7R6Vy5coYMmQIKlWqhAsXLmDLli0AgPv376c5Wi0RERHRz1C7R2Xp0qXQ09PD9u3b4e3tjZw5cwIADhw4gPr162u8QCIiIsq81O5RyZUrF/bt25emfeHChRopiIiIiCjVDx1HRalUIiQkBOHh4VAqlSrLqlatqpHCiIiIiNQOKufOnUP79u0RFhYGIYTKMoVCgZSUFI0VR0RERJmb2kGld+/eKFu2LPbv348cOXJAoVCkR11ERERE6geVBw8eYPv27XB2dk6PeoiIiIgkas/6KV++PEJCQtKjFiIiIiIVaveo9O/fH0OHDsWrV69QvHhx6Ovrqyx3cXHRWHFERESUuakdVFq1agUA6Natm9SmUCgghOBgWiIiItKoHzrXDxEREdGvoHZQyZ07d3rUQURERJTGDx3w7eHDh/Dy8sKdO3cAAEWKFMHAgQORL18+jRZHREREmZvaQSUwMBBNmzZFyZIlUalSJQDA6dOnUbRoUezduxd16tTReJHa4jRqv7ZLIC0LndVI2yUQEWVqageVUaNGYfDgwZg1a1aa9pEjR2aooEJERETapfZxVO7cuYPu3bunae/WrRv++ecfjRRFREREBPxAULGxscG1a9fStF+7dg22traaqImIiIgIwA/s+unZsyd69eqFR48eoWLFigA+jVGZPXs2hgwZovECiYiIKPNSO6iMHz8eWbNmxfz58zF69GgAgL29PSZNmoQBAwZovEAiIiLKvNQOKgqFAoMHD8bgwYMRExMDAMiaNavGCyMiIiL6oeOoAEB4eDju3bsHAChUqBBsbGw0VhQRERER8AODaWNiYtCpUyfY29ujWrVqqFatGuzt7dGxY0dERUWlR41ERESUSakdVHr06IHz589j//79iIyMRGRkJPbt24dLly7Bw8MjPWokIiKiTErtXT/79u1DYGAgKleuLLXVq1cPK1euRP369TVaHBEREWVuaveoZMuWDebm5mnazc3NYWlpqZGiiIiIiIAfCCrjxo3DkCFD8OrVK6nt1atXGD58OMaPH6/R4oiIiChzU3vXj7e3N0JCQpArVy7kypULAPDkyRMYGhrizZs3WLFihbTulStXNFcpERERZTpqB5XmzZunQxlEREREaakdVCZOnJgedRARERGlofYYladPn+LZs2fS9QsXLmDQoEHw9fXVaGFEREREageV9u3bIzg4GMCnQbS1a9fGhQsXMHbsWEyZMkXjBRIREVHmpXZQuXXrFv744w8AwNatW1G8eHGcOXMG/v7+WLdunabrIyIiokxM7aCSnJwMQ0NDAMDhw4fRtGlTAJ/O9/Py5UvNVkdERESZmtpBpWjRovDx8cHJkycRFBQkHY32xYsXyJYtm8YLJCIiosxL7aAye/ZsrFixAtWrV0e7du1QokQJAMCePXukXUJEREREmqD29OTq1avj7du3iI6OVjlkfq9evWBiYqLR4oiIiChzU7tHBQCEELh8+TJWrFiBmJgYAICBgQGDChEREWmU2j0qYWFhqF+/Pp48eYLExETUqVMHWbNmxezZs5GYmAgfH5/0qJOIiIgyIbV7VAYOHIiyZcvi/fv3MDY2ltpbtGiBI0eOaLQ4IiIiytzU7lE5efIkzpw5AwMDA5V2JycnPH/+XGOFEREREando6JUKpGSkpKm/dmzZ8iaNatGiiIiIiICfiCo1K1bF15eXtJ1hUKB2NhYTJw4EQ0bNtRkbURERJTJqb3rZ/78+ahXrx6KFCmChIQEtG/fHg8ePIC1tTU2bdqUHjUSERFRJqV2UHFwcMD169exZcsWXL9+HbGxsejevTs6dOigMriWiIiI6GepHVQAQE9PDx06dECHDh2ktpcvX2L48OFYunSpxoojIiKizE2toHL79m0EBwfDwMAAbm5usLCwwNu3bzF9+nT4+Pggb9686VUnERERZULfPZh2z549KFWqFAYMGIDevXujbNmyCA4ORuHChXHnzh3s3LkTt2/fTs9aiYiIKJP57qAybdo0eHp6Ijo6GgsWLMCjR48wYMAA/P333zh48KB0FmUiIiIiTfnuoHLv3j14enoiS5Ys6N+/P3R0dLBw4UKUK1cuPesjIiKiTOy7g0pMTAzMzMwAALq6ujA2NuaYFCIiIkpXag2mDQwMhLm5OYBPR6g9cuQIbt26pbJO06ZNNVcdERERZWpqBRV3d3eV6x4eHirXFQrFVw+vT0RERPQjvjuoKJXK9KyDiIiIKA21z/VDRERE9KtoNajMnDkT5cqVQ9asWWFra4vmzZvj3r172iyJiIiIZESrQeX48ePw9PTEuXPnEBQUhOTkZNStWxdxcXHaLIuIiIhk4ofO9aMpBw8eVLm+bt062Nra4vLly6hataqWqiIiIiK50GpQ+VJUVBQAwMrK6qvLExMTkZiYKF2Pjo7+JXURERGRdvzQrp/IyEisWrUKo0ePRkREBADgypUreP78+Q8XolQqMWjQIFSqVAnFihX76jozZ86Eubm5dHF0dPzhxyMiIiL5Uzuo3LhxAwUKFMDs2bMxb948REZGAgACAgIwevToHy7E09MTt27dwubNm7+5zujRoxEVFSVdnj59+sOPR0RERPKndlAZMmQIunTpggcPHsDIyEhqb9iwIU6cOPFDRfTr1w/79u1DcHAwHBwcvrmeoaEhzMzMVC5ERESUcak9RuXixYtYsWJFmvacOXPi1atXat2XEAL9+/fHzp07cezYMeTJk0fdcoiIiCgDUzuoGBoafnUQ6/3792FjY6PWfXl6emLjxo3YvXs3smbNKgUdc3NzGBsbq1saERERZTBq7/pp2rQppkyZguTkZACfzu/z5MkTjBw5Eq1atVLrvry9vREVFYXq1asjR44c0mXLli3qlkVEREQZkNpBZf78+YiNjYWtrS3i4+NRrVo1ODs7I2vWrJg+fbpa9yWE+OqlS5cu6pZFREREGZDau37Mzc0RFBSEU6dO4caNG4iNjUXp0qVRu3bt9KiPiIiIMrEfPuBb5cqVUblyZU3WQkRERKRC7aCyePHir7YrFAoYGRnB2dkZVatWha6u7k8XR0RERJmb2kFl4cKFePPmDT58+ABLS0sAwPv372FiYoIsWbIgPDwcefPmRXBwMI8cS0RERD9F7cG0M2bMQLly5fDgwQO8e/cO7969w/3791G+fHksWrQIT548gZ2dHQYPHpwe9RIREVEmonaPyrhx47Bjxw7ky5dPanN2dsa8efPQqlUrPHr0CHPmzFF7qjIRERHRl9TuUXn58iU+fvyYpv3jx4/SAdvs7e0RExPz89URERFRpqZ2UKlRowY8PDxw9epVqe3q1avo06cPatasCQC4efMmD4dPREREP03toLJ69WpYWVmhTJkyMDQ0hKGhIcqWLQsrKyusXr0aAJAlSxbMnz9f48USERFR5qL2GBU7OzsEBQXh7t27uH//PgCgYMGCKFiwoLROjRo1NFchERERZVo/fMC3QoUKoVChQpqshYiIiEjFDwWVZ8+eYc+ePXjy5AmSkpJUli1YsEAjhRERERGpHVSOHDmCpk2bIm/evLh79y6KFSuG0NBQCCFQunTp9KiRiIiIMim1B9OOHj0aw4YNw82bN2FkZIQdO3bg6dOnqFatGv7888/0qJGIiIgyKbWDyp07d9C5c2cAgJ6eHuLj45ElSxZMmTIFs2fP1niBRERElHmpHVRMTU2lcSk5cuTAw4cPpWVv377VXGVERESU6ak9RsXV1RWnTp1C4cKF0bBhQwwdOhQ3b95EQEAAXF1d06NGIiIiyqTUDioLFixAbGwsAGDy5MmIjY3Fli1bkD9/fs74ISIiIo1SK6ikpKTg2bNncHFxAfBpN5CPj0+6FEZERESk1hgVXV1d1K1bF+/fv0+veoiIiIgkag+mLVasGB49epQetRARERGpUDuoTJs2DcOGDcO+ffvw8uVLREdHq1yIiIiINEXtwbQNGzYEADRt2hQKhUJqF0JAoVAgJSVFc9URERFRpqZ2UAkODk6POoiIiIjSUDuoVKtWLT3qICIiIkpD7TEqAHDy5El07NgRFStWxPPnzwEAfn5+OHXqlEaLIyIiosxN7aCyY8cO1KtXD8bGxrhy5QoSExMBAFFRUZgxY4bGCyQiIqLM64dm/fj4+GDlypXQ19eX2itVqoQrV65otDgiIiLK3NQOKvfu3UPVqlXTtJubmyMyMlITNREREREB+IGgYmdnh5CQkDTtp06dQt68eTVSFBERERHwA0GlZ8+eGDhwIM6fPw+FQoEXL17A398fw4YNQ58+fdKjRiIiIsqk1J6ePGrUKCiVStSqVQsfPnxA1apVYWhoiGHDhqF///7pUSMRERFlUmoHFYVCgbFjx2L48OEICQlBbGwsihQpgixZsqRHfURERJSJqb3r56+//sKHDx9gYGCAIkWK4I8//mBIISIionShdlAZPHgwbG1t0b59e/z99988tw8RERGlG7WDysuXL7F582YoFAq4ubkhR44c8PT0xJkzZ9KjPiIiIsrE1A4qenp6aNy4Mfz9/REeHo6FCxciNDQUNWrUQL58+dKjRiIiIsqk1B5M+zkTExPUq1cP79+/R1hYGO7cuaOpuoiIiIh+7KSEHz58gL+/Pxo2bIicOXPCy8sLLVq0wO3btzVdHxEREWViaveotG3bFvv27YOJiQnc3Nwwfvx4VKhQIT1qIyIiokxO7aCiq6uLrVu3ol69etDV1VVZduvWLRQrVkxjxREREVHmpnZQ8ff3V7keExODTZs2YdWqVbh8+TKnKxMREZHG/NAYFQA4ceIE3N3dkSNHDsybNw81a9bEuXPnNFkbERERZXJq9ai8evUK69atw+rVqxEdHQ03NzckJiZi165dKFKkSHrVSERERJnUd/eoNGnSBAULFsSNGzfg5eWFFy9eYMmSJelZGxEREWVy392jcuDAAQwYMAB9+vRB/vz507MmIiIiIgBq9KicOnUKMTExKFOmDMqXL4+lS5fi7du36VkbERERZXLfHVRcXV2xcuVKvHz5Eh4eHti8eTPs7e2hVCoRFBSEmJiY9KyTiIiIMiG1Z/2YmpqiW7duOHXqFG7evImhQ4di1qxZsLW1RdOmTdOjRiIiIsqkfnh6MgAULFgQc+bMwbNnz7Bp0yZN1UREREQE4CeDSipdXV00b94ce/bs0cTdEREREQHQUFAhIiIiSg8MKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbWg0qJ06cQJMmTWBvbw+FQoFdu3ZpsxwiIiKSGa0Glbi4OJQoUQLLli3TZhlEREQkU3rafPAGDRqgQYMG2iyBiIiIZEyrQUVdiYmJSExMlK5HR0drsRoiIiJKb7/VYNqZM2fC3Nxcujg6Omq7JCIiIkpHv1VQGT16NKKioqTL06dPtV0SERERpaPfatePoaEhDA0NtV0GERER/SK/VY8KERERZS5a7VGJjY1FSEiIdP3x48e4du0arKyskCtXLi1WRkRERHKg1aBy6dIl1KhRQ7o+ZMgQAIC7uzvWrVunpaqIiIhILrQaVKpXrw4hhDZLICIiIhnjGBUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLVkElWXLlsHJyQlGRkYoX748Lly4oO2SiIiISAa0HlS2bNmCIUOGYOLEibhy5QpKlCiBevXqITw8XNulERERkZZpPagsWLAAPXv2RNeuXVGkSBH4+PjAxMQEa9as0XZpREREpGVaDSpJSUm4fPkyateuLbXp6Oigdu3aOHv2rBYrIyIiIjnQ0+aDv337FikpKciePbtKe/bs2XH37t006ycmJiIxMVG6HhUVBQCIjo5Ol/qUiR/S5X7p95Fe29b34jZI3AZJ29JjG0y9TyHEf66r1aCirpkzZ2Ly5Mlp2h0dHbVQDWUG5l7aroAyO26DpG3puQ3GxMTA3Nz8X9fRalCxtraGrq4uXr9+rdL++vVr2NnZpVl/9OjRGDJkiHRdqVQiIiIC2bJlg0KhSPd6M5Po6Gg4Ojri6dOnMDMz03Y5lAlxGyRt4zaYfoQQiImJgb29/X+uq9WgYmBggDJlyuDIkSNo3rw5gE/h48iRI+jXr1+a9Q0NDWFoaKjSZmFh8QsqzbzMzMz4BiWt4jZI2sZtMH38V09KKq3v+hkyZAjc3d1RtmxZ/PHHH/Dy8kJcXBy6du2q7dKIiIhIy7QeVNq0aYM3b95gwoQJePXqFUqWLImDBw+mGWBLREREmY/WgwoA9OvX76u7ekh7DA0NMXHixDS72oh+FW6DpG3cBuVBIb5nbhARERGRFmj9yLRERERE38KgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCvyWlUqntEoiI6BdgUKHfko7Op0337du3AACeCYJ+tS/DMrdB0oYvt8OM+COOQYV+W4sWLULz5s3x8OFDKBQKbZdDmYyOjg6ioqIQGBgIANwGSSt0dHQQGRmJuXPn4v3799KPuIwk4z0jyrC+/MWqr68PY2NjGBgYaKkiysyUSiXmz58PDw8P7Nu3T9vlUCZ26NAhLFiwAEuXLtV2KemCZ0+m3050dDTMzMwAAFFRUTA3N9dyRZRZKJVKlV+sd+7cwerVqzF79mzo6upqsTLKTFJSUlS2t+TkZGzZsgXt2rXLkNshgwr9VgYPHoyUlBSMHj0aOXLk0HY5lAlFRkYiMjISjo6OKl8KX355EP2ML0Pxl969e4fTp0+jYsWKsLa2ltoz4nbIXT8ka1/maAcHB2zYsCHDvRHp9yCEwKhRo1C+fHmEhoaqLOM2ST/j5cuXePHiBd68eQPg09iTf+tH2Lp1K5o3b47jx4+rtGfE7ZA9KiQbqb8EhBBQKBTf/EXx/v17WFpaaqFCymj+61fr19YJCwvDuHHjsG7dugz5pUC/3tq1a7Fs2TI8ffoU+fLlQ+XKlTFnzhyVdb7WU+Ll5YV+/fpBT0/vV5b7yzGokFakhhHg0xtQCAE9PT08f/4cO3fuRNeuXWFqagrg0+4eS0tLTJgwIc1tiX7U5wHk6NGjePLkCZydnZE3b17Y29urrBMVFQWlUpkmIGfEbnb6tfbt2wc3NzcsX74cJiYmePToEebMmYOKFSti/fr1yJYtm/SZ9/btW4SEhMDV1VXlPj5+/Jihwwp3/dAvkZqHo6OjER8fD4VCgUOHDiEkJAS6urrQ09NDWFgYSpUqhRcvXkghJS4uDvr6+li4cCEiIiIYUkgjhBBSSBk1ahS6dOmCefPmoVevXhg2bBguXrwI4FP3e2JiIiZMmIDSpUvj3bt3KvfDkEI/6+LFi2jUqBG6dOkCNzc3jBgxAoGBgbhx4wY6dOgA4NPU9+TkZPj5+aFixYo4deqUyn1k5JACMKjQL/Tq1SsUL14cx48fx8aNG1G/fn38888/AD7tzilatChatGiB6dOnS7cxNTXFiBEj8ODBA1hZWTGkkEakbkfz5s3DX3/9hU2bNuHWrVto2bIl9u7di3HjxuHs2bMAAAMDA5QqVQq1atWChYWFFqumjOjx48d4+fKlSlu5cuWwZ88eXL58GT179gTw6XAMjRs3xvTp09P0qGR4gugX6tq1qzAzMxM6Ojpi5cqVUntSUpLYsmWLSElJkdqUSqU2SqRM4vXr16Jly5ZizZo1Qggh9uzZI8zMzETv3r1FqVKlRK1atcS5c+eEEKrb4sePH7VSL2VMgYGBInv27GLz5s1SW+r25u/vL5ydncXFixfT3C45OfmX1aht7FGhXyL1sM6enp6IiYmBgYEB7OzskJCQAODTrwU3NzeVQYvsPaH0ZGtrixEjRqB+/fq4evUqPD09MW3aNHh7e6NVq1Y4d+4cPD09cfnyZZVtkbt7SJMKFy6M6tWrw8/PD0eOHAHwv8++kiVLIjw8XDpVyOcy+u6ezzGo0C+RGkAcHR1x6tQpuLu7o23btti9ezfi4+PTrJ8Rz1dB2vOt7alUqVLIkSMHDhw4ABcXF/Tq1QsAYGVlBVdXVzRp0gSlSpX6laVSJuPo6IjevXsjMjISCxcuxJ49e6RlOXLkQJ48ebRYnTxknkhGWiH+f/Dry5cvkZycjFy5csHW1hYVK1ZEQkICunfvjnXr1qFx48YwMjKCj48PateuDWdnZ22XThmE+Gzg7KpVqxAeHg4DAwMMGzZMOv1CYmIinj9/jtDQUBQsWBCHDh1C06ZN0b9//3+dKk/0M1JnjVWvXh3Lly/HmDFjMHLkSAQGBsLFxQVbt26FQqFAnTp1tF2qVnF6MqW7gIAATJo0Ca9fv0ajRo3QokULNGnSBADQtWtX7Ny5E0OHDsXr16/h7e2NmzdvokiRIlqumjKaiRMnwsvLC+XKlcOFCxdQvnx5+Pn5wc7ODnv37sW0adPw/v176OvrQwiBGzduQE9PjzPNKF2kblcBAQFYvnw5Dh06hLt37yI4OBhLly6Fo6MjLCws4O/vD319/Uw9FZ5BhdLV7du3Ua9ePQwePBgmJibYtGkTDA0N4e7ujo4dOwIABg4ciCtXriAxMRG+vr4oWbKkdoumDOHzXpCPHz/C3d0d/fv3R6lSpRAaGopGjRrBzs4OO3fuhI2NDfbv34+QkBDExsZi5MiR0NPTy9RfDqQZqYFEfHHsKF1dXQQEBKBz585YsGCBtNsR+LS96ujoqGy/mWlMypcYVCjd3L17F9u2bUN8fDxmzJgBALh58yYmTJiA6OhodO3aVQorr169gqmpKbJmzarNkimD+Dyk3LlzB9HR0VixYgUmTJgAJycnAJ+mhdapUwfZs2fHrl27YGNjo3IfDCn0sz7fDt++fQuFQoFs2bIB+PSZV7p0aUyYMAG9e/eWbvNlDx579BhUKB0IIfD+/Xs0btwY//zzD5o0aQI/Pz9p+Y0bNzBhwgTEx8ejbdu26Nq1qxarpYxs+PDhUtf569evERAQgAYNGkgf/I8fP0aDBg0ghMDp06dVTu5G9DM+DxhTp07Frl27EB0dDWtra0yfPh01a9bE8+fPkTNnTi1XKn8cHUYap1AoYGVlhZkzZ6Jo0aK4cuUKgoKCpOUuLi6YOnUqkpOTpTcvkSZ8Prtn3759OHjwIBYvXozly5cjT548GDt2LK5fvy4dKTlPnjzYt28fSpYsyfNHkUalhpQpU6Zg0aJF0vR3a2trdOjQAevXr0/Ti0dfxx4V0ohvdU8eP34cY8aMgZ2dHTw9PVGzZk1p2e3bt2Fubg4HB4dfWSplAgEBAThz5gyyZcuG0aNHAwBiY2NRunRpmJmZYdWqVShRokSabZa7e0iT3r17h7p168LT0xPdunWT2nv16oW9e/ciODgYhQoV4u6d/8AeFfppqW+yM2fOYMGCBRg/fjxOnz6N5ORkVKtWDVOmTMGrV6+wdOlSHDt2TLpd0aJFGVJI4+Lj4zF+/HgsWLAAt2/fltqzZMmCK1euICYmBh4eHtL5fD7HkEKa9PHjR7x9+1bqrUs9wKWvry/s7e2xcOFCADy45X9hUKGf8vkUuwYNGuD06dPYs2cPxowZg+nTpyMpKQm1atXClClT8O7dO0ydOhUnT57UdtmUgRkbG+PkyZOoXbs2Ll++jD179iAlJQXA/8LK3bt3sWLFCi1XShnJ13ZOZM+eHXZ2dlizZg0AwMjICElJSQAAZ2dnBpTvxKBCPyW1J2XAgAFYsGABduzYgW3btuHy5cvYsmULxo0bJ4WVUaNGQV9fn0daJI35fEyKEEL6srCyssLGjRthaWmJuXPnIjAwUFpmamqKV69ewdfXVys1U8ajVCql0PHixQuEh4fjw4cPAIBJkybh7t270sye1IMMPnv2jCe5/E4co0I/JPWNqVAosHz5cly7dg2+vr54/PgxateujcqVK8PMzAzbtm2Dh4cHxowZA0NDQ3z48AEmJibaLp8ygM+nfi5ZsgTXr1/Ho0ePMGjQIJQuXRoODg548+YNmjVrBl1dXYwZMwb16tVTOcIsx6TQz/D394erqyvy5csHABg9ejQCAwMRFhaG2rVro2nTpujQoQNWrlyJqVOnIlu2bChWrBgePnyIyMhI6aCC9O8YVOi7pH4pfB40rl27hpIlSyI6OhpPnz6Fs7Mz6tevjzx58mDNmjWIioqSjjDbpUsXTJ8+nYPG6Kd9uQ2NHj0aq1evRq9evfDs2TOcPXsWzZo1Q69eveDs7Iw3b96gZcuWePPmDdatWwdXV1ctVk8ZxYEDB9C4cWOMHDkSgwYNwoEDBzBixAh4eXnh3bt3uHLlCgIDAzF+/Hj07t0bN2/ehJeXF3R0dGBpaYkZM2bwoILfK13PzUwZyqNHj0S7du3EP//8I7Zu3SoUCoW4cOGCdErymzdvikKFConz588LIYR4+PChaNy4sRgzZox48uSJNkunDCYlJUUIIYSfn5/IkyePuHz5shBCiJMnTwqFQiHy588vBg4cKB49eiSEEOLly5eiV69e4uPHj1qrmTKepUuXCgcHBzF16lTRr18/sXLlSmnZ06dPxZQpU4STk5M4ePDgV2+fnJz8q0r9rbHPib5bQkICTp48iS5duuDatWtYu3YtypUrJ+0GEkLg48ePOHv2LIoWLYoNGzYAAIYNG8ZjVNBP69SpE2xsbLBgwQLo6OggOTkZBgYG6N27N0qXLo1du3aha9euWLVqFV69eoVp06ZBR0cHPXv2ROHChaXBs/wFSz8rKSkJBgYG8PT0hImJCUaPHo2YmBhMmzZNWsfBwQGdO3fGoUOHcOnSJdSrVy/NyS252+c7aTsp0e8h9Resj4+P0NHRESVKlBBXr15VWScqKkp06dJF5MuXTzg5OQkbGxvply7Rz4iKihKTJ08WVlZWYtKkSVL78+fPxevXr8XLly9F2bJlxfz586X17e3tRY4cOcSiRYuEEELq+SPSlJkzZ4rw8HDh7+8vTExMRMOGDcX9+/dV1mnTpo1o2bKllirMGDjrh/6TEAI6OjoQQsDe3h7z58/Hx48fMW7cOJw6dUpaz8zMDPPmzcPy5csxceJEnD9/HqVLl9Zi5ZQRxMTEwMzMDH369MG4cePg5eWFiRMnAgDs7e1ha2uLly9f4v3799L4k+fPn6Nu3bqYMGECPD09AfBYFfTzxGdDOtevX4+pU6fiwYMHaN++PRYuXIgrV67Ax8cH9+7dAwBER0fj8ePHyJUrl7ZKzhDY70T/Svz/wMWjR4/i+PHjGDRoEJo0aYLatWvDzc0Ns2bNwpgxY1CxYkUAn046WLduXS1XTRnFiBEjsGLFCjx8+BA2Njbo2LEjhBCYOnUqAGDy5MkAPoUZXV1dnD59GkIIzJo1CyYmJtKUUO7uIU1IDbtHjhzB1atX4evrK3329erVC8nJyZg8eTIOHjyI0qVLIy4uDklJSZgzZ442y/79abM7h+Qttat8+/btwtzcXIwePVpcvHhRWn7jxg1RpEgR0bhxY/HXX3+JSZMmCYVCIZ4+fcpudtKI69evi6pVq4qCBQuKN2/eCCGECA8PF/PnzxcWFhZiwoQJ0rr9+vUT+fLlEw4ODsLV1VUkJSUJIbjLhzTr2LFjonjx4iJbtmxi165dQgghEhMTpeWrV68WWbJkEaVLlxYbNmyQBnBz4OyP4/Rk+lcXLlxA/fr1MXv2bPTs2VNqj46OhpmZGe7cuYOePXsiPj4eUVFR2Lp1K3f3kEacPXsWb968QZEiRdCmTRvExsZKZzh+8+YN/Pz8MHXqVOlkb8CnKfMKhQLFixeHjo4OPn78yAGL9FPEF9PhY2NjMXfuXPj6+qJ8+fLYtGkTjI2NkZycDH19fQDAggULcObMGWzbtg0KhYI9ej+JQYX+1dKlS7Fz504cOXIEUVFROHr0KP766y/cuXMHw4YNQ7du3RAeHo6oqCiYm5vD1tZW2yVTBtG5c2e8ePEChw8fRmhoKFq3bo2YmJg0YWXatGno168fpkyZonJ7fjmQJi1btgwODg5o1qwZ4uPjMW/ePOzcuRPVq1fHjBkzYGRkpBJWUgPOl0GH1MfBtPSv7OzscPnyZcycOROtW7fG2rVrYWRkhEaNGqFHjx64f/8+bG1tkT9/foYU0qhly5bh2bNnWLp0KZycnLBp0yaYm5ujUqVKePv2LWxsbNCpUydMmDAB06ZNw+rVq1Vuz5BCmvLmzRscPXoUffv2xcGDB2FsbIwhQ4agcePGOHPmDMaOHYuEhATo6+vj48ePAMCQokHsUSFJ6psqNjYWWbJkAQC8fv0aS5YswdatW1GzZk106dIFf/zxB16/fo2mTZti3bp1KFq0qJYrp4wmtTdk8eLFuHr1KhYsWABLS0vcvXsXnTt3RlRUlNSz8urVKxw/fhytWrXibh7SiC+PdwIA169fx+LFi3H48GH4+PigQYMGiIuLw5w5c3D48GEULlwYy5cvl87lQ5rDHhWSKBQK7N+/H+3atUP16tWxbt066OnpYdq0aTh//jx8fHzg6uoKHR0dLFmyBHFxcexFoXSR2htSvXp1nDhxAvv37wcAFCxYEH5+frC0tETVqlXx+vVr2NnZoU2bNtDT05N+zRL9jNSQ8urVK6mtRIkSGDhwIGrUqIHevXvj4MGDMDU1xYgRI/DHH39AR0dH2u1DGqalQbwkQ6dPnxZGRkZi+PDhon79+sLFxUV4eHiIkJAQaZ3g4GDRq1cvYWVlleaAb0Q/KvWAgl/j4+MjChQoIO7duye13bt3Tzg5OYm2bdv+ivIok/h8O9y8ebPImzevykxHIYS4du2aaNasmciVK5c4duyYEEKI+Ph4aXbZv23L9GPYo0IAgLCwMAQFBWH69OmYM2cODhw4gF69euHGjRuYOXMmHj16hLi4OJw9exbh4eE4fvw4SpYsqe2yKQP4vJv9woULOHPmDI4fPy4tb9q0KcqXL4/g4GCprUCBAjhx4gT++uuvX14vZUyJiYnSdpiUlIR8+fKhUKFC8PT0xOXLl6X1SpQogebNm+Pp06eoW7cuzpw5AyMjI2lMype7jOjn8S+aCS1duhR///23dP3evXto06YN1qxZAyMjI6nd09MTHTp0wO3btzFnzhxERkZi+PDhWL9+PYoVK6aN0imD+fyDfcyYMejSpQu6desGd3d3tGnTBtHR0ciRI4e0/z85OVm6raOjI3R1dZGSkqKt8imDOHDgAPz8/AAAPXv2RM2aNVG2bFkMHToUdnZ28PDwwKVLl6T1c+XKhbZt22L+/PkoX7681M6Bs+lE21069Gs9fvxYtG/fXjx48EClfdSoUcLW1la0bNlSOrBWKm9vb1GwYEExYMAAHrSI0sW8efNEtmzZxPnz50VKSoqYMWOGUCgU4tSpU9I6lSpVEh4eHlqskjKqdu3aCScnJ1GvXj1hbW0trl+/Li07evSoaN68uShWrJg4cOCAePz4sWjevLkYOnSotA7Pyp2+GFQyobi4OCGEEOfOnRPbt2+X2idMmCCKFy8uxo0bJ16/fq1ym5UrV4rHjx//yjIpk1AqlcLd3V34+voKIYTYsWOHsLCwED4+PkIIIWJiYoQQQhw4cEA0bdpU3LhxQ2u1UsZVsmRJoVAoVE56merkyZOiU6dOQqFQiAIFCggXFxfpRxuPfJz+OJcvEzI2NkZkZCRmzpyJ58+fQ1dXF82bN8fkyZORnJyM/fv3QwiBgQMHwsbGBgDQo0cPLVdNGVVCQgLOnz+P6tWr49ixY3B3d8fcuXPh4eGBjx8/Ys6cOahQoQJcXV0xZcoUXLhwAcWLF9d22ZRBJCUlISEhAc7OzsiVKxe2bNmCnDlzom3bttJhGipXrozy5cujZ8+eSE5ORrVq1aCrq8sjH/8iHKOSCSkUClhYWGDo0KHIkycPvLy8EBAQAACYMWMG6tevj6CgIMyYMQNv377VcrWUkdy4cQPPnj0DAAwePBjHjx+HsbEx2rdvj7/++gsNGzbEwoULpZMJvn//HpcuXcK9e/dgaWkJPz8/5M6dW5tPgTIYAwMDmJmZYdu2bdi9ezfKlSuHOXPmYPPmzYiJiZHWS0hIQJUqVVCzZk1pbBRDyq/BoJIJiU+7/FClShUMHjwYlpaWWLx4sUpYcXV1xdWrV1VOa070o4QQuH//PmrUqIE1a9agd+/eWLRoESwtLQEArq6uCAsLQ/ny5VGhQgUAwIsXL9ClSxdERkaiX79+AIB8+fKhdu3aWnselPEIIaBUKqXr69evR8WKFbFw4UJs2LABT548Qc2aNfHnn39K6wM88vGvxCPTZkKpR/2MioqCiYkJbty4genTp+P9+/cYOHAgmjdvDuDTYaNTd/0QacLKlSsxYsQIJCQkYPfu3ahbt650ROQtW7ZgypQpEEJAT08PxsbGUCqVOHPmDPT19XnuHvppERERsLKyUmlL3f62bduGoKAg+Pr6AgB69eqFY8eOISUlBVZWVjh9+jSPOqsl7FHJZD5+/AhdXV2EhoaievXqOHToEMqUKYNhw4bBxsYGkydPxr59+wCAIYU0JvUXq6OjIwwNDWFmZoZz584hNDRUmtLZpk0bbNiwAVOmTIGbmxtGjhyJc+fOSedPYUihn7Fo0SKUK1dOZXcOACmkdOnSBSVKlJDafX19sWLFCixZsgTnzp2DgYEBj3ysLdoZw0u/wrdGo4eEhIjs2bOLHj16qEyrO3bsmOjUqZMIDQ39VSVSBvflNpiUlCTi4+OFt7e3yJkzpxgzZsx/bm+c+kk/a8WKFcLQ0FBs3LgxzbInT56I4sWLi6VLl0ptX9vmuB1qD3f9ZFDi/7szz549izt37iAkJASdO3dGjhw5sH79ely6dAnr169Pc4bPhIQElYO+Ef2oz484GxERgZiYGJWBsF5eXpg3bx66d++Orl27wsnJCU2aNMHYsWPh6uqqrbIpg1m5ciX69+8PPz8//Pnnn4iMjERcXBwSEhJga2uLrFmz4sGDB8ifP7+2S6VvYFDJwHbs2IFevXpJJ2978+YN2rRpg5EjRyJr1qzaLo8ysM9DypQpU3Do0CHcunULbm5uaNGiBRo0aADgU1jx8vJCsWLF8O7dOzx58gShoaE8uRtpxKNHj+Ds7Aw3Nzds3rwZt27dQt++ffHmzRuEhYWhRo0a6NOnDxo3bqztUulfcG5VBnXr1i0MHjwY8+fPR5cuXRAdHQ0LCwsYGxszpFC6Sw0pEyZMgK+vL+bOnQsnJyf07t0bDx48QGRkJNq1a4dBgwbB2toa169fR0JCAk6ePCmdBZlTP+ln2djYYPbs2ZgwYQKGDRuGQ4cOoUqVKmjWrBmio6Oxfft2jBs3DtbW1uzFkzNt7ncizTh69Kh4+PBhmrYKFSoIIYS4c+eOyJ07t+jRo4e0/OHDh9znSunq6NGjomjRouLEiRNCCCHOnDkjDAwMRJEiRUT58uXFtm3bpHU/PzUDT9NAmpSQkCDmzZsndHR0RLdu3URSUpK07NKlS6JgwYJi2bJlWqyQ/gtn/fzGhBC4evUqGjRoAG9vb4SFhUnLnj9/DiEEYmNjUb9+fdStWxcrVqwAAAQFBcHb2xvv37/XVumUAYkv9iLnzJkTffr0QZUqVXDo0CE0btwYvr6+CAoKwsOHD7F48WKsXr0aAFR6T9iTQppkaGiI3r17Y8eOHejRowf09fWlbbVMmTIwMjLC06dPtVwl/RsGld+YQqFAqVKlMH/+fGzduhXe3t549OgRAKBRo0Z4/fo1zMzM0KhRI/j6+krd8YGBgbhx4wane5LGKJVKaUD2o0ePEBcXh/z586Ndu3ZISEjAokWLMGDAAHTq1An29vYoWrQoQkJCcOfOHS1XTpmBqakpGjRoIB1MMHVbDQ8Ph7GxMYoWLarN8ug/8KfLbyx1P76npycAYO7cudDV1UWPHj2QJ08ejB8/HjNmzMDHjx/x4cMHhISEYNOmTVi1ahVOnTolHRWU6Gd8PnB2woQJOHv2LIYPH44aNWrAysoKcXFxePnyJUxMTKCjo4PExEQ4OTlhxIgRqF+/vparp4xIfDaTMZWhoaH0/5SUFLx9+xY9e/aEQqFAu3btfnWJpAYGld9Yao/IoUOHoKOjg+TkZHh5eSEhIQEjR46Em5sb4uPjMWPGDGzfvh3Zs2eHgYEBgoODUaxYMS1XTxnF5yFlxYoV8PX1RalSpaSZO4mJibCyssKpU6ekAbPv3r3DmjVroKOjoxJ0iH5EWFgYIiIikC1bNtjZ2f3rEWSTk5Ph5+eHTZs2ISIiAufOnZPO3cNeZnni9OTfXGBgoHQiN1NTUzx48ACLFy9G3759MXLkSNjY2CAmJgbHjx+Hk5MTbG1tYWtrq+2y6Tf3Zbi4f/8+mjdvjtmzZ6NJkyZp1rt48SLGjRuH2NhYWFlZISAgAPr6+gwp9NM2bNiA+fPnIzw8HNbW1ujfv7/UU5Lqy+0sKCgIt2/fRr9+/TjL7DfAoPIbUyqV6NChAxQKBTZu3Ci1L1myBCNGjICnpyf69u2LvHnzarFKymhatmyJMWPGoGzZslLbtWvXUL9+fRw/fhwFCxb86kEEExISIISAkZERFAoFvxzop23YsAGenp7S4fFnzJiBR48e4fTp09K2lRpSIiMjcejQIbi5uancB3tS5I8/ZX5jqb8QUrvYk5KSAAD9+/eHh4cH1q5di8WLF6vMBiL6Webm5nBxcVFpMzIywvv373Hr1i2pLfX8PmfPnsWOHTugo6MDY2NjKBQKKJVKhhT6KZcuXcLUqVOxdOlSdOvWDcWLF8fgwYPh7OyMM2fO4Pbt24iOjpZ2i69fvx59+/bFX3/9pXI/DCnyx6DyG3rx4oX0/4IFC2Lv3r0IDw+HgYEBkpOTAQAODg4wMTFBcHAwjI2NtVUqZSDPnz8HAKxduxYGBgZYvHgxDh06hKSkJDg7O6NNmzaYO3cuDh8+DIVCAR0dHaSkpGD69OkIDg5WGTfA3T30sxITEzFo0CA0atRIaps0aRKOHDmCdu3aoXPnzmjbti0iIiKgr6+Phg0bYtiwYRw4+xvirp/fzPXr19GvXz+0b98effr0QVJSEmrWrIm3b9/i2LFjsLOzAwCMHDkSRYsWRePGjdOc1pxIXT179gQAjB49WtqV6OLigrdv32Lz5s2oWrUqTp48iYULF+LmzZvo0KEDDAwMcOTIEbx58wZXrlxhDwpplFKpxJs3b5A9e3YAQOfOnXH48GHs2bMHjo6OOH78OKZNm4aRI0eiffv2KmNWuLvn98KfNb8ZExMTWFhYYPv27Vi3bh0MDAywYsUK2NjYoHDhwmjevDnq1q2LRYsWoWzZsgwppBEuLi44ePAgvL29ERISAgC4ceMGChYsiA4dOuDEiROoUqUKpkyZgs6dO8PPzw9Hjx5Frly5cPnyZWnAIpGm6OjoSCEFAIYNG4bz58+jbNmyyJ49Oxo0aICIiAi8fv06zVRlhpTfC3tUfkMhISEYM2YMXr16hZ49e6JTp05ISUnBvHnzEBYWBiEE+vfvjyJFimi7VMpA1qxZgwkTJqBt27bo2bMnChYsCACoWrUqHj9+DH9/f1StWhUA8OHDB5iYmEi35cBZ+tWePXuGjh07YtiwYTzp4G+OQeU3cOXKFbx8+VJlX2xISAjGjRuH0NBQ9O/fHx06dNBihZSRfT61c/Xq1ZgwYQLatWuXJqyEhYVhw4YNqFChgsp4lK8dfItIHZ9vQ6n/T/33zZs3sLGxUVk/Li4O7dq1Q1RUFI4ePcoelN8cg4rMxcTEoFGjRtDV1cWIESPQoEEDaVloaCjq168PExMT9OjRA3379tVipZTRfOsYJytXrsTkyZPRpk0b9OrVSworNWvWxOnTp3Hu3DmUKlXqV5dLGdTXtsPUtoCAAGzatAmLFi2Cvb094uPjsXv3bvj5+eH58+e4ePEi9PX1OSblN8cxKjKVmh+zZs2KOXPmQE9PD0uXLsX+/fuldZycnFCjRg28evUKR44cQWRkpJaqpYzm8y+HM2fOIDg4GNevXwfwaWDt+PHjsXnzZvj6+uLevXsAgKNHj6JHjx5ppi4T/ahTp05JJwwcMmQIZs2aBeDT+JQtW7agc+fOqF27Nuzt7QF8OqHl48ePkTdvXly6dAn6+vr4+PEjQ8pvjj0qMpPanZn6CyD1C+P8+fMYNWoUTE1N0adPH2k30NChQ5E3b160bNkSOXLk0HL1lBF83s0+ZMgQbNmyBbGxsXBwcECuXLlw4MABAMCKFSswbdo0tG3bFu7u7iqnZeAvWPoZQghERUXB1tYWDRo0gLW1NQICAnDy5EkUK1YMkZGRcHV1haenJ/r37y/d5vPPToDbYUbBoCIjqW+04OBg7NmzBxEREahcuTL+/PNPWFhY4Ny5cxg/fjwSExORN29emJiYYMuWLbh+/TocHBy0XT5lAJ+HlEOHDmHQoEHw9fWFhYUF/vnnH0ycOBGmpqa4dOkSgE9jVjw8PODl5YV+/fpps3TKgMLDw5E3b16kpKRgx44daNiwobTsa2NTvjaWhX5/3PUjIwqFAjt37kSTJk3w4cMHfPjwAX5+fujTpw8iIiLg6uqKefPmoVq1aggJCcGjR49w9OhRhhTSmNQP9j179mDz5s2oXbs2KleujGLFiqF169bYsGEDYmNj0adPHwBA9+7dsXv3buk6kaYkJibi1atXMDExga6uLtasWSNNjQcAa2tr6f+pR0H+PJgwpGQc7FGRkUuXLqFt27YYNWoUevTogbCwMJQuXRrGxsYoWbIkNmzYACsrK+ncKV9OASXShIiICDRu3BjXr19HjRo1sG/fPpXlY8aMwenTp/H333/D1NRUamc3O/2sbw3gDg0NhYuLC2rUqIEFCxYgX758WqiOtIU9Kloyc+ZMjB07VvolAHw6RLmrqyt69OiB0NBQ1KpVC82bN8e4ceNw8eJF9O3bFxERETAyMgIAhhTSiM+3QQCwsrLC+vXrUadOHVy9ehVr165VWZ4/f368e/cO8fHxKu0MKfQzPg8px44dw8aNG3H9+nU8f/4cTk5OOH36NIKDgzFixAhpAHeLFi2wZMkSbZZNvwB7VLRkyZIlGDhwIGbMmIERI0ZIb9A7d+6gYMGCaNasmfSFoVQqUbJkSYSEhKBRo0bYsmULz5VCGvH5l8PDhw+hUChgYmICOzs7PH78GJ6enoiLi8Off/4JDw8PvH79Gu7u7jAyMsK+ffvYvU4aN2zYMKxfvx56enrIkiUL7OzssHDhQpQtWxY3b95EjRo14OTkhKSkJHz8+BHXr1+XTsxKGZSgX06pVAohhFi5cqXQ0dERU6dOFcnJydLyp0+fisKFC4t9+/YJIYSIiIgQ7dq1E0uWLBHPnj3TSs2U8aRuh0IIMXHiRFG8eHFRqFAhkSNHDuHr6yuEECIkJEQ0bNhQGBkZiYIFC4oWLVqIevXqifj4eCGEECkpKVqpnTKOz7fDoKAgUaJECXHy5EkREREhdu/eLVq0aCGcnZ3FlStXhBBCPHjwQEyZMkVMnz5d+tz8/POTMh4GlV9MqVRKb0ylUin++usvoaOjI6ZNmyZ96IeHh4uSJUsKDw8PERoaKsaMGSPKlSsnXr9+rc3SKYOaMmWKsLGxEYGBgSI2Nla0aNFCWFhYiNu3bwshhHj06JFo1KiRKFmypFi4cKF0u4SEBC1VTBnR+vXrRb9+/USvXr1U2i9evCjq168v3N3dRWxsrBBCNdwwpGR83H+gBQqFAocPH8bQoUNRpkwZ6Rwqs2bNghAClpaW6NChA44fPw5XV1ds2LABPj4+sLW11XbplAF8PiZFqVTiwoULWLhwIerWrYugoCAcO3YMM2bMQJEiRZCcnIw8efJg/vz5yJ49O/bv34+AgAAAgKGhobaeAmUA4otRB7t27cKyZctw7do1JCYmSu1ly5ZFlSpVcOrUKaSkpABQndHDc0hlAtpOSpnRjh07hLGxsZg6daq4ePGiEEIIX19faTeQEEIkJiaK27dvi6CgIPH06VNtlksZ1IQJE8SsWbNEzpw5xb1790RwcLDIkiWL8Pb2FkII8eHDBzF27FgRGhoqhBDi/v37onHjxqJs2bIiICBAm6XTb+7zHhF/f3+xYcMGIYQQ/fr1ExYWFmLZsmUiKipKWicwMFAUKlRI2hYpc2FQ+cXu3bsn8uTJI5YvX55m2YoVK6TdQESa9vl4ks2bNwtHR0dx69Yt0bFjR1GvXj1hYmIiVq9eLa3z/PlzUaVKFbFhwwbptnfu3BGtW7cWYWFhv7x+yhg+3w5v3bolSpUqJUqUKCF2794thBDC3d1d5M+fX0yfPl2EhISIkJAQUatWLVGtWjWVgEOZB/vMfrEnT55AX19f5QiLqTMvevXqBVNTU3Tq1AmGhoYYNmyYFiuljCZ1ds/x48dx7NgxDB06FEWLFpUOJFirVi1069YNwKeTYfbo0QO6urpo3749dHR0oFQqUahQIWzcuJGzLOiHpW6Hw4cPx+PHj2FsbIy7d+9i8ODB+PjxI9atW4du3bph3LhxWLJkCSpVqoQsWbJgy5YtUCgU3zzWCmVcDCq/WGxsrMrxJ5RKpbS/9dixYyhTpgy2bNmict4UIk159eoVunfvjvDwcIwZMwYA0Lt3bzx8+BBHjx5FqVKlkD9/fjx58gQJCQm4ePEidHV1VQ7mxjEB9LPWrVuHVatW4ciRI8iTJw8SExPh7u6OmTNnQkdHB2vWrIGJiQm2bt2K+vXro23btjA0NERSUhIMDAy0XT79Yoylv1iJEiXw9u1b+Pr6Avj06yI1qOzevRsbN25Ey5YtUbhwYW2WSRmUnZ0dAgICkD17duzduxeXL1+Grq4u5s6diylTpqBmzZqws7NDmzZtvnn2WR47hX5WSEgIihUrhpIlS8Lc3Bx2dnZYs2YNdHV1MXjwYOzcuRNLly5F7dq1sWDBAuzZswcxMTEMKZkUfxr9Ynny5MHSpUvRu3dvJCcno3PnztDV1cW6deuwbt06nD17lkf4pHTl4uKCHTt2wN3dHT4+Pujfvz9cXFzQtGlTNG3aVGXdlJQU9qCQxoj/P1GgoaEhEhISkJSUBCMjIyQnJyNnzpyYOXMmGjduDC8vLxgbG2Pjxo1o3749hg0bBj09Pbi5uWn7KZAW8Mi0WqBUKrFjxw54eHjA1NQURkZG0NXVxaZNm1CqVCltl0eZxNWrV9GjRw+UKVMGAwcORNGiRbVdEmUSN2/eRKlSpTB+/HhMnDhRag8MDMTKlSvx/v17pKSk4NixYwCArl27Yvz48cibN6+WKiZtYlDRohcvXiAsLAwKhQJ58uRB9uzZtV0SZTJXr16Fh4cHcufOjTlz5iBPnjzaLokyiXXr1qFXr14YNGgQ2rRpA0tLSwwYMAAVK1ZEixYtULRoUezfvx8NGjTQdqmkZQwqRJnchQsX4OPjg1WrVnE2Bf1SO3bsQN++fWFgYAAhBGxtbXHmzBm8fv0aderUwfbt2+Hi4qLtMknLGFSISBo7wKmf9Ks9f/4cT58+RXJyMipVqgQdHR2MHj0au3btQnBwMOzs7LRdImkZgwoRAfhfWCHSltu3b2P27Nn4+++/cfjwYZQsWVLbJZEMcDg/EQHgtGPSro8fPyIpKQm2trY4fvw4B3eThD0qREQkG8nJyTzyMalgUCEiIiLZ4qg5IiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSL6rRw7dgwKhQKRkZHffRsnJyd4eXmlW01ElH4YVIhIo7p06QKFQoHevXunWebp6QmFQoEuXbr8+sKI6LfEoEJEGufo6IjNmzcjPj5eaktISMDGjRuRK1cuLVZGRL8bBhUi0rjSpUvD0dERAQEBUltAQABy5cqFUqVKSW2JiYkYMGAAbG1tYWRkhMqVK+PixYsq9/X333+jQIECMDY2Ro0aNRAaGprm8U6dOoUqVarA2NgYjo6OGDBgAOLi4tLt+RHRr8OgQkTpolu3bli7dq10fc2aNejatavKOiNGjMCOHTuwfv16XLlyBc7OzqhXrx4iIiIAAE+fPkXLli3RpEkTXLt2DT169MCoUaNU7uPhw4eoX78+WrVqhRs3bmDLli04deoU+vXrl/5PkojSHYMKEaWLjh074tSpUwgLC0NYWBhOnz6Njh07Ssvj4uLg7e2NuXPnokGDBihSpAhWrlwJY2NjrF69GgDg7e2NfPnyYf78+ShYsCA6dOiQZnzLzJkz0aFDBwwaNAj58+dHxYoVsXjxYmzYsAEJCQm/8ikTUTrgSQmJKF3Y2NigUaNGWLduHYQQaNSoEaytraXlDx8+RHJyMipVqiS16evr448//sCdO3cAAHfu3EH58uVV7rdChQoq169fv44bN27A399fahNCQKlU4vHjxyhcuHB6PD0i+kUYVIgo3XTr1k3aBbNs2bJ0eYzY2Fh4eHhgwIABaZZx4C7R749BhYjSTf369ZGUlASFQoF69eqpLMuXLx8MDAxw+vRp5M6dG8CnM+devHgRgwYNAgAULlwYe/bsUbnduXPnVK6XLl0a//zzD5ydndPviRCR1nCMChGlG11dXdy5cwf//PMPdHV1VZaZmpqiT58+GD58OA4ePIh//vkHPXv2xIcPH9C9e3cAQO/evfHgwQMMHz4c9+7dw8aNG7Fu3TqV+xk5ciTOnDmDfv364dq1a3jw4AF2797NwbREGQSDChGlKzMzM5iZmX112axZs9CqVSt06tQJpUuXRkhICAIDA2FpaQng066bHTt2YNeuXShRogR8fHwwY8YMlftwcXHB8ePHcf/+fVSpUgWlSpXChAkTYG9vn+7PjYjSn0IIIbRdBBEREdHXsEeFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhki0GFiIiIZItBhYiIiGSLQYWIiIhk6/8AHoK08GWUizwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "## calculate avg response time\n", + "unique_models = set(result[\"response\"]['model'] for result in result[\"results\"])\n", + "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", + "for completion_result in result[\"results\"]:\n", + " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", + "\n", + "avg_response_time = {}\n", + "for model, data in model_dict.items():\n", + " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", + "\n", + "models = list(avg_response_time.keys())\n", + "response_times = list(avg_response_time.values())\n", + "\n", + "plt.bar(models, response_times)\n", + "plt.xlabel('Model', fontsize=10)\n", + "plt.ylabel('Average Response Time')\n", + "plt.title('Average Response Times for each Model')\n", + "\n", + "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "inSDIE3_IRds" + }, + "source": [ + "# Duration Test endpoint\n", + "\n", + "Run load testing for 2 mins. Hitting endpoints with 100+ queries every 15 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ePIqDx2EIURH" + }, + "outputs": [], + "source": [ + "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", + "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", + "prompt = \"Where does Paul Graham live?\"\n", + "final_prompt = context + prompt\n", + "result = load_test_model(models=models, prompt=final_prompt, num_calls=100, interval=15, duration=120)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 552 }, + "id": "k6rJoELM6t1K", + "outputId": "f4968b59-3bca-4f78-a88b-149ad55e3cf7" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "# Duration Test endpoint\n", - "\n", - "Run load testing for 2 mins. Hitting endpoints with 100+ queries every 15 seconds." - ], - "metadata": { - "id": "inSDIE3_IRds" - } - }, - { - "cell_type": "code", - "source": [ - "models=[\"gpt-3.5-turbo\", \"replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781\", \"claude-instant-1\"]\n", - "context = \"\"\"Paul Graham (/ɡræm/; born 1964)[3] is an English computer scientist, essayist, entrepreneur, venture capitalist, and author. He is best known for his work on the programming language Lisp, his former startup Viaweb (later renamed Yahoo! Store), cofounding the influential startup accelerator and seed capital firm Y Combinator, his essays, and Hacker News. He is the author of several computer programming books, including: On Lisp,[4] ANSI Common Lisp,[5] and Hackers & Painters.[6] Technology journalist Steven Levy has described Graham as a \"hacker philosopher\".[7] Graham was born in England, where he and his family maintain permanent residence. However he is also a citizen of the United States, where he was educated, lived, and worked until 2016.\"\"\"\n", - "prompt = \"Where does Paul Graham live?\"\n", - "final_prompt = context + prompt\n", - "result = load_test_model(models=models, prompt=final_prompt, num_calls=100, interval=15, duration=120)" - ], - "metadata": { - "id": "ePIqDx2EIURH" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "## calculate avg response time\n", - "unique_models = set(unique_result[\"response\"]['model'] for unique_result in result[0][\"results\"])\n", - "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", - "for iteration in result:\n", - " for completion_result in iteration[\"results\"]:\n", - " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", - "\n", - "avg_response_time = {}\n", - "for model, data in model_dict.items():\n", - " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", - "\n", - "models = list(avg_response_time.keys())\n", - "response_times = list(avg_response_time.values())\n", - "\n", - "plt.bar(models, response_times)\n", - "plt.xlabel('Model', fontsize=10)\n", - "plt.ylabel('Average Response Time')\n", - "plt.title('Average Response Times for each Model')\n", - "\n", - "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", - "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 552 - }, - "id": "k6rJoELM6t1K", - "outputId": "f4968b59-3bca-4f78-a88b-149ad55e3cf7" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIXCAYAAABghH+YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwdUlEQVR4nO3dd1QU198G8GfpoNKUooKCYuwIaiL2GrGLJnYFOxrsNZbYFTsYG2JDjV2xRKOIir33EhsWLBGwUaXJ3vcPX+bnCiYsLi6Oz+ecPbp37ux+lx3YZ+/cmVEIIQSIiIiIZEJH2wUQERERaRLDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNEcmSg4MDunfvru0y1DZnzhyUKFECurq6cHFx0XY5GnfkyBEoFAps27ZN26WoTaFQYNKkSWqv9+jRIygUCgQFBWm8Jsoaww19tiVLlkChUKBatWraLiXPcXBwgEKhkG758uXDDz/8gLVr12q7tK9Oxodidm5fqwMHDmDUqFGoWbMmVq9ejRkzZmi7pDwnKChIep9PnDiRabkQAvb29lAoFGjRooUWKqS8QE/bBdDXb/369XBwcMC5c+cQHh4OJycnbZeUp7i4uGD48OEAgOfPn2PFihXw8vJCSkoK+vTpo+Xqvh5ly5bFunXrVNrGjBmD/PnzY9y4cZn637lzBzo6X9f3t8OHD0NHRwcrV66EgYGBtsvJ04yMjLBhwwbUqlVLpf3o0aN4+vQpDA0NtVQZ5QUMN/RZHj58iFOnTiE4OBje3t5Yv349Jk6c+EVrUCqVSE1NhZGR0Rd93uwqWrQounbtKt3v3r07SpQoAT8/P4YbNdjY2Kj8HAFg5syZKFSoUKZ2AF/lh1t0dDSMjY01FmyEEEhOToaxsbFGHi8vadasGbZu3Yrff/8denr/+yjbsGEDqlSpgpcvX2qxOtK2r+trDeU569evh4WFBZo3b46ff/4Z69evl5alpaXB0tISPXr0yLReXFwcjIyMMGLECKktJSUFEydOhJOTEwwNDWFvb49Ro0YhJSVFZV2FQoEBAwZg/fr1KF++PAwNDbF//34AwNy5c1GjRg0ULFgQxsbGqFKlSpb79pOSkjBo0CAUKlQIBQoUQKtWrfDs2bMs96k/e/YMPXv2hI2NDQwNDVG+fHmsWrUqxz8zKysrlClTBvfv31dpVyqV8Pf3R/ny5WFkZAQbGxt4e3vjzZs3Kv0uXLgAd3d3FCpUCMbGxnB0dETPnj2l5Rn79+fOnQs/Pz8UL14cxsbGqFu3Lm7cuJGpnsOHD6N27drIly8fzM3N0bp1a9y6dUulz6RJk6BQKBAeHo7u3bvD3NwcZmZm6NGjB96+favSNzQ0FLVq1YK5uTny58+P0qVLY+zYsSp9svtef46P59xk7M44ceIEBg0aBCsrK5ibm8Pb2xupqamIiYmBp6cnLCwsYGFhgVGjRkEIofKYmnqPsqJQKLB69WokJiZKu10y5mi8e/cOU6dORcmSJWFoaAgHBweMHTs208/LwcEBLVq0QEhICKpWrQpjY2MsW7bsX5/37NmzaNKkCczMzGBiYoK6devi5MmTKn0iIiLwyy+/oHTp0jA2NkbBggXRrl07PHr0KNPjxcTEYOjQoXBwcIChoSHs7Ozg6emZKWwolUpMnz4ddnZ2MDIyQsOGDREeHv6vtX6oU6dOePXqFUJDQ6W21NRUbNu2DZ07d85yncTERAwfPhz29vYwNDRE6dKlMXfu3Ezvc0pKCoYOHQorKyvp78PTp0+zfExN/30gDRFEn6FMmTKiV69eQgghjh07JgCIc+fOSct79uwpzM3NRUpKisp6a9asEQDE+fPnhRBCpKeni8aNGwsTExMxZMgQsWzZMjFgwAChp6cnWrdurbIuAFG2bFlhZWUlJk+eLBYvXiwuX74shBDCzs5O/PLLL2LRokVi/vz54ocffhAAxJ49e1Qeo3379gKA6Natm1i8eLFo3769qFSpkgAgJk6cKPWLjIwUdnZ2wt7eXkyZMkUsXbpUtGrVSgAQfn5+//nzKV68uGjevLlKW1pamrC1tRU2NjYq7b179xZ6enqiT58+IiAgQIwePVrky5dPfP/99yI1NVUIIURUVJSwsLAQ3333nZgzZ45Yvny5GDdunChbtqz0OA8fPhQARMWKFYWDg4OYNWuWmDx5srC0tBRWVlYiMjJS6hsaGir09PTEd999J2bPni0mT54sChUqJCwsLMTDhw+lfhMnThQAhKurq2jbtq1YsmSJ6N27twAgRo0aJfW7ceOGMDAwEFWrVhULFiwQAQEBYsSIEaJOnTpSH3Xe6/9Svnx5Ubdu3U/+7L28vKT7q1evFgCEi4uLaNKkiVi8eLHo1q2b9Bpq1aolOnfuLJYsWSJatGghAIg1a9bkynuUlXXr1onatWsLQ0NDsW7dOrFu3Tpx//59IYQQXl5eAoD4+eefxeLFi4Wnp6cAIDw8PDK9ZicnJ2FhYSF+/fVXERAQIMLCwj75nIcOHRIGBgaievXqYt68ecLPz084OzsLAwMDcfbsWanf1q1bRaVKlcSECRNEYGCgGDt2rLCwsBDFixcXiYmJUr/4+HhRoUIFoaurK/r06SOWLl0qpk6dKr7//nvpdzQsLEzalqpUqSL8/PzEpEmThImJifjhhx/+9Wf04ft4/vx5UaNGDdGtWzdp2c6dO4WOjo549uxZpt89pVIpGjRoIBQKhejdu7dYtGiRaNmypQAghgwZovIcXbt2FQBE586dxaJFi0Tbtm2Fs7Nzjv8+ZPxOrl69+j9fH2kGww3l2IULFwQAERoaKoR4/8fDzs5ODB48WOoTEhIiAIg///xTZd1mzZqJEiVKSPfXrVsndHR0xPHjx1X6BQQECADi5MmTUhsAoaOjI27evJmpprdv36rcT01NFRUqVBANGjSQ2i5evJjlH7Tu3btn+uPVq1cvUbhwYfHy5UuVvh07dhRmZmaZnu9jxYsXF40bNxYvXrwQL168ENevX5c+UH18fKR+x48fFwDE+vXrVdbfv3+/SvuOHTtUQmFWMv6QGhsbi6dPn0rtZ8+eFQDE0KFDpTYXFxdhbW0tXr16JbVdvXpV6OjoCE9PT6ktI9z07NlT5bnatGkjChYsKN338/MTAMSLFy8+WZ867/V/yUm4cXd3F0qlUmqvXr26UCgUol+/flLbu3fvhJ2dncpja/I9+hQvLy+RL18+lbYrV64IAKJ3794q7SNGjBAAxOHDh1VeMwCxf//+/3wupVIpSpUqlenn8fbtW+Ho6Ch+/PFHlbaPnT59WgAQa9euldomTJggAIjg4OAsn0+I/4WbsmXLqnzpWbBggQAgrl+//q91fxhuFi1aJAoUKCDV165dO1G/fn3pZ/FhuNm5c6cAIKZNm6byeD///LNQKBQiPDxcCPG/n/cvv/yi0q9z5845/vvAcPPlcbcU5dj69ethY2OD+vXrA3g/rN6hQwds2rQJ6enpAIAGDRqgUKFC2Lx5s7TemzdvEBoaig4dOkhtW7duRdmyZVGmTBm8fPlSujVo0AAAEBYWpvLcdevWRbly5TLV9OHcgjdv3iA2Nha1a9fGpUuXpPaMXVi//PKLyroDBw5UuS+EwPbt29GyZUsIIVTqcnd3R2xsrMrjfsqBAwdgZWUFKysrVKxYEevWrUOPHj0wZ84clddvZmaGH3/8UeV5qlSpgvz580uv39zcHACwZ88epKWl/evzenh4oGjRotL9H374AdWqVcNff/0F4P3k5itXrqB79+6wtLSU+jk7O+PHH3+U+n2oX79+Kvdr166NV69eIS4uTqW+Xbt2QalUZlmXuu+1pvXq1UvliKpq1apBCIFevXpJbbq6uqhatSoePHigUrem36PsyHgfhg0bptKeMUl97969Ku2Ojo5wd3f/z8e9cuUK7t27h86dO+PVq1fS60lMTETDhg1x7Ngx6T388PcqLS0Nr169gpOTE8zNzVV+B7Zv345KlSqhTZs2mZ7v46PYevTooTK3qHbt2gCg8jP/L+3bt0dSUhL27NmD+Ph47Nmz55O7pP766y/o6upi0KBBKu3Dhw+HEAL79u2T+gHI1G/IkCEq9zX194Fyxzcdbo4dO4aWLVuiSJEiUCgU2LlzZ64/57Nnz9C1a1dpTkjFihVx4cKFXH9eTUtPT8emTZtQv359PHz4EOHh4QgPD0e1atUQFRWFQ4cOAQD09PTw008/YdeuXdL8gODgYKSlpamEm3v37uHmzZtSCMi4fffddwDeT7T8kKOjY5Z17dmzB25ubjAyMoKlpSWsrKywdOlSxMbGSn0iIiKgo6OT6TE+PsrrxYsXiImJQWBgYKa6MuYRfVxXVqpVq4bQ0FDs378fc+fOhbm5Od68eaPyh/3evXuIjY2FtbV1pudKSEiQnqdu3br46aefMHnyZBQqVAitW7fG6tWrs5yrUqpUqUxt3333nTRPIiIiAgBQunTpTP3Kli0rfdB9qFixYir3LSwsAECac9KhQwfUrFkTvXv3ho2NDTp27IgtW7aoBB1132tN+/g1mJmZAQDs7e0ztX84lyY33qPsyNheP94+bW1tYW5uLr2PGT71u/Gxe/fuAQC8vLwyvZ4VK1YgJSVF+r1JSkrChAkTpLkqhQoVgpWVFWJiYlR+t+7fv48KFSpk6/n/a1vKDisrKzRq1AgbNmxAcHAw0tPT8fPPP2fZNyIiAkWKFEGBAgVU2suWLSstz/hXR0cHJUuWVOn38e+Jpv4+UO74po+WSkxMRKVKldCzZ0+0bds215/vzZs3qFmzJurXr499+/bBysoK9+7dk36pvyaHDx/G8+fPsWnTJmzatCnT8vXr16Nx48YAgI4dO2LZsmXYt28fPDw8sGXLFpQpUwaVKlWS+iuVSlSsWBHz58/P8vk+/uDJ6uiP48ePo1WrVqhTpw6WLFmCwoULQ19fH6tXr8aGDRvUfo0ZH8hdu3aFl5dXln2cnZ3/83EKFSqERo0aAQDc3d1RpkwZtGjRAgsWLJC+jSuVSlhbW6tMyP6QlZUVAEgnPztz5gz+/PNPhISEoGfPnpg3bx7OnDmD/Pnzq/061aGrq5tlu/j/CZnGxsY4duwYwsLCsHfvXuzfvx+bN29GgwYNcODAAejq6qr9Xmvap15DVu3ig4mm2n6Psnv+nuweGZWxfc+ZM+eTJwvMqHXgwIFYvXo1hgwZgurVq8PMzAwKhQIdO3b85Ajdf/mvbSm7OnfujD59+iAyMhJNmzaVRs5ym6b+PlDu+KbDTdOmTdG0adNPLk9JScG4ceOwceNGxMTEoEKFCpg1axbq1auXo+ebNWsW7O3tsXr1aqktu9+y8pr169fD2toaixcvzrQsODgYO3bsQEBAAIyNjVGnTh0ULlwYmzdvRq1atXD48OFM5yUpWbIkrl69ioYNG+b4JGzbt2+HkZERQkJCVA4D/vDnDQDFixeHUqnEw4cPVUY3Pj5SI+NIifT0dCmcaELz5s1Rt25dzJgxA97e3siXLx9KliyJgwcPombNmtn6cHJzc4ObmxumT5+ODRs2oEuXLti0aRN69+4t9cn4Zv6hu3fvwsHBAcD7nwPw/nwwH7t9+zYKFSqEfPnyqf36dHR00LBhQzRs2BDz58/HjBkzMG7cOISFhaFRo0Yaea+1ITfeo+zI2F7v3bsnjTIAQFRUFGJiYqT3UV0ZIxOmpqb/uX1v27YNXl5emDdvntSWnJyMmJiYTI+Z1RF5ualNmzbw9vbGmTNnVHZ/f6x48eI4ePAg4uPjVUZvbt++LS3P+FepVOL+/fsqozUf/57k1t8H0oxverfUfxkwYABOnz6NTZs24dq1a2jXrh2aNGmS5YdGduzevRtVq1ZFu3btYG1tDVdXVyxfvlzDVee+pKQkBAcHo0WLFvj5558z3QYMGID4+Hjs3r0bwPsPu59//hl//vkn1q1bh3fv3qnskgLe7zt/9uxZlj+PpKSkTLtHsqKrqwuFQiHN9wHeHxb98e7GjPkIS5YsUWlfuHBhpsf76aefsH379iz/YL948eI/a/qU0aNH49WrV9Lrbd++PdLT0zF16tRMfd+9eyd9iLx58ybTN9uMb90f7/bYuXMnnj17Jt0/d+4czp49KwX6woULw8XFBWvWrFH5kLpx4wYOHDiAZs2aqf26Xr9+nant4/o08V5rQ268R9mR8T74+/urtGeMfDVv3lztxwSAKlWqoGTJkpg7dy4SEhIyLf9w+9bV1c30mhYuXKjyuwYAP/30E65evYodO3Zkejx1R2SyK3/+/Fi6dCkmTZqEli1bfrJfs2bNkJ6ejkWLFqm0+/n5QaFQSL8XGf/+/vvvKv0+/vnn5t8H+nzf9MjNv3n8+DFWr16Nx48fo0iRIgCAESNGYP/+/Tk+LfqDBw+wdOlSDBs2DGPHjsX58+cxaNAgGBgYfHJYMy/avXs34uPj0apVqyyXu7m5wcrKCuvXr5dCTIcOHbBw4UJMnDgRFStWVPkGCgDdunXDli1b0K9fP4SFhaFmzZpIT0/H7du3sWXLFum8Hf+mefPmmD9/Ppo0aYLOnTsjOjoaixcvhpOTE65duyb1q1KlCn766Sf4+/vj1atXcHNzw9GjR3H37l0AqsP/M2fORFhYGKpVq4Y+ffqgXLlyeP36NS5duoSDBw9m+WGeHU2bNkWFChUwf/58+Pj4oG7duvD29oavry+uXLmCxo0bQ19fH/fu3cPWrVuxYMEC/Pzzz1izZg2WLFmCNm3aoGTJkoiPj8fy5cthamqaKYw4OTmhVq1a6N+/P1JSUuDv74+CBQti1KhRUp85c+agadOmqF69Onr16oWkpCQsXLgQZmZmObqGzpQpU3Ds2DE0b94cxYsXR3R0NJYsWQI7OzvpTLKaeK+1ITfeo+yoVKkSvLy8EBgYiJiYGNStWxfnzp3DmjVr4OHhIU3oV5eOjg5WrFiBpk2bonz58ujRoweKFi2KZ8+eISwsDKampvjzzz8BAC1atMC6detgZmaGcuXK4fTp0zh48CAKFiyo8pgjR47Etm3b0K5dO/Ts2RNVqlTB69evsXv3bgQEBKjsitak7Pz9bNmyJerXr49x48bh0aNHqFSpEg4cOIBdu3ZhyJAh0kiWi4sLOnXqhCVLliA2NhY1atTAoUOHsjwHT279fSAN0MoxWnkQALFjxw7p/p49ewQAkS9fPpWbnp6eaN++vRBCiFu3bgkA/3obPXq09Jj6+vqievXqKs87cOBA4ebm9kVeo6a0bNlSGBkZqZzf4mPdu3cX+vr60iGSSqVS2NvbZ3koZobU1FQxa9YsUb58eWFoaCgsLCxElSpVxOTJk0VsbKzUDx8dRv2hlStXilKlSglDQ0NRpkwZsXr1aukw5g8lJiYKHx8fYWlpKfLnzy88PDzEnTt3BAAxc+ZMlb5RUVHCx8dH2NvbC319fWFraysaNmwoAgMD//NnldV5bjIEBQVlOjw0MDBQVKlSRRgbG4sCBQqIihUrilGjRol//vlHCCHEpUuXRKdOnUSxYsWEoaGhsLa2Fi1atBAXLlyQHiPjsNM5c+aIefPmCXt7e2FoaChq164trl69mqmOgwcPipo1awpjY2NhamoqWrZsKf7++2+VPhk/w48P8c44LDfjnDiHDh0SrVu3FkWKFBEGBgaiSJEiolOnTuLu3bsq62X3vf4vOTkU/ONDtD/12rI6LFsIzbxHn/Kp50xLSxOTJ08Wjo6OQl9fX9jb24sxY8aI5OTkTK/5U9vbp1y+fFm0bdtWFCxYUBgaGorixYuL9u3bi0OHDkl93rx5I3r06CEKFSok8ufPL9zd3cXt27cz/YyFEOLVq1diwIABomjRosLAwEDY2dkJLy8v6W9BxqHgW7duVVkvu4dLf+p9/FhWP4v4+HgxdOhQUaRIEaGvry9KlSol5syZo3IovBBCJCUliUGDBomCBQuKfPnyiZYtW4onT55kOhRciOz9feCh4F+eQohcGiv8yigUCuzYsQMeHh4AgM2bN6NLly64efNmpolv+fPnh62tLVJTU//zsMWCBQtKEw2LFy+OH3/8EStWrJCWL126FNOmTVPZfUDaceXKFbi6uuKPP/5Aly5dtF1Ojj169AiOjo6YM2eOyhmgiYi+Fdwt9Qmurq5IT09HdHS0dP6FjxkYGKBMmTLZfsyaNWtmmpR29+7dHE8IpJxLSkrKNCnU398fOjo6qFOnjpaqIiIiTfimw01CQoLKftSHDx/iypUrsLS0xHfffYcuXbrA09MT8+bNg6urK168eIFDhw7B2dk5R5P4hg4diho1amDGjBlo3749zp07h8DAQAQGBmryZVE2zJ49GxcvXkT9+vWhp6eHffv2Yd++fejbt2+uH4pMRES5TNv7xbQpY9/vx7eMfcipqaliwoQJwsHBQejr64vChQuLNm3aiGvXruX4Of/8809RoUIFaU5IduZtkOYdOHBA1KxZU1hYWAh9fX1RsmRJMWnSJJGWlqbt0j7bh3NuiIi+RZxzQ0RERLLC89wQERGRrDDcEBERkax8cxOKlUol/vnnHxQoUOCrOvU7ERHRt0wIgfj4eBQpUgQ6Ov8+NvPNhZt//vmHR8MQERF9pZ48eQI7O7t/7fPNhZuMC6Y9efIEpqamWq6GiIiIsiMuLg729vYqFz79lG8u3GTsijI1NWW4ISIi+spkZ0oJJxQTERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs6Gm7ACLSLIdf92q7BNKyRzOba/X5uQ2StrdBjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrGg13CxduhTOzs4wNTWFqakpqlevjn379v3rOlu3bkWZMmVgZGSEihUr4q+//vpC1RIREdHXQKvhxs7ODjNnzsTFixdx4cIFNGjQAK1bt8bNmzez7H/q1Cl06tQJvXr1wuXLl+Hh4QEPDw/cuHHjC1dOREREeZVCCCG0XcSHLC0tMWfOHPTq1SvTsg4dOiAxMRF79uyR2tzc3ODi4oKAgIBsPX5cXBzMzMwQGxsLU1NTjdVNlFfwooWk7YsWchuk3NgG1fn8zjNzbtLT07Fp0yYkJiaievXqWfY5ffo0GjVqpNLm7u6O06dPf/JxU1JSEBcXp3IjIiIi+dJ6uLl+/Try588PQ0ND9OvXDzt27EC5cuWy7BsZGQkbGxuVNhsbG0RGRn7y8X19fWFmZibd7O3tNVo/ERER5S1aDzelS5fGlStXcPbsWfTv3x9eXl74+++/Nfb4Y8aMQWxsrHR78uSJxh6biIiI8h49bRdgYGAAJycnAECVKlVw/vx5LFiwAMuWLcvU19bWFlFRUSptUVFRsLW1/eTjGxoawtDQULNFExERUZ6l9ZGbjymVSqSkpGS5rHr16jh06JBKW2ho6Cfn6BAREdG3R6sjN2PGjEHTpk1RrFgxxMfHY8OGDThy5AhCQkIAAJ6enihatCh8fX0BAIMHD0bdunUxb948NG/eHJs2bcKFCxcQGBiozZdBREREeYhWw010dDQ8PT3x/PlzmJmZwdnZGSEhIfjxxx8BAI8fP4aOzv8Gl2rUqIENGzZg/PjxGDt2LEqVKoWdO3eiQoUK2noJRERElMdoNdysXLnyX5cfOXIkU1u7du3Qrl27XKqIiIiIvnZ5bs4NERER0edguCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWdFquPH19cX333+PAgUKwNraGh4eHrhz586/rhMUFASFQqFyMzIy+kIVExERUV6n1XBz9OhR+Pj44MyZMwgNDUVaWhoaN26MxMTEf13P1NQUz58/l24RERFfqGIiIiLK6/S0+eT79+9XuR8UFARra2tcvHgRderU+eR6CoUCtra2uV0eERERfYXy1Jyb2NhYAIClpeW/9ktISEDx4sVhb2+P1q1b4+bNm5/sm5KSgri4OJUbERERyVeeCTdKpRJDhgxBzZo1UaFChU/2K126NFatWoVdu3bhjz/+gFKpRI0aNfD06dMs+/v6+sLMzEy62dvb59ZLICIiojwgz4QbHx8f3LhxA5s2bfrXftWrV4enpydcXFxQt25dBAcHw8rKCsuWLcuy/5gxYxAbGyvdnjx5khvlExERUR6h1Tk3GQYMGIA9e/bg2LFjsLOzU2tdfX19uLq6Ijw8PMvlhoaGMDQ01ESZRERE9BXQ6siNEAIDBgzAjh07cPjwYTg6Oqr9GOnp6bh+/ToKFy6cCxUSERHR10arIzc+Pj7YsGEDdu3ahQIFCiAyMhIAYGZmBmNjYwCAp6cnihYtCl9fXwDAlClT4ObmBicnJ8TExGDOnDmIiIhA7969tfY6iIiIKO/QarhZunQpAKBevXoq7atXr0b37t0BAI8fP4aOzv8GmN68eYM+ffogMjISFhYWqFKlCk6dOoVy5cp9qbKJiIgoD9NquBFC/GefI0eOqNz38/ODn59fLlVEREREX7s8MaFYThx+3avtEkjLHs1sru0SiIi+aXnmUHAiIiIiTWC4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZyVG4uX//PsaPH49OnTohOjoaALBv3z7cvHlTo8URERERqUvtcHP06FFUrFgRZ8+eRXBwMBISEgAAV69excSJEzVeIBEREZE61A43v/76K6ZNm4bQ0FAYGBhI7Q0aNMCZM2c0WhwRERGRutQON9evX0ebNm0ytVtbW+Ply5caKYqIiIgop9QON+bm5nj+/Hmm9suXL6No0aIaKYqIiIgop9QONx07dsTo0aMRGRkJhUIBpVKJkydPYsSIEfD09MyNGomIiIiyTe1wM2PGDJQpUwb29vZISEhAuXLlUKdOHdSoUQPjx4/PjRqJiIiIsk3tq4IbGBhg+fLl+O2333Djxg0kJCTA1dUVpUqVyo36iIiIiNSidrjJUKxYMRQrVkyTtRARERF9NrXDjRAC27ZtQ1hYGKKjo6FUKlWWBwcHa6w4IiIiInWpHW6GDBmCZcuWoX79+rCxsYFCociNuoiIiIhyRO1ws27dOgQHB6NZs2a5UQ8RERHRZ1H7aCkzMzOUKFEiN2ohIiIi+mxqh5tJkyZh8uTJSEpKyo16iIiIiD6L2rul2rdvj40bN8La2hoODg7Q19dXWX7p0iWNFUdERESkLrXDjZeXFy5evIiuXbtyQjERERHlOWqHm7179yIkJAS1atXKjXqIiIiIPovac27s7e1hamqaG7UQERERfTa1w828efMwatQoPHr0KBfKISIiIvo8au+W6tq1K96+fYuSJUvCxMQk04Ti169fa6w4IiIiInWpHW78/f1zoQwiIiIizcjR0VJEREREeVW2wk1cXJw0iTguLu5f+3KyMREREWlTtsKNhYUFnj9/Dmtra5ibm2d5bhshBBQKBdLT0zVeJBEREVF2ZSvcHD58GJaWlgCAsLCwXC2IiIiI6HNkK9zUrVsXJUqUwPnz51G3bt3cromIiIgox7J9nptHjx5xlxMRERHleWqfxI+IiIgoL1PrUPCQkBCYmZn9a59WrVp9VkFEREREn0OtcPNf57jh0VJERESkbWrtloqMjIRSqfzkjcGGiIiItC3b4Sarc9sQERER5TXZDjdCiNysg4iIiEgjsh1uvLy8YGxsnJu1EBEREX22bE8oXr16dW7WQURERKQRPM8NERERyQrDDREREckKww0RERHJSo7DTXh4OEJCQpCUlAQgZ0dT+fr64vvvv0eBAgVgbW0NDw8P3Llz5z/X27p1K8qUKQMjIyNUrFgRf/31l9rPTURERPKkdrh59eoVGjVqhO+++w7NmjXD8+fPAQC9evXC8OHD1Xqso0ePwsfHB2fOnEFoaCjS0tLQuHFjJCYmfnKdU6dOoVOnTujVqxcuX74MDw8PeHh44MaNG+q+FCIiIpIhtcPN0KFDoaenh8ePH8PExERq79ChA/bv36/WY+3fvx/du3dH+fLlUalSJQQFBeHx48e4ePHiJ9dZsGABmjRpgpEjR6Js2bKYOnUqKleujEWLFqn7UoiIiEiG1Lq2FAAcOHAAISEhsLOzU2kvVaoUIiIiPquY2NhYAIClpeUn+5w+fRrDhg1TaXN3d8fOnTuz7J+SkoKUlBTpflxc3GfVSERERHmb2iM3iYmJKiM2GV6/fg1DQ8McF6JUKjFkyBDUrFkTFSpU+GS/yMhI2NjYqLTZ2NggMjIyy/6+vr4wMzOTbvb29jmukYiIiPI+tcNN7dq1sXbtWum+QqGAUqnE7NmzUb9+/RwX4uPjgxs3bmDTpk05foysjBkzBrGxsdLtyZMnGn18IiIiylvU3i01e/ZsNGzYEBcuXEBqaipGjRqFmzdv4vXr1zh58mSOihgwYAD27NmDY8eOZdrd9TFbW1tERUWptEVFRcHW1jbL/oaGhp81okRERERfF7VHbipUqIC7d++iVq1aaN26NRITE9G2bVtcvnwZJUuWVOuxhBAYMGAAduzYgcOHD8PR0fE/16levToOHTqk0hYaGorq1aur9dxEREQkT2qP3ACAmZkZxo0b99lP7uPjgw0bNmDXrl0oUKCANG/GzMxMukinp6cnihYtCl9fXwDA4MGDUbduXcybNw/NmzfHpk2bcOHCBQQGBn52PURERPT1U3vkZv/+/Thx4oR0f/HixXBxcUHnzp3x5s0btR5r6dKliI2NRb169VC4cGHptnnzZqnP48ePpXPpAECNGjWwYcMGBAYGolKlSti2bRt27tz5r5OQiYiI6Nuh9sjNyJEjMWvWLADA9evXMWzYMAwfPhxhYWEYNmyYWlcPz85ZjY8cOZKprV27dmjXrl22n4eIiIi+HWqHm4cPH6JcuXIAgO3bt6Nly5aYMWMGLl26hGbNmmm8QCIiIiJ1qL1bysDAAG/fvgUAHDx4EI0bNwbw/sR7PEEeERERaZvaIze1atXCsGHDULNmTZw7d06aH3P37t3/PIybiIiIKLepPXKzaNEi6OnpYdu2bVi6dCmKFi0KANi3bx+aNGmi8QKJiIiI1KH2yE2xYsWwZ8+eTO1+fn4aKYiIiIjoc+ToPDdKpRLh4eGIjo6GUqlUWVanTh2NFEZERESUE2qHmzNnzqBz586IiIjIdCi3QqFAenq6xoojIiIiUpfa4aZfv36oWrUq9u7di8KFC0OhUORGXUREREQ5ona4uXfvHrZt2wYnJ6fcqIeIiIjos6h9tFS1atUQHh6eG7UQERERfTa1R24GDhyI4cOHIzIyEhUrVoS+vr7KcmdnZ40VR0RERKQutcPNTz/9BADo2bOn1KZQKCCE4IRiIiIi0rocXVuKiIiIKK9SO9wUL148N+ogIiIi0ogcncTv/v378Pf3x61btwAA5cqVw+DBg1GyZEmNFkdERESkLrWPlgoJCUG5cuVw7tw5ODs7w9nZGWfPnkX58uURGhqaGzUSERERZZvaIze//vorhg4dipkzZ2ZqHz16NH788UeNFUdERESkLrVHbm7duoVevXplau/Zsyf+/vtvjRRFRERElFNqhxsrKytcuXIlU/uVK1dgbW2tiZqIiIiIckzt3VJ9+vRB37598eDBA9SoUQMAcPLkScyaNQvDhg3TeIFERERE6lA73Pz2228oUKAA5s2bhzFjxgAAihQpgkmTJmHQoEEaL5CIiIhIHWqHG4VCgaFDh2Lo0KGIj48HABQoUEDjhRERERHlRI7OcwMA0dHRuHPnDgCgTJkysLKy0lhRRERERDml9oTi+Ph4dOvWDUWKFEHdunVRt25dFClSBF27dkVsbGxu1EhERESUbWqHm969e+Ps2bPYu3cvYmJiEBMTgz179uDChQvw9vbOjRqJiIiIsk3t3VJ79uxBSEgIatWqJbW5u7tj+fLlaNKkiUaLIyIiIlKX2iM3BQsWhJmZWaZ2MzMzWFhYaKQoIiIiopxSO9yMHz8ew4YNQ2RkpNQWGRmJkSNH4rffftNocURERETqUnu31NKlSxEeHo5ixYqhWLFiAIDHjx/D0NAQL168wLJly6S+ly5d0lylRERERNmgdrjx8PDIhTKIiIiINEPtcDNx4sTcqIOIiIhII9Sec/PkyRM8ffpUun/u3DkMGTIEgYGBGi2MiIiIKCfUDjedO3dGWFgYgPcTiRs1aoRz585h3LhxmDJlisYLJCIiIlKH2uHmxo0b+OGHHwAAW7ZsQcWKFXHq1CmsX78eQUFBmq6PiIiISC1qh5u0tDQYGhoCAA4ePIhWrVoBeH99qefPn2u2OiIiIiI1qR1uypcvj4CAABw/fhyhoaHSWYn/+ecfFCxYUOMFEhEREalD7XAza9YsLFu2DPXq1UOnTp1QqVIlAMDu3bul3VVERERE2qL2oeD16tXDy5cvERcXp3K5hb59+8LExESjxRERERGpS+2RGwAQQuDixYtYtmwZ4uPjAQAGBgYMN0RERKR1ao/cREREoEmTJnj8+DFSUlLw448/okCBApg1axZSUlIQEBCQG3USERERZYvaIzeDBw9G1apV8ebNGxgbG0vtbdq0waFDhzRaHBEREZG61B65OX78OE6dOgUDAwOVdgcHBzx79kxjhRERERHlhNojN0qlEunp6Znanz59igIFCmikKCIiIqKcUjvcNG7cGP7+/tJ9hUKBhIQETJw4Ec2aNdNkbURERERqU3u31Lx58+Du7o5y5cohOTkZnTt3xr1791CoUCFs3LgxN2okIiIiyja1R27s7Oxw9epVjBs3DkOHDoWrqytmzpyJy5cvw9raWq3HOnbsGFq2bIkiRYpAoVBg586d/9r/yJEjUCgUmW6RkZHqvgwiIiKSKbVHbgBAT08PXbp0QZcuXaS258+fY+TIkVi0aFG2HycxMRGVKlVCz5490bZt22yvd+fOHZiamkr31Q1VREREJF9qhZubN28iLCwMBgYGaN++PczNzfHy5UtMnz4dAQEBKFGihFpP3rRpUzRt2lStdYD3Ycbc3Fzt9YiIiEj+sr1bavfu3XB1dcWgQYPQr18/VK1aFWFhYShbtixu3bqFHTt24ObNm7lZq8TFxQWFCxfGjz/+iJMnT/5r35SUFMTFxanciIiISL6yHW6mTZsGHx8fxMXFYf78+Xjw4AEGDRqEv/76C/v375euDp6bChcujICAAGzfvh3bt2+Hvb096tWrh0uXLn1yHV9fX5iZmUk3e3v7XK+TiIiItCfb4ebOnTvw8fFB/vz5MXDgQOjo6MDPzw/ff/99btanonTp0vD29kaVKlVQo0YNrFq1CjVq1ICfn98n1xkzZgxiY2Ol25MnT75YvURERPTlZXvOTXx8vDSJV1dXF8bGxmrPsckNP/zwA06cOPHJ5YaGhjA0NPyCFREREZE2qTWhOCQkBGZmZgDen6n40KFDuHHjhkqfVq1aaa66bLhy5QoKFy78RZ+TiIiI8i61wo2Xl5fKfW9vb5X7CoUiy0szfEpCQgLCw8Ol+w8fPsSVK1dgaWmJYsWKYcyYMXj27BnWrl0LAPD394ejoyPKly+P5ORkrFixAocPH8aBAwfUeRlEREQkY9kON0qlUuNPfuHCBdSvX1+6P2zYMADvQ1RQUBCeP3+Ox48fS8tTU1MxfPhwPHv2DCYmJnB2dsbBgwdVHoOIiIi+bTk6iZ+m1KtXD0KITy4PCgpSuT9q1CiMGjUql6siIiKir5nal18gIiIiyssYboiIiEhWGG6IiIhIVhhuiIiISFZyFG5iYmKwYsUKjBkzBq9fvwYAXLp0Cc+ePdNocURERETqUvtoqWvXrqFRo0YwMzPDo0eP0KdPH1haWiI4OBiPHz+WzklDREREpA1qj9wMGzYM3bt3x71792BkZCS1N2vWDMeOHdNocURERETqUjvcnD9/PtOZiQGgaNGiiIyM1EhRRERERDmldrgxNDREXFxcpva7d+/CyspKI0URERER5ZTa4aZVq1aYMmUK0tLSALy/ntTjx48xevRo/PTTTxovkIiIiEgdaoebefPmISEhAdbW1khKSkLdunXh5OSEAgUKYPr06blRIxEREVG2qX20lJmZGUJDQ3HixAlcu3YNCQkJqFy5Mho1apQb9RERERGpJccXzqxVqxZq1aqlyVqIiIiIPpva4eb333/Psl2hUMDIyAhOTk6oU6cOdHV1P7s4IiIiInWpHW78/Pzw4sULvH37FhYWFgCAN2/ewMTEBPnz50d0dDRKlCiBsLAw2Nvba7xgIiIion+j9oTiGTNm4Pvvv8e9e/fw6tUrvHr1Cnfv3kW1atWwYMECPH78GLa2thg6dGhu1EtERET0r9QeuRk/fjy2b9+OkiVLSm1OTk6YO3cufvrpJzx48ACzZ8/mYeFERESkFWqP3Dx//hzv3r3L1P7u3TvpDMVFihRBfHz851dHREREpCa1w039+vXh7e2Ny5cvS22XL19G//790aBBAwDA9evX4ejoqLkqiYiIiLJJ7XCzcuVKWFpaokqVKjA0NIShoSGqVq0KS0tLrFy5EgCQP39+zJs3T+PFEhEREf0Xtefc2NraIjQ0FLdv38bdu3cBAKVLl0bp0qWlPvXr19dchURERERqyPFJ/MqUKYMyZcposhYiIiKiz5ajcPP06VPs3r0bjx8/Rmpqqsqy+fPna6QwIiIiopxQO9wcOnQIrVq1QokSJXD79m1UqFABjx49ghAClStXzo0aiYiIiLJN7QnFY8aMwYgRI3D9+nUYGRlh+/btePLkCerWrYt27drlRo1ERERE2aZ2uLl16xY8PT0BAHp6ekhKSkL+/PkxZcoUzJo1S+MFEhEREalD7XCTL18+aZ5N4cKFcf/+fWnZy5cvNVcZERERUQ6oPefGzc0NJ06cQNmyZdGsWTMMHz4c169fR3BwMNzc3HKjRiIiIqJsUzvczJ8/HwkJCQCAyZMnIyEhAZs3b0apUqV4pBQRERFpnVrhJj09HU+fPoWzszOA97uoAgICcqUwIiIiopxQa86Nrq4uGjdujDdv3uRWPURERESfRe0JxRUqVMCDBw9yoxYiIiKiz6Z2uJk2bRpGjBiBPXv24Pnz54iLi1O5EREREWmT2hOKmzVrBgBo1aoVFAqF1C6EgEKhQHp6uuaqIyIiIlKT2uEmLCwsN+ogIiIi0gi1w03dunVzow4iIiIijVB7zg0AHD9+HF27dkWNGjXw7NkzAMC6detw4sQJjRZHREREpC61w8327dvh7u4OY2NjXLp0CSkpKQCA2NhYzJgxQ+MFEhEREakjR0dLBQQEYPny5dDX15faa9asiUuXLmm0OCIiIiJ1qR1u7ty5gzp16mRqNzMzQ0xMjCZqIiIiIsoxtcONra0twsPDM7WfOHECJUqU0EhRRERERDmldrjp06cPBg8ejLNnz0KhUOCff/7B+vXrMWLECPTv3z83aiQiIiLKNrUPBf/111+hVCrRsGFDvH37FnXq1IGhoSFGjBiBgQMH5kaNRERERNmmdrhRKBQYN24cRo4cifDwcCQkJKBcuXLInz9/btRHREREpBa1d0v98ccfePv2LQwMDFCuXDn88MMPDDZERESUZ6gdboYOHQpra2t07twZf/3112ddS+rYsWNo2bIlihQpAoVCgZ07d/7nOkeOHEHlypVhaGgIJycnBAUF5fj5iYiISH7UDjfPnz/Hpk2boFAo0L59exQuXBg+Pj44deqU2k+emJiISpUqYfHixdnq//DhQzRv3hz169fHlStXMGTIEPTu3RshISFqPzcRERHJk9pzbvT09NCiRQu0aNECb9++xY4dO7BhwwbUr18fdnZ2uH//frYfq2nTpmjatGm2+wcEBMDR0RHz5s0DAJQtWxYnTpyAn58f3N3d1X0pREREJENqh5sPmZiYwN3dHW/evEFERARu3bqlqbqydPr0aTRq1Eilzd3dHUOGDPnkOikpKdIlIgAgLi4ut8ojIiKiPCBHF858+/Yt1q9fj2bNmqFo0aLw9/dHmzZtcPPmTU3XpyIyMhI2NjYqbTY2NoiLi0NSUlKW6/j6+sLMzEy62dvb52qNREREpF1qh5uOHTvC2toaQ4cORYkSJXDkyBGEh4dj6tSpKFOmTG7U+FnGjBmD2NhY6fbkyRNtl0RERES5SO3dUrq6utiyZQvc3d2hq6ursuzGjRuoUKGCxor7mK2tLaKiolTaoqKiYGpqCmNj4yzXMTQ0hKGhYa7VRERERHmL2uFm/fr1Kvfj4+OxceNGrFixAhcvXvysQ8P/S/Xq1fHXX3+ptIWGhqJ69eq59pxERET0dcnRnBvg/TlqvLy8ULhwYcydOxcNGjTAmTNn1HqMhIQEXLlyBVeuXAHw/lDvK1eu4PHjxwDe71Ly9PSU+vfr1w8PHjzAqFGjcPv2bSxZsgRbtmzB0KFDc/oyiIiISGbUGrmJjIxEUFAQVq5cibi4OLRv3x4pKSnYuXMnypUrp/aTX7hwAfXr15fuDxs2DADg5eWFoKAgPH/+XAo6AODo6Ii9e/di6NChWLBgAezs7LBixQoeBk5ERESSbIebli1b4tixY2jevDn8/f3RpEkT6OrqIiAgIMdPXq9ePQghPrk8q7MP16tXD5cvX87xcxIREZG8ZTvc7Nu3D4MGDUL//v1RqlSp3KyJiIiIKMeyPefmxIkTiI+PR5UqVVCtWjUsWrQIL1++zM3aiIiIiNSW7XDj5uaG5cuX4/nz5/D29samTZtQpEgRKJVKhIaGIj4+PjfrJCIiIsoWtY+WypcvH3r27IkTJ07g+vXrGD58OGbOnAlra2u0atUqN2okIiIiyrYcHwoOAKVLl8bs2bPx9OlTbNy4UVM1EREREeXYZ4WbDLq6uvDw8MDu3bs18XBEREREOaaRcENERESUVzDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs5Ilws3jxYjg4OMDIyAjVqlXDuXPnPtk3KCgICoVC5WZkZPQFqyUiIqK8TOvhZvPmzRg2bBgmTpyIS5cuoVKlSnB3d0d0dPQn1zE1NcXz58+lW0RExBesmIiIiPIyrYeb+fPno0+fPujRowfKlSuHgIAAmJiYYNWqVZ9cR6FQwNbWVrrZ2Nh8wYqJiIgoL9NquElNTcXFixfRqFEjqU1HRweNGjXC6dOnP7leQkICihcvDnt7e7Ru3Ro3b978ZN+UlBTExcWp3IiIiEi+tBpuXr58ifT09EwjLzY2NoiMjMxyndKlS2PVqlXYtWsX/vjjDyiVStSoUQNPnz7Nsr+vry/MzMykm729vcZfBxEREeUdWt8tpa7q1avD09MTLi4uqFu3LoKDg2FlZYVly5Zl2X/MmDGIjY2Vbk+ePPnCFRMREdGXpKfNJy9UqBB0dXURFRWl0h4VFQVbW9tsPYa+vj5cXV0RHh6e5XJDQ0MYGhp+dq1ERET0ddDqyI2BgQGqVKmCQ4cOSW1KpRKHDh1C9erVs/UY6enpuH79OgoXLpxbZRIREdFXRKsjNwAwbNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwZcoUuLm5wcnJCTExMZgzZw4iIiLQu3dvbb4MIiIiyiO0Hm46dOiAFy9eYMKECYiMjISLiwv2798vTTJ+/PgxdHT+N8D05s0b9OnTB5GRkbCwsECVKlVw6tQplCtXTlsvgYiIiPIQrYcbABgwYAAGDBiQ5bIjR46o3Pfz84Ofn98XqIqIiIi+Rl/d0VJERERE/4bhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkJU+Em8WLF8PBwQFGRkaoVq0azp0796/9t27dijJlysDIyAgVK1bEX3/99YUqJSIiorxO6+Fm8+bNGDZsGCZOnIhLly6hUqVKcHd3R3R0dJb9T506hU6dOqFXr164fPkyPDw84OHhgRs3bnzhyomIiCgv0nq4mT9/Pvr06YMePXqgXLlyCAgIgImJCVatWpVl/wULFqBJkyYYOXIkypYti6lTp6Jy5cpYtGjRF66ciIiI8iKthpvU1FRcvHgRjRo1ktp0dHTQqFEjnD59Ost1Tp8+rdIfANzd3T/Zn4iIiL4tetp88pcvXyI9PR02NjYq7TY2Nrh9+3aW60RGRmbZPzIyMsv+KSkpSElJke7HxsYCAOLi4j6n9E9SprzNlcelr0dubVvZxW2QuA2StuXGNpjxmEKI/+yr1XDzJfj6+mLy5MmZ2u3t7bVQDX0LzPy1XQF967gNkrbl5jYYHx8PMzOzf+2j1XBTqFAh6OrqIioqSqU9KioKtra2Wa5ja2urVv8xY8Zg2LBh0n2lUonXr1+jYMGCUCgUn/kK6ENxcXGwt7fHkydPYGpqqu1y6BvEbZC0jdtg7hFCID4+HkWKFPnPvloNNwYGBqhSpQoOHToEDw8PAO/Dx6FDhzBgwIAs16levToOHTqEIUOGSG2hoaGoXr16lv0NDQ1haGio0mZubq6J8ukTTE1N+UtNWsVtkLSN22Du+K8Rmwxa3y01bNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwePBg1K1bF/PmzUPz5s2xadMmXLhwAYGBgdp8GURERJRHaD3cdOjQAS9evMCECRMQGRkJFxcX7N+/X5o0/PjxY+jo/O+grho1amDDhg0YP348xo4di1KlSmHnzp2oUKGCtl4CERER5SEKkZ1px0TZkJKSAl9fX4wZMybTrkCiL4HbIGkbt8G8geGGiIiIZEXrZygmIiIi0iSGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYb+mYolUptl0BERF8Aww19MzIuwPry5UsAAK88Ql/axwGb2yBpw8fboRy/+DHc0DdlwYIF8PDwwP3796FQKLRdDn1jdHR0EBsbi5CQEADgNkhaoaOjg5iYGMyZMwdv3ryRvvjJifxeEdEHPv5mrK+vD2NjYxgYGGipIvqWKZVKzJs3D97e3tizZ4+2y6Fv2IEDBzB//nwsWrRI26XkCl4VnL4JcXFxMDU1BQDExsbCzMxMyxXRt0KpVKp8M7516xZWrlyJWbNmQVdXV4uV0bckPT1dZXtLS0vD5s2b0alTJ1luhww3JHtDhw5Feno6xowZg8KFC2u7HPoGxcTEICYmBvb29iofJB9/4BB9jo+D9MdevXqFkydPokaNGihUqJDULsftkLulSHY+zut2dnZYu3at7H556esghMCvv/6KatWq4dGjRyrLuE3S53j+/Dn++ecfvHjxAsD7uTT/Nl6xZcsWeHh44OjRoyrtctwOOXJDX7WMbxxCCCgUik9+c3nz5g0sLCy0UCHJzX99O86qT0REBMaPH4+goCBZfpDQl7d69WosXrwYT548QcmSJVGrVi3Mnj1bpU9WIzL+/v4YMGAA9PT0vmS5XxzDDX01MgIM8P6XVggBPT09PHv2DDt27ECPHj2QL18+AO93RVlYWGDChAmZ1iXKqQ9Dy+HDh/H48WM4OTmhRIkSKFKkiEqf2NhYKJXKTKFajrsA6Mvas2cP2rdvjyVLlsDExAQPHjzA7NmzUaNGDaxZswYFCxaU/ua9fPkS4eHhcHNzU3mMd+/eyTrgcLcU5VkZuTsuLg5JSUlQKBQ4cOAAwsPDoaurCz09PURERMDV1RX//POPFGwSExOhr68PPz8/vH79msGGNEIIIQWbX3/9Fd27d8fcuXPRt29fjBgxAufPnwfwftdASkoKJkyYgMqVK+PVq1cqj8NgQ5/r/PnzaN68Obp374727dtj1KhRCAkJwbVr19ClSxcA708zkJaWhnXr1qFGjRo4ceKEymPIOdgADDeUx0VGRqJixYo4evQoNmzYgCZNmuDvv/8G8H5XU/ny5dGmTRtMnz5dWidfvnwYNWoU7t27B0tLSwYb0oiM7Wju3Ln4448/sHHjRty4cQNt27bFn3/+ifHjx+P06dMAAAMDA7i6uqJhw4YwNzfXYtUkRw8fPsTz589V2r7//nvs3r0bFy9eRJ8+fQC8P/VFixYtMH369EwjN7IniPK4Hj16CFNTU6GjoyOWL18utaemporNmzeL9PR0qU2pVGqjRPpGREVFibZt24pVq1YJIYTYvXu3MDU1Ff369ROurq6iYcOG4syZM0II1W3x3bt3WqmX5CkkJETY2NiITZs2SW0Z29v69euFk5OTOH/+fKb10tLSvliN2saRG8qzMk4J7uPjg/j4eBgYGMDW1hbJyckA3n8rad++vcrETY7SUG6ytrbGqFGj0KRJE1y+fBk+Pj6YNm0ali5dip9++glnzpyBj48PLl68qLItclcUaVLZsmVRr149rFu3DocOHQLwv799Li4uiI6Oli4z8yG574r6EMMN5VkZocXe3h4nTpyAl5cXOnbsiF27diEpKSlTfzleH4W051Pbk6urKwoXLox9+/bB2dkZffv2BQBYWlrCzc0NLVu2hKur65cslb4x9vb26NevH2JiYuDn54fdu3dLywoXLgxHR0ctVpc3fDsxjr4a4v8nAD9//hxpaWkoVqwYrK2tUaNGDSQnJ6NXr14ICgpCixYtYGRkhICAADRq1AhOTk7aLp1kQnwweXjFihWIjo6GgYEBRowYIV26IyUlBc+ePcOjR49QunRpHDhwAK1atcLAgQP/9bQERJ8j42i7evXqYcmSJRg7dixGjx6NkJAQODs7Y8uWLVAoFPjxxx+1XapW8VBwypOCg4MxadIkREVFoXnz5mjTpg1atmwJAOjRowd27NiB4cOHIyoqCkuXLsX169dRrlw5LVdNcjNx4kT4+/vj+++/x7lz51CtWjWsW7cOtra2+PPPPzFt2jS8efMG+vr6EELg2rVr0NPT4xF6lCsytqvg4GAsWbIEBw4cwO3btxEWFoZFixbB3t4e5ubmWL9+PfT19b/p0w4w3FCec/PmTbi7u2Po0KEwMTHBxo0bYWhoCC8vL3Tt2hUAMHjwYFy6dAkpKSkIDAyEi4uLdosmWfhwtOXdu3fw8vLCwIED4erqikePHqF58+awtbXFjh07YGVlhb179yI8PBwJCQkYPXo09PT0vukPFNKMjBAjPjq3l66uLoKDg+Hp6Yn58+dLu0SB99urjo6Oyvb7Lc2x+RjDDeUpt2/fxtatW5GUlIQZM2YAAK5fv44JEyYgLi4OPXr0kAJOZGQk8uXLhwIFCmizZJKJD4PNrVu3EBcXh2XLlmHChAlwcHAA8P4Q3B9//BE2NjbYuXMnrKysVB6DwYY+14fb4cuXL6FQKFCwYEEA7//mVa5cGRMmTEC/fv2kdT4eKeTIIcMN5RFCCLx58wYtWrTA33//jZYtW2LdunXS8mvXrmHChAlISkpCx44d0aNHDy1WS3I2cuRIaVg/KioKwcHBaNq0qfRh8fDhQzRt2hRCCJw8eVLlAoREn+PDUDJ16lTs3LkTcXFxKFSoEKZPn44GDRrg2bNnKFq0qJYrzfs4243yBIVCAUtLS/j6+qJ8+fK4dOkSQkNDpeXOzs6YOnUq0tLSpF94Ik348KioPXv2YP/+/fj999+xZMkSODo6Yty4cbh69ap0xmxHR0fs2bMHLi4uvF4ZaVRGsJkyZQoWLFggnWqgUKFC6NKlC9asWZNptJCyxpEb0ppPDZ0ePXoUY8eOha2tLXx8fNCgQQNp2c2bN2FmZgY7O7svWSp9A4KDg3Hq1CkULFgQY8aMAQAkJCSgcuXKMDU1xYoVK1CpUqVM2yx3RZEmvXr1Co0bN4aPjw969uwptfft2xd//vknwsLCUKZMGe56+g8cuSGtyPjFPHXqFObPn4/ffvsNJ0+eRFpaGurWrYspU6YgMjISixYtwpEjR6T1ypcvz2BDGpeUlITffvsN8+fPx82bN6X2/Pnz49KlS4iPj4e3t7d0/agPMdiQJr179w4vX76URgUzTloaGBiIIkWKwM/PDwBPWPpfGG7oi/vwcMamTZvi5MmT2L17N8aOHYvp06cjNTUVDRs2xJQpU/Dq1StMnToVx48f13bZJGPGxsY4fvw4GjVqhIsXL2L37t1IT08H8L+Ac/v2bSxbtkzLlZKcZLXjxMbGBra2tli1ahUAwMjICKmpqQAAJycnhppsYrihLy5jxGbQoEGYP38+tm/fjq1bt+LixYvYvHkzxo8fLwWcX3/9Ffr6+jzjJmnMh3NshBDSB4ylpSU2bNgACwsLzJkzByEhIdKyfPnyITIyEoGBgVqpmeRHqVRKQeWff/5BdHQ03r59CwCYNGkSbt++LR0RlXHiyKdPn/JCrNnEOTf0xWT8MisUCixZsgRXrlxBYGAgHj58iEaNGqFWrVowNTXF1q1b4e3tjbFjx8LQ0BBv376FiYmJtssnGfjwMNuFCxfi6tWrePDgAYYMGYLKlSvDzs4OL168QOvWraGrq4uxY8fC3d1d5UzDnGNDn2P9+vVwc3NDyZIlAQBjxoxBSEgIIiIi0KhRI7Rq1QpdunTB8uXLMXXqVBQsWBAVKlTA/fv3ERMTI50okv4dww3lmowPkg/DyZUrV+Di4oK4uDg8efIETk5OaNKkCRwdHbFq1SrExsZKZxru3r07pk+fzolz9Nk+3obGjBmDlStXom/fvnj69ClOnz6N1q1bo2/fvnBycsKLFy/Qtm1bvHjxAkFBQXBzc9Ni9SQX+/btQ4sWLTB69GgMGTIE+/btw6hRo+Dv749Xr17h0qVLCAkJwW+//YZ+/frh+vXr8Pf3h46ODiwsLDBjxgyeKDK7cvWa4/TNe/DggejUqZP4+++/xZYtW4RCoRDnzp0TSqVSCCHE9evXRZkyZcTZs2eFEELcv39ftGjRQowdO1Y8fvxYm6WTzKSnpwshhFi3bp1wdHQUFy9eFEIIcfz4caFQKESpUqXE4MGDxYMHD4QQQjx//lz07dtXvHv3Tms1k/wsWrRI2NnZialTp4oBAwaI5cuXS8uePHkipkyZIhwcHMT+/fuzXD8tLe1LlfpV49gW5ark5GQcP34c3bt3x5UrV7B69Wp8//330i4qIQTevXuH06dPo3z58li7di0AYMSIETyHCH22bt26wcrKCvPnz4eOjg7S0tJgYGCAfv36oXLlyti5cyd69OiBFStWIDIyEtOmTYOOjg769OmDsmXLShOI+U2ZPldqaioMDAzg4+MDExMTjBkzBvHx8Zg2bZrUx87ODp6enjhw4AAuXLgAd3f3TBdg5S6pbNJ2uiL5yvimHBAQIHR0dESlSpXE5cuXVfrExsaK7t27i5IlSwoHBwdhZWUlfaMm+hyxsbFi8uTJwtLSUkyaNElqf/bsmYiKihLPnz8XVatWFfPmzZP6FylSRBQuXFgsWLBACCGkEUYiTfH19RXR0dFi/fr1wsTERDRr1kzcvXtXpU+HDh1E27ZttVShPPBoKcoVQgjo6OhACIEiRYpg3rx5ePfuHcaPH48TJ05I/UxNTTF37lwsWbIEEydOxNmzZ1G5cmUtVk5yEB8fD1NTU/Tv3x/jx4+Hv78/Jk6cCAAoUqQIrK2t8fz5c7x580aaT/Ps2TM0btwYEyZMgI+PDwCeS4Q+n/hgWuuaNWswdepU3Lt3D507d4afnx8uXbqEgIAA3LlzBwAQFxeHhw8folixYtoqWRY4vkUaJ/5/8ubhw4dx9OhRDBkyBC1btkSjRo3Qvn17zJw5E2PHjkWNGjUAvL8wZuPGjbVcNcnFqFGjsGzZMty/fx9WVlbo2rUrhBCYOnUqAGDy5MkA3gcgXV1dnDx5EkIIzJw5EyYmJtLht9wVRZqQEZAPHTqEy5cvIzAwUPrb17dvX6SlpWHy5MnYv38/KleujMTERKSmpmL27NnaLPvrp81hI5KfjGH8bdu2CTMzMzFmzBhx/vx5afm1a9dEuXLlRIsWLcQff/whJk2aJBQKhXjy5Al3AZBGXL16VdSpU0eULl1avHjxQgghRHR0tJg3b54wNzcXEyZMkPoOGDBAlCxZUtjZ2Qk3NzeRmpoqhODuKNKsI0eOiIoVK4qCBQuKnTt3CiGESElJkZavXLlS5M+fX1SuXFmsXbtWmsTOycM5x0PBSePOnTuHJk2aYNasWejTp4/UHhcXB1NTU9y6dQt9+vRBUlISYmNjsWXLFu6KIo04ffo0Xrx4gXLlyqFDhw5ISEiQrtz94sULrFu3DlOnTpUuSAi8Pz2BQqFAxYoVoaOjg3fv3nHSJn0W8dGpBxISEjBnzhwEBgaiWrVq2LhxI4yNjZGWlgZ9fX0AwPz583Hq1Cls3boVCoWCI4efieGGNG7RokXYsWMHDh06hNjYWBw+fBh//PEHbt26hREjRqBnz56Ijo5GbGwszMzMYG1tre2SSSY8PT3xzz//4ODBg3j06BF+/vlnxMfHZwo406ZNw4ABAzBlyhSV9fmBQpq0ePFi2NnZoXXr1khKSsLcuXOxY8cO1KtXDzNmzICRkZFKwMkIRR+HI1IfJxSTxtna2uLixYvw9fXFzz//jNWrV8PIyAjNmzdH7969cffuXVhbW6NUqVIMNqRRixcvxtOnT7Fo0SI4ODhg48aNMDMzQ82aNfHy5UtYWVmhW7dumDBhAqZNm4aVK1eqrM9gQ5ry4sULHD58GL/88gv2798PY2NjDBs2DC1atMCpU6cwbtw4JCcnQ19fH+/evQMABhsN4sgNfZaMX8SEhATkz58fABAVFYWFCxdiy5YtaNCgAbp3744ffvgBUVFRaNWqFYKCglC+fHktV05ykzHq8vvvv+Py5cuYP38+LCwscPv2bXh6eiI2NlYawYmMjMTRo0fx008/cRcUacTH56MBgKtXr+L333/HwYMHERAQgKZNmyIxMRGzZ8/GwYMHUbZsWSxZskS6dhRpDkdu6LMoFArs3bsXnTp1Qr169RAUFAQ9PT1MmzYNZ8+eRUBAANzc3KCjo4OFCxciMTGRozWUKzJGXerVq4djx45h7969AIDSpUtj3bp1sLCwQJ06dRAVFQVbW1t06NABenp60rdmos+REWwiIyOltkqVKmHw4MGoX78++vXrh/379yNfvnwYNWoUfvjhB+jo6Ei7pEjDtDSRmWTi5MmTwsjISIwcOVI0adJEODs7C29vbxEeHi71CQsLE3379hWWlpaZTuJHlFMZJ4nMSkBAgPjuu+/EnTt3pLY7d+4IBwcH0bFjxy9RHn0jPtwON23aJEqUKKFyhKgQQly5ckW0bt1aFCtWTBw5ckQIIURSUpJ0VN6/bcuUMxy5oRyLiIhAaGgopk+fjtmzZ2Pfvn3o27cvrl27Bl9fXzx48ACJiYk4ffo0oqOjcfToUbi4uGi7bJKBD3cBnDt3DqdOncLRo0el5a1atUK1atUQFhYmtX333Xc4duwY/vjjjy9eL8lTSkqKtB2mpqaiZMmSKFOmDHx8fHDx4kWpX6VKleDh4YEnT56gcePGOHXqFIyMjKQ5Nh/vzqLPx58oZcuiRYvw119/Sffv3LmDDh06YNWqVTAyMpLafXx80KVLF9y8eROzZ89GTEwMRo4ciTVr1qBChQraKJ1k5sMPg7Fjx6J79+7o2bMnvLy80KFDB8TFxaFw4cLSfIa0tDRpXXt7e+jq6iI9PV1b5ZNM7Nu3D+vWrQMA9OnTBw0aNEDVqlUxfPhw2NrawtvbGxcuXJD6FytWDB07dsS8efNQrVo1qZ2Th3OJtoeOKO97+PCh6Ny5s7h3755K+6+//iqsra1F27ZtpZOlZVi6dKkoXbq0GDRoEE9ERbli7ty5omDBguLs2bMiPT1dzJgxQygUCnHixAmpT82aNYW3t7cWqyS56tSpk3BwcBDu7u6iUKFC4urVq9Kyw4cPCw8PD1GhQgWxb98+8fDhQ+Hh4SGGDx8u9eHV5nMXww1lS2JiohBCiDNnzoht27ZJ7RMmTBAVK1YU48ePF1FRUSrrLF++XDx8+PBLlknfCKVSKby8vERgYKAQQojt27cLc3NzERAQIIQQIj4+XgghxL59+0SrVq3EtWvXtFYryZeLi4tQKBQqF2bNcPz4cdGtWzehUCjEd999J5ydnaUvejwDdu7jMZCULcbGxoiJiYGvry+ePXsGXV1deHh4YPLkyUhLS8PevXshhMDgwYNhZWUFAOjdu7eWqya5Sk5OxtmzZ1GvXj0cOXIEXl5emDNnDry9vfHu3TvMnj0b1atXh5ubG6ZMmYJz586hYsWK2i6bZCI1NRXJyclwcnJCsWLFsHnzZhQtWhQdO3aUTolRq1YtVKtWDX369EFaWhrq1q0LXV1dngH7C+GcG8oWhUIBc3NzDB8+HI6OjvD390dwcDAAYMaMGWjSpAlCQ0MxY8YMvHz5UsvVkpxcu3YNT58+BQAMHToUR48ehbGxMTp37ow//vgDzZo1g5+fn3TByzdv3uDChQu4c+cOLCwssG7dOhQvXlybL4FkxsDAAKampti6dSt27dqF77//HrNnz8amTZsQHx8v9UtOTkbt2rXRoEEDaa4Xg82XwXBD2SLe78JE7dq1MXToUFhYWOD3339XCThubm64fPkyBM8LSRoghMDdu3dRv359rFq1Cv369cOCBQtgYWEBAHBzc0NERASqVauG6tWrAwD++ecfdO/eHTExMRgwYAAAoGTJkmjUqJHWXgfJjxACSqVSur9mzRrUqFEDfn5+WLt2LR4/fowGDRqgXbt2Un+AZ8D+kniGYsqWjLO/xsbGwsTEBNeuXcP06dPx5s0bDB48GB4eHgDen3I8Y7cUkSYsX74co0aNQnJyMnbt2oXGjRtLZ8bevHkzpkyZAiEE9PT0YGxsDKVSiVOnTkFfX5/XiqLP9vr1a1haWqq0ZWx/W7duRWhoKAIDAwEAffv2xZEjR5Ceng5LS0ucPHmSZx/WEo7c0H969+4ddHV18ejRI9SrVw8HDhxAlSpVMGLECFhZWWHy5MnYs2cPADDYkMZkfDO2t7eHoaEhTE1NcebMGTx69Eg6fLZDhw5Yu3YtpkyZgvbt22P06NE4c+aMdL0eBhv6HAsWLMD333+vsqsJgBRsunfvjkqVKkntgYGBWLZsGRYuXIgzZ87AwMCAZ8DWFu3MY6a86lOz+MPDw4WNjY3o3bu3yiGMR44cEd26dROPHj36UiWSzH28DaampoqkpCSxdOlSUbRoUTF27Nj/3N54mC19rmXLlglDQ0OxYcOGTMseP34sKlasKBYtWiS1ZbXNcTvUHu6WIon4/6HW06dP49atWwgPD4enpycKFy6MNWvW4MKFC1izZk2mK9cmJyernMiPKKc+PPPw69evER8frzIZ2N/fH3PnzkWvXr3Qo0cPODg4oGXLlhg3bhzc3Ny0VTbJzPLlyzFw4ECsW7cO7dq1Q0xMDBITE5GcnAxra2sUKFAA9+7dQ6lSpbRdKn0Cww2p2L59O/r27StdYPDFixfo0KEDRo8ejQIFCmi7PJKxD4PNlClTcODAAdy4cQPt27dHmzZt0LRpUwDvA46/vz8qVKiAV69e4fHjx3j06BEvQEga8eDBAzg5OaF9+/bYtGkTbty4gV9++QUvXrxAREQE6tevj/79+6NFixbaLpX+BY9JI8mNGzcwdOhQzJs3D927d0dcXBzMzc1hbGzMYEO5LiPYTJgwAYGBgZgzZw4cHBzQr18/3Lt3DzExMejUqROGDBmCQoUK4erVq0hOTsbx48elq3vzMFv6XFZWVpg1axYmTJiAESNG4MCBA6hduzZat26NuLg4bNu2DePHj0ehQoU4WpiXaXOfGGnP4cOHxf379zO1Va9eXQghxK1bt0Tx4sVF7969peX379/nPmTKVYcPHxbly5cXx44dE0IIcerUKWFgYCDKlSsnqlWrJrZu3Sr1/fCyHrzEB2lScnKymDt3rtDR0RE9e/YUqamp0rILFy6I0qVLi8WLF2uxQvovPFrqGyOEwOXLl9G0aVMsXboUERER0rJnz55BCIGEhAQ0adIEjRs3xrJlywAAoaGhWLp0Kd68eaOt0kmGxEd7xYsWLYr+/fujdu3aOHDgAFq0aIHAwECEhobi/v37+P3337Fy5UoAUBml4YgNaZKhoSH69euH7du3o3fv3tDX15e21SpVqsDIyAhPnjzRcpX0bxhuvjEKhQKurq6YN28etmzZgqVLl+LBgwcAgObNmyMqKgqmpqZo3rw5AgMDpV0FISEhuHbtGg+tJY1RKpXSpPQHDx4gMTERpUqVQqdOnZCcnIwFCxZg0KBB6NatG4oUKYLy5csjPDwct27d0nLl9C3Ily8fmjZtKp0gMmNbjY6OhrGxMcqXL6/N8ug/8OvONyZjXoKPjw8AYM6cOdDV1UXv3r3h6OiI3377DTNmzMC7d+/w9u1bhIeHY+PGjVixYgVOnDghnR2W6HN8OHl4woQJOH36NEaOHIn69evD0tISiYmJeP78OUxMTKCjo4OUlBQ4ODhg1KhRaNKkiZarJzkSHxwBmsHQ0FD6f3p6Ol6+fIk+ffpAoVCgU6dOX7pEUgPDzTcmY+TlwIED0NHRQVpaGvz9/ZGcnIzRo0ejffv2SEpKwowZM7Bt2zbY2NjAwMAAYWFhqFChgparJ7n4MNgsW7YMgYGBcHV1lY54SklJgaWlJU6cOCFNGn716hVWrVoFHR0dlXBElBMRERF4/fo1ChYsCFtb2389k3BaWhrWrVuHjRs34vXr1zhz5ox0rSiOZudNPBT8GxQSEiJdbDBfvny4d+8efv/9d/zyyy8YPXo0rKysEB8fj6NHj8LBwQHW1tawtrbWdtn0lfs4kNy9exceHh6YNWsWWrZsmanf+fPnMX78eCQkJMDS0hLBwcHQ19dnsKHPtnbtWsybNw/R0dEoVKgQBg4cKI3IZPh4OwsNDcXNmzcxYMAAHp33FWC4+cYolUp06dIFCoUCGzZskNoXLlyIUaNGwcfHB7/88gtKlCihxSpJbtq2bYuxY8eiatWqUtuVK1fQpEkTHD16FKVLl87yxJDJyckQQsDIyAgKhYIfKPTZ1q5dCx8fH+nSCjNmzMCDBw9w8uRJadvKCDYxMTE4cOAA2rdvr/IYHLHJ+/j15xuT8U0kY/g/NTUVADBw4EB4e3tj9erV+P3331WOoiL6XGZmZnB2dlZpMzIywps3b3Djxg2pLeN6UqdPn8b27duho6MDY2NjKBQKKJVKBhv6LBcuXMDUqVOxaNEi9OzZExUrVsTQoUPh5OSEU6dO4ebNm4iLi5N22a9Zswa//PIL/vjjD5XHYbDJ+xhuvhH//POP9P/SpUvjzz//RHR0NAwMDJCWlgYAsLOzg4mJCcLCwmBsbKytUklGnj17BgBYvXo1DAwM8Pvvv+PAgQNITU2Fk5MTOnTogDlz5uDgwYNQKBTQ0dFBeno6pk+fjrCwMJV5ENwVRZ8rJSUFQ4YMQfPmzaW2SZMm4dChQ+jUqRM8PT3RsWNHvH79Gvr6+mjWrBlGjBjBycNfIe6W+gZcvXoVAwYMQOfOndG/f3+kpqaiQYMGePnyJY4cOQJbW1sAwOjRo1G+fHm0aNEClpaWWq6avnZ9+vQBAIwZM0bazens7IyXL19i06ZNqFOnDo4fPw4/Pz9cv34dXbp0gYGBAQ4dOoQXL17g0qVLHKkhjVIqlXjx4gVsbGwAAJ6enjh48CB2794Ne3t7HD16FNOmTcPo0aPRuXNnlTk43BX1deFXoW+AiYkJzM3NsW3bNgQFBcHAwADLli2DlZUVypYtCw8PDzRu3BgLFixA1apVGWxII5ydnbF//34sXboU4eHhAIBr166hdOnS6NKlC44dO4batWtjypQp8PT0xLp163D48GEUK1YMFy9elCZtEmmKjo6OFGwAYMSIETh79iyqVq0KGxsbNG3aFK9fv0ZUVFSmw8IZbL4uHLn5RoSHh2Ps2LGIjIxEnz590K1bN6Snp2Pu3LmIiIiAEAIDBw5EuXLltF0qyciqVaswYcIEdOzYEX369EHp0qUBAHXq1MHDhw+xfv161KlTBwDw9u1bmJiYSOty8jB9aU+fPkXXrl0xYsQIXhjzK8dwI1OXLl3C8+fPVfYth4eHY/z48Xj06BEGDhyILl26aLFCkrMPD6NduXIlJkyYgE6dOmUKOBEREVi7di2qV6+uMr8mqxOqEanjw20o4/8Z/7548QJWVlYq/RMTE9GpUyfExsbi8OHDHKn5yjHcyFB8fDyaN28OXV1djBo1Ck2bNpWWPXr0CE2aNIGJiQl69+6NX375RYuVktx86hw0y5cvx+TJk9GhQwf07dtXCjgNGjTAyZMncebMGbi6un7pckmmstoOM9qCg4OxceNGLFiwAEWKFEFSUhJ27dqFdevW4dmzZzh//jz09fU5x+Yrxzk3MpKRUwsUKIDZs2dDT08PixYtwt69e6U+Dg4OqF+/PiIjI3Ho0CHExMRoqVqSmw8/UE6dOoWwsDBcvXoVwPvJxb/99hs2bdqEwMBA3LlzBwBw+PBh9O7dO9Nh4kQ5deLECemilsOGDcPMmTMBvJ9vs3nzZnh6eqJRo0YoUqQIgPcXXX348CFKlCiBCxcuQF9fH+/evWOw+cpx5EYGMoZaM75pZHzInD17Fr/++ivy5cuH/v37S7uohg8fjhIlSqBt27YoXLiwlqsnOfhwF8CwYcOwefNmJCQkwM7ODsWKFcO+ffsAAMuWLcO0adPQsWNHeHl5qVzSg9+U6XMIIRAbGwtra2s0bdoUhQoVQnBwMI4fP44KFSogJiYGbm5u8PHxwcCBA6V1PvzbCXA7lAuGm69cxi9nWFgYdu/ejdevX6NWrVpo164dzM3NcebMGfz2229ISUlBiRIlYGJigs2bN+Pq1auws7PTdvkkAx8GmwMHDmDIkCEIDAyEubk5/v77b0ycOBH58uXDhQsXALyfg+Pt7Q1/f38MGDBAm6WTDEVHR6NEiRJIT0/H9u3b0axZM2lZVnNtspqbQ18/7pb6yikUCuzYsQMtW7bE27dv8fbtW6xbtw79+/fH69ev4ebmhrlz56Ju3boIDw/HgwcPcPjwYQYb0piMD4Pdu3dj06ZNaNSoEWrVqoUKFSrg559/xtq1a5GQkID+/fsDAHr16oVdu3ZJ94k0JSUlBZGRkTAxMYGuri5WrVolnYYAAAoVKiT9P+Ns2B+GGQYb+eDIzVfuwoUL6NixI3799Vf07t0bERERqFy5MoyNjeHi4oK1a9fC0tJSulbPx4fbEmnC69ev0aJFC1y9ehX169fHnj17VJaPHTsWJ0+exF9//YV8+fJJ7dwFQJ/rU5PYHz16BGdnZ9SvXx/z589HyZIltVAdaQtHbr4ivr6+GDdunPSNA3h/ens3Nzf07t0bjx49QsOGDeHh4YHx48fj/Pnz+OWXX/D69WsYGRkBAIMNacSH2yAAWFpaYs2aNfjxxx9x+fJlrF69WmV5qVKl8OrVKyQlJam0M9jQ5/gw2Bw5cgQbNmzA1atX8ezZMzg4OODkyZMICwvDqFGjpEnsbdq0wcKFC7VZNn0BHLn5iixcuBCDBw/GjBkzMGrUKOmX+tatWyhdujRat24tfcgolUq4uLggPDwczZs3x+bNm3ltHtKIDz9Q7t+/D4VCARMTE9ja2uLhw4fw8fFBYmIi2rVrB29vb0RFRcHLywtGRkbYs2cPh/5J40aMGIE1a9ZAT08P+fPnh62tLfz8/FC1alVcv34d9evXh4ODA1JTU/Hu3TtcvXpVungwyZSgr4JSqRRCCLF8+XKho6Mjpk6dKtLS0qTlT548EWXLlhV79uwRQgjx+vVr0alTJ7Fw4ULx9OlTrdRM8pOxHQohxMSJE0XFihVFmTJlROHChUVgYKAQQojw8HDRrFkzYWRkJEqXLi3atGkj3N3dRVJSkhBCiPT0dK3UTvLx4XYYGhoqKlWqJI4fPy5ev34tdu3aJdq0aSOcnJzEpUuXhBBC3Lt3T0yZMkVMnz5d+rv54d9Pkh+Gm6+AUqmUfpmVSqX4448/hI6Ojpg2bZr0QREdHS1cXFyEt7e3ePTokRg7dqz4/vvvRVRUlDZLJ5maMmWKsLKyEiEhISIhIUG0adNGmJubi5s3bwohhHjw4IFo3ry5cHFxEX5+ftJ6ycnJWqqY5GjNmjViwIABom/fvirt58+fF02aNBFeXl4iISFBCKEaiBhs5I/7Kb4SCoUCBw8exPDhw1GlShXpmj0zZ86EEAIWFhbo0qULjh49Cjc3N6xduxYBAQGwtrbWdukkAx/OsVEqlTh37hz8/PzQuHFjhIaG4siRI5gxYwbKlSuHtLQ0ODo6Yt68ebCxscHevXsRHBwMADA0NNTWSyAZEB/Noti5cycWL16MK1euICUlRWqvWrUqateujRMnTiA9PR2A6pFQvGbZN0Db6YqyZ/v27cLY2FhMnTpVnD9/XgghRGBgoLSLSgghUlJSxM2bN0VoaKh48uSJNsslmZowYYKYOXOmKFq0qLhz544ICwsT+fPnF0uXLhVCCPH27Vsxbtw48ejRIyGEEHfv3hUtWrQQVatWFcHBwdosnb5yH468rF+/Xqxdu1YIIcSAAQOEubm5WLx4sYiNjZX6hISEiDJlykjbIn1bGG6+Anfu3BGOjo5iyZIlmZYtW7ZM2kVFpGkfzo/ZtGmTsLe3Fzdu3BBdu3YV7u7uwsTERKxcuVLq8+zZM1G7dm2xdu1aad1bt26Jn3/+WURERHzx+kkePtwOb9y4IVxdXUWlSpXErl27hBBCeHl5iVKlSonp06eL8PBwER4eLho2bCjq1q2rEoro28Gxua/A48ePoa+vr3KmzYwjVvr27Yt8+fKhW7duMDQ0xIgRI7RYKclNxlFRR48exZEjRzB8+HCUL19eOjlkw4YN0bNnTwDvL9jau3dv6OrqonPnztDR0YFSqUSZMmWwYcMGHp1COZaxHY4cORIPHz6EsbExbt++jaFDh+Ldu3cICgpCz549MX78eCxcuBA1a9ZE/vz5sXnzZigUik+eC4fki+HmK5CQkKByfhClUintPz5y5AiqVKmCzZs3q1ynh0hTIiMj0atXL0RHR2Ps2LEAgH79+uH+/fs4fPgwXF1dUapUKTx+/BjJyck4f/48dHV1VU7QxzkO9LmCgoKwYsUKHDp0CI6OjkhJSYGXlxd8fX2ho6ODVatWwcTEBFu2bEGTJk3QsWNHGBoaIjU1FQYGBtoun74wRtmvQKVKlfDy5UsEBgYCeP8tJiPc7Nq1Cxs2bEDbtm1RtmxZbZZJMmVra4vg4GDY2Njgzz//xMWLF6Grq4s5c+ZgypQpaNCgAWxtbdGhQ4dPXlWZ57ahzxUeHo4KFSrAxcUFZmZmsLW1xapVq6Crq4uhQ4dix44dWLRoERo1aoT58+dj9+7diI+PZ7D5RvHr1FfA0dERixYtQr9+/ZCWlgZPT0/o6uoiKCgIQUFBOH36NM/0SrnK2dkZ27dvh5eXFwICAjBw4EA4OzujVatWaNWqlUrf9PR0jtSQxoj/v5iloaEhkpOTkZqaCiMjI6SlpaFo0aLw9fVFixYt4O/vD2NjY2zYsAGdO3fGiBEjoKenh/bt22v7JZAW8AzFXwmlUont27fD29sb+fLlg5GREXR1dbFx40a4urpquzz6Rly+fBm9e/dGlSpVMHjwYJQvX17bJdE34vr163B1dcVvv/2GiRMnSu0hISFYvnw53rx5g/T0dBw5cgQA0KNHD/z2228oUaKEliombWK4+cr8888/iIiIgEKhgKOjI2xsbLRdEn1jLl++DG9vbxQvXhyzZ8+Go6Ojtkuib0RQUBD69u2LIUOGoEOHDrCwsMCgQYNQo0YNtGnTBuXLl8fevXvRtGlTbZdKWsZwQ0RqO3fuHAICArBixQoehUJf1Pbt2/HLL7/AwMAAQghYW1vj1KlTiIqKwo8//oht27bB2dlZ22WSljHcEFGOZMyF4GG29KU9e/YMT548QVpaGmrWrAkdHR2MGTMGO3fuRFhYGGxtbbVdImkZww0R5VhGwCHSlps3b2LWrFn466+/cPDgQbi4uGi7JMoDeEgDEeUYgw1p07t375Camgpra2scPXqUE9xJwpEbIiL6qqWlpfEM2KSC4YaIiIhkhbMAiYiISFYYboiIiEhWGG6IiIhIVhhuiIiISFYYbohI9o4cOQKFQoGYmJhsr+Pg4AB/f/9cq4mIcg/DDRFpXffu3aFQKNCvX79My3x8fKBQKNC9e/cvXxgRfZUYbogoT7C3t8emTZuQlJQktSUnJ2PDhg0oVqyYFisjoq8Nww0R5QmVK1eGvb09goODpbbg4GAUK1YMrq6uUltKSgoGDRoEa2trGBkZoVatWjh//rzKY/3111/47rvvYGxsjPr16+PRo0eZnu/EiROoXbs2jI2NYW9vj0GDBiExMTHXXh8RfTkMN0SUZ/Ts2ROrV6+W7q9atQo9evRQ6TNq1Chs374da9aswaVLl+Dk5AR3d3e8fv0aAPDkyRO0bdsWLVu2xJUrV9C7d2/8+uuvKo9x//59NGnSBD/99BOuXbuGzZs348SJExgwYEDuv0giynUMN0SUZ3Tt2hUnTpxAREQEIiIicPLkSXTt2lVanpiYiKVLl2LOnDlo2rQpypUrh+XLl8PY2BgrV64EACxduhQlS5bEvHnzULp0aXTp0iXTfB1fX1906dIFQ4YMQalSpVCjRg38/vvvWLt2LZKTk7/kSyaiXMALZxJRnmFlZYXmzZsjKCgIQgg0b94chQoVkpbfv38faWlpqFmzptSmr6+PH374Abdu3QIA3Lp1C9WqVVN53OrVq6vcv3r1Kq5du4b169dLbUIIKJVKPHz4EGXLls2Nl0dEXwjDDRHlKT179pR2Dy1evDhXniMhIQHe3t4YNGhQpmWcvEz09WO4IaI8pUmTJkhNTYVCoYC7u7vKspIlS8LAwAAnT55E8eLFAby/IvT58+cxZMgQAEDZsmWxe/dulfXOnDmjcr9y5cr4+++/4eTklHsvhIi0hnNuiChP0dXVxa1bt/D3339DV1dXZVm+fPnQv39/jBw5Evv378fff/+NPn364O3bt+jVqxcAoF+/frh37x5GjhyJO3fuYMOGDQgKClJ5nNGjR+PUqVMYMGAArly5gnv37mHXrl2cUEwkEww3RJTnmJqawtTUNMtlM2fOxE8//YRu3bqhcuXKCA8PR0hICCwsLAC83620fft27Ny5E5UqVUJAQABmzJih8hjOzs44evQo7t69i9q1a8PV1RUTJkxAkSJFcv21EVHuUwghhLaLICIiItIUjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs/B+XLE52CERTBAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIXCAYAAABghH+YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwdUlEQVR4nO3dd1QU198G8GfpoNKUooKCYuwIaiL2GrGLJnYFOxrsNZbYFTsYG2JDjV2xRKOIir33EhsWLBGwUaXJ3vcPX+bnCiYsLi6Oz+ecPbp37ux+lx3YZ+/cmVEIIQSIiIiIZEJH2wUQERERaRLDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNEcmSg4MDunfvru0y1DZnzhyUKFECurq6cHFx0XY5GnfkyBEoFAps27ZN26WoTaFQYNKkSWqv9+jRIygUCgQFBWm8Jsoaww19tiVLlkChUKBatWraLiXPcXBwgEKhkG758uXDDz/8gLVr12q7tK9Oxodidm5fqwMHDmDUqFGoWbMmVq9ejRkzZmi7pDwnKChIep9PnDiRabkQAvb29lAoFGjRooUWKqS8QE/bBdDXb/369XBwcMC5c+cQHh4OJycnbZeUp7i4uGD48OEAgOfPn2PFihXw8vJCSkoK+vTpo+Xqvh5ly5bFunXrVNrGjBmD/PnzY9y4cZn637lzBzo6X9f3t8OHD0NHRwcrV66EgYGBtsvJ04yMjLBhwwbUqlVLpf3o0aN4+vQpDA0NtVQZ5QUMN/RZHj58iFOnTiE4OBje3t5Yv349Jk6c+EVrUCqVSE1NhZGR0Rd93uwqWrQounbtKt3v3r07SpQoAT8/P4YbNdjY2Kj8HAFg5syZKFSoUKZ2AF/lh1t0dDSMjY01FmyEEEhOToaxsbFGHi8vadasGbZu3Yrff/8denr/+yjbsGEDqlSpgpcvX2qxOtK2r+trDeU569evh4WFBZo3b46ff/4Z69evl5alpaXB0tISPXr0yLReXFwcjIyMMGLECKktJSUFEydOhJOTEwwNDWFvb49Ro0YhJSVFZV2FQoEBAwZg/fr1KF++PAwNDbF//34AwNy5c1GjRg0ULFgQxsbGqFKlSpb79pOSkjBo0CAUKlQIBQoUQKtWrfDs2bMs96k/e/YMPXv2hI2NDQwNDVG+fHmsWrUqxz8zKysrlClTBvfv31dpVyqV8Pf3R/ny5WFkZAQbGxt4e3vjzZs3Kv0uXLgAd3d3FCpUCMbGxnB0dETPnj2l5Rn79+fOnQs/Pz8UL14cxsbGqFu3Lm7cuJGpnsOHD6N27drIly8fzM3N0bp1a9y6dUulz6RJk6BQKBAeHo7u3bvD3NwcZmZm6NGjB96+favSNzQ0FLVq1YK5uTny58+P0qVLY+zYsSp9svtef46P59xk7M44ceIEBg0aBCsrK5ibm8Pb2xupqamIiYmBp6cnLCwsYGFhgVGjRkEIofKYmnqPsqJQKLB69WokJiZKu10y5mi8e/cOU6dORcmSJWFoaAgHBweMHTs208/LwcEBLVq0QEhICKpWrQpjY2MsW7bsX5/37NmzaNKkCczMzGBiYoK6devi5MmTKn0iIiLwyy+/oHTp0jA2NkbBggXRrl07PHr0KNPjxcTEYOjQoXBwcIChoSHs7Ozg6emZKWwolUpMnz4ddnZ2MDIyQsOGDREeHv6vtX6oU6dOePXqFUJDQ6W21NRUbNu2DZ07d85yncTERAwfPhz29vYwNDRE6dKlMXfu3Ezvc0pKCoYOHQorKyvp78PTp0+zfExN/30gDRFEn6FMmTKiV69eQgghjh07JgCIc+fOSct79uwpzM3NRUpKisp6a9asEQDE+fPnhRBCpKeni8aNGwsTExMxZMgQsWzZMjFgwAChp6cnWrdurbIuAFG2bFlhZWUlJk+eLBYvXiwuX74shBDCzs5O/PLLL2LRokVi/vz54ocffhAAxJ49e1Qeo3379gKA6Natm1i8eLFo3769qFSpkgAgJk6cKPWLjIwUdnZ2wt7eXkyZMkUsXbpUtGrVSgAQfn5+//nzKV68uGjevLlKW1pamrC1tRU2NjYq7b179xZ6enqiT58+IiAgQIwePVrky5dPfP/99yI1NVUIIURUVJSwsLAQ3333nZgzZ45Yvny5GDdunChbtqz0OA8fPhQARMWKFYWDg4OYNWuWmDx5srC0tBRWVlYiMjJS6hsaGir09PTEd999J2bPni0mT54sChUqJCwsLMTDhw+lfhMnThQAhKurq2jbtq1YsmSJ6N27twAgRo0aJfW7ceOGMDAwEFWrVhULFiwQAQEBYsSIEaJOnTpSH3Xe6/9Svnx5Ubdu3U/+7L28vKT7q1evFgCEi4uLaNKkiVi8eLHo1q2b9Bpq1aolOnfuLJYsWSJatGghAIg1a9bkynuUlXXr1onatWsLQ0NDsW7dOrFu3Tpx//59IYQQXl5eAoD4+eefxeLFi4Wnp6cAIDw8PDK9ZicnJ2FhYSF+/fVXERAQIMLCwj75nIcOHRIGBgaievXqYt68ecLPz084OzsLAwMDcfbsWanf1q1bRaVKlcSECRNEYGCgGDt2rLCwsBDFixcXiYmJUr/4+HhRoUIFoaurK/r06SOWLl0qpk6dKr7//nvpdzQsLEzalqpUqSL8/PzEpEmThImJifjhhx/+9Wf04ft4/vx5UaNGDdGtWzdp2c6dO4WOjo549uxZpt89pVIpGjRoIBQKhejdu7dYtGiRaNmypQAghgwZovIcXbt2FQBE586dxaJFi0Tbtm2Fs7Nzjv8+ZPxOrl69+j9fH2kGww3l2IULFwQAERoaKoR4/8fDzs5ODB48WOoTEhIiAIg///xTZd1mzZqJEiVKSPfXrVsndHR0xPHjx1X6BQQECADi5MmTUhsAoaOjI27evJmpprdv36rcT01NFRUqVBANGjSQ2i5evJjlH7Tu3btn+uPVq1cvUbhwYfHy5UuVvh07dhRmZmaZnu9jxYsXF40bNxYvXrwQL168ENevX5c+UH18fKR+x48fFwDE+vXrVdbfv3+/SvuOHTtUQmFWMv6QGhsbi6dPn0rtZ8+eFQDE0KFDpTYXFxdhbW0tXr16JbVdvXpV6OjoCE9PT6ktI9z07NlT5bnatGkjChYsKN338/MTAMSLFy8+WZ867/V/yUm4cXd3F0qlUmqvXr26UCgUol+/flLbu3fvhJ2dncpja/I9+hQvLy+RL18+lbYrV64IAKJ3794q7SNGjBAAxOHDh1VeMwCxf//+/3wupVIpSpUqlenn8fbtW+Ho6Ch+/PFHlbaPnT59WgAQa9euldomTJggAIjg4OAsn0+I/4WbsmXLqnzpWbBggQAgrl+//q91fxhuFi1aJAoUKCDV165dO1G/fn3pZ/FhuNm5c6cAIKZNm6byeD///LNQKBQiPDxcCPG/n/cvv/yi0q9z5845/vvAcPPlcbcU5dj69ethY2OD+vXrA3g/rN6hQwds2rQJ6enpAIAGDRqgUKFC2Lx5s7TemzdvEBoaig4dOkhtW7duRdmyZVGmTBm8fPlSujVo0AAAEBYWpvLcdevWRbly5TLV9OHcgjdv3iA2Nha1a9fGpUuXpPaMXVi//PKLyroDBw5UuS+EwPbt29GyZUsIIVTqcnd3R2xsrMrjfsqBAwdgZWUFKysrVKxYEevWrUOPHj0wZ84clddvZmaGH3/8UeV5qlSpgvz580uv39zcHACwZ88epKWl/evzenh4oGjRotL9H374AdWqVcNff/0F4P3k5itXrqB79+6wtLSU+jk7O+PHH3+U+n2oX79+Kvdr166NV69eIS4uTqW+Xbt2QalUZlmXuu+1pvXq1UvliKpq1apBCIFevXpJbbq6uqhatSoePHigUrem36PsyHgfhg0bptKeMUl97969Ku2Ojo5wd3f/z8e9cuUK7t27h86dO+PVq1fS60lMTETDhg1x7Ngx6T388PcqLS0Nr169gpOTE8zNzVV+B7Zv345KlSqhTZs2mZ7v46PYevTooTK3qHbt2gCg8jP/L+3bt0dSUhL27NmD+Ph47Nmz55O7pP766y/o6upi0KBBKu3Dhw+HEAL79u2T+gHI1G/IkCEq9zX194Fyxzcdbo4dO4aWLVuiSJEiUCgU2LlzZ64/57Nnz9C1a1dpTkjFihVx4cKFXH9eTUtPT8emTZtQv359PHz4EOHh4QgPD0e1atUQFRWFQ4cOAQD09PTw008/YdeuXdL8gODgYKSlpamEm3v37uHmzZtSCMi4fffddwDeT7T8kKOjY5Z17dmzB25ubjAyMoKlpSWsrKywdOlSxMbGSn0iIiKgo6OT6TE+PsrrxYsXiImJQWBgYKa6MuYRfVxXVqpVq4bQ0FDs378fc+fOhbm5Od68eaPyh/3evXuIjY2FtbV1pudKSEiQnqdu3br46aefMHnyZBQqVAitW7fG6tWrs5yrUqpUqUxt3333nTRPIiIiAgBQunTpTP3Kli0rfdB9qFixYir3LSwsAECac9KhQwfUrFkTvXv3ho2NDTp27IgtW7aoBB1132tN+/g1mJmZAQDs7e0ztX84lyY33qPsyNheP94+bW1tYW5uLr2PGT71u/Gxe/fuAQC8vLwyvZ4VK1YgJSVF+r1JSkrChAkTpLkqhQoVgpWVFWJiYlR+t+7fv48KFSpk6/n/a1vKDisrKzRq1AgbNmxAcHAw0tPT8fPPP2fZNyIiAkWKFEGBAgVU2suWLSstz/hXR0cHJUuWVOn38e+Jpv4+UO74po+WSkxMRKVKldCzZ0+0bds215/vzZs3qFmzJurXr499+/bBysoK9+7dk36pvyaHDx/G8+fPsWnTJmzatCnT8vXr16Nx48YAgI4dO2LZsmXYt28fPDw8sGXLFpQpUwaVKlWS+iuVSlSsWBHz58/P8vk+/uDJ6uiP48ePo1WrVqhTpw6WLFmCwoULQ19fH6tXr8aGDRvUfo0ZH8hdu3aFl5dXln2cnZ3/83EKFSqERo0aAQDc3d1RpkwZtGjRAgsWLJC+jSuVSlhbW6tMyP6QlZUVAEgnPztz5gz+/PNPhISEoGfPnpg3bx7OnDmD/Pnzq/061aGrq5tlu/j/CZnGxsY4duwYwsLCsHfvXuzfvx+bN29GgwYNcODAAejq6qr9Xmvap15DVu3ig4mm2n6Psnv+nuweGZWxfc+ZM+eTJwvMqHXgwIFYvXo1hgwZgurVq8PMzAwKhQIdO3b85Ajdf/mvbSm7OnfujD59+iAyMhJNmzaVRs5ym6b+PlDu+KbDTdOmTdG0adNPLk9JScG4ceOwceNGxMTEoEKFCpg1axbq1auXo+ebNWsW7O3tsXr1aqktu9+y8pr169fD2toaixcvzrQsODgYO3bsQEBAAIyNjVGnTh0ULlwYmzdvRq1atXD48OFM5yUpWbIkrl69ioYNG+b4JGzbt2+HkZERQkJCVA4D/vDnDQDFixeHUqnEw4cPVUY3Pj5SI+NIifT0dCmcaELz5s1Rt25dzJgxA97e3siXLx9KliyJgwcPombNmtn6cHJzc4ObmxumT5+ODRs2oEuXLti0aRN69+4t9cn4Zv6hu3fvwsHBAcD7nwPw/nwwH7t9+zYKFSqEfPnyqf36dHR00LBhQzRs2BDz58/HjBkzMG7cOISFhaFRo0Yaea+1ITfeo+zI2F7v3bsnjTIAQFRUFGJiYqT3UV0ZIxOmpqb/uX1v27YNXl5emDdvntSWnJyMmJiYTI+Z1RF5ualNmzbw9vbGmTNnVHZ/f6x48eI4ePAg4uPjVUZvbt++LS3P+FepVOL+/fsqozUf/57k1t8H0oxverfUfxkwYABOnz6NTZs24dq1a2jXrh2aNGmS5YdGduzevRtVq1ZFu3btYG1tDVdXVyxfvlzDVee+pKQkBAcHo0WLFvj5558z3QYMGID4+Hjs3r0bwPsPu59//hl//vkn1q1bh3fv3qnskgLe7zt/9uxZlj+PpKSkTLtHsqKrqwuFQiHN9wHeHxb98e7GjPkIS5YsUWlfuHBhpsf76aefsH379iz/YL948eI/a/qU0aNH49WrV9Lrbd++PdLT0zF16tRMfd+9eyd9iLx58ybTN9uMb90f7/bYuXMnnj17Jt0/d+4czp49KwX6woULw8XFBWvWrFH5kLpx4wYOHDiAZs2aqf26Xr9+nant4/o08V5rQ268R9mR8T74+/urtGeMfDVv3lztxwSAKlWqoGTJkpg7dy4SEhIyLf9w+9bV1c30mhYuXKjyuwYAP/30E65evYodO3Zkejx1R2SyK3/+/Fi6dCkmTZqEli1bfrJfs2bNkJ6ejkWLFqm0+/n5QaFQSL8XGf/+/vvvKv0+/vnn5t8H+nzf9MjNv3n8+DFWr16Nx48fo0iRIgCAESNGYP/+/Tk+LfqDBw+wdOlSDBs2DGPHjsX58+cxaNAgGBgYfHJYMy/avXs34uPj0apVqyyXu7m5wcrKCuvXr5dCTIcOHbBw4UJMnDgRFStWVPkGCgDdunXDli1b0K9fP4SFhaFmzZpIT0/H7du3sWXLFum8Hf+mefPmmD9/Ppo0aYLOnTsjOjoaixcvhpOTE65duyb1q1KlCn766Sf4+/vj1atXcHNzw9GjR3H37l0AqsP/M2fORFhYGKpVq4Y+ffqgXLlyeP36NS5duoSDBw9m+WGeHU2bNkWFChUwf/58+Pj4oG7duvD29oavry+uXLmCxo0bQ19fH/fu3cPWrVuxYMEC/Pzzz1izZg2WLFmCNm3aoGTJkoiPj8fy5cthamqaKYw4OTmhVq1a6N+/P1JSUuDv74+CBQti1KhRUp85c+agadOmqF69Onr16oWkpCQsXLgQZmZmObqGzpQpU3Ds2DE0b94cxYsXR3R0NJYsWQI7OzvpTLKaeK+1ITfeo+yoVKkSvLy8EBgYiJiYGNStWxfnzp3DmjVr4OHhIU3oV5eOjg5WrFiBpk2bonz58ujRoweKFi2KZ8+eISwsDKampvjzzz8BAC1atMC6detgZmaGcuXK4fTp0zh48CAKFiyo8pgjR47Etm3b0K5dO/Ts2RNVqlTB69evsXv3bgQEBKjsitak7Pz9bNmyJerXr49x48bh0aNHqFSpEg4cOIBdu3ZhyJAh0kiWi4sLOnXqhCVLliA2NhY1atTAoUOHsjwHT279fSAN0MoxWnkQALFjxw7p/p49ewQAkS9fPpWbnp6eaN++vRBCiFu3bgkA/3obPXq09Jj6+vqievXqKs87cOBA4ebm9kVeo6a0bNlSGBkZqZzf4mPdu3cX+vr60iGSSqVS2NvbZ3koZobU1FQxa9YsUb58eWFoaCgsLCxElSpVxOTJk0VsbKzUDx8dRv2hlStXilKlSglDQ0NRpkwZsXr1aukw5g8lJiYKHx8fYWlpKfLnzy88PDzEnTt3BAAxc+ZMlb5RUVHCx8dH2NvbC319fWFraysaNmwoAgMD//NnldV5bjIEBQVlOjw0MDBQVKlSRRgbG4sCBQqIihUrilGjRol//vlHCCHEpUuXRKdOnUSxYsWEoaGhsLa2Fi1atBAXLlyQHiPjsNM5c+aIefPmCXt7e2FoaChq164trl69mqmOgwcPipo1awpjY2NhamoqWrZsKf7++2+VPhk/w48P8c44LDfjnDiHDh0SrVu3FkWKFBEGBgaiSJEiolOnTuLu3bsq62X3vf4vOTkU/ONDtD/12rI6LFsIzbxHn/Kp50xLSxOTJ08Wjo6OQl9fX9jb24sxY8aI5OTkTK/5U9vbp1y+fFm0bdtWFCxYUBgaGorixYuL9u3bi0OHDkl93rx5I3r06CEKFSok8ufPL9zd3cXt27cz/YyFEOLVq1diwIABomjRosLAwEDY2dkJLy8v6W9BxqHgW7duVVkvu4dLf+p9/FhWP4v4+HgxdOhQUaRIEaGvry9KlSol5syZo3IovBBCJCUliUGDBomCBQuKfPnyiZYtW4onT55kOhRciOz9feCh4F+eQohcGiv8yigUCuzYsQMeHh4AgM2bN6NLly64efNmpolv+fPnh62tLVJTU//zsMWCBQtKEw2LFy+OH3/8EStWrJCWL126FNOmTVPZfUDaceXKFbi6uuKPP/5Aly5dtF1Ojj169AiOjo6YM2eOyhmgiYi+Fdwt9Qmurq5IT09HdHS0dP6FjxkYGKBMmTLZfsyaNWtmmpR29+7dHE8IpJxLSkrKNCnU398fOjo6qFOnjpaqIiIiTfimw01CQoLKftSHDx/iypUrsLS0xHfffYcuXbrA09MT8+bNg6urK168eIFDhw7B2dk5R5P4hg4diho1amDGjBlo3749zp07h8DAQAQGBmryZVE2zJ49GxcvXkT9+vWhp6eHffv2Yd++fejbt2+uH4pMRES5TNv7xbQpY9/vx7eMfcipqaliwoQJwsHBQejr64vChQuLNm3aiGvXruX4Of/8809RoUIFaU5IduZtkOYdOHBA1KxZU1hYWAh9fX1RsmRJMWnSJJGWlqbt0j7bh3NuiIi+RZxzQ0RERLLC89wQERGRrDDcEBERkax8cxOKlUol/vnnHxQoUOCrOvU7ERHRt0wIgfj4eBQpUgQ6Ov8+NvPNhZt//vmHR8MQERF9pZ48eQI7O7t/7fPNhZuMC6Y9efIEpqamWq6GiIiIsiMuLg729vYqFz79lG8u3GTsijI1NWW4ISIi+spkZ0oJJxQTERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs6Gm7ACLSLIdf92q7BNKyRzOba/X5uQ2StrdBjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrGg13CxduhTOzs4wNTWFqakpqlevjn379v3rOlu3bkWZMmVgZGSEihUr4q+//vpC1RIREdHXQKvhxs7ODjNnzsTFixdx4cIFNGjQAK1bt8bNmzez7H/q1Cl06tQJvXr1wuXLl+Hh4QEPDw/cuHHjC1dOREREeZVCCCG0XcSHLC0tMWfOHPTq1SvTsg4dOiAxMRF79uyR2tzc3ODi4oKAgIBsPX5cXBzMzMwQGxsLU1NTjdVNlFfwooWk7YsWchuk3NgG1fn8zjNzbtLT07Fp0yYkJiaievXqWfY5ffo0GjVqpNLm7u6O06dPf/JxU1JSEBcXp3IjIiIi+dJ6uLl+/Try588PQ0ND9OvXDzt27EC5cuWy7BsZGQkbGxuVNhsbG0RGRn7y8X19fWFmZibd7O3tNVo/ERER5S1aDzelS5fGlStXcPbsWfTv3x9eXl74+++/Nfb4Y8aMQWxsrHR78uSJxh6biIiI8h49bRdgYGAAJycnAECVKlVw/vx5LFiwAMuWLcvU19bWFlFRUSptUVFRsLW1/eTjGxoawtDQULNFExERUZ6l9ZGbjymVSqSkpGS5rHr16jh06JBKW2ho6Cfn6BAREdG3R6sjN2PGjEHTpk1RrFgxxMfHY8OGDThy5AhCQkIAAJ6enihatCh8fX0BAIMHD0bdunUxb948NG/eHJs2bcKFCxcQGBiozZdBREREeYhWw010dDQ8PT3x/PlzmJmZwdnZGSEhIfjxxx8BAI8fP4aOzv8Gl2rUqIENGzZg/PjxGDt2LEqVKoWdO3eiQoUK2noJRERElMdoNdysXLnyX5cfOXIkU1u7du3Qrl27XKqIiIiIvnZ5bs4NERER0edguCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWdFquPH19cX333+PAgUKwNraGh4eHrhz586/rhMUFASFQqFyMzIy+kIVExERUV6n1XBz9OhR+Pj44MyZMwgNDUVaWhoaN26MxMTEf13P1NQUz58/l24RERFfqGIiIiLK6/S0+eT79+9XuR8UFARra2tcvHgRderU+eR6CoUCtra2uV0eERERfYXy1Jyb2NhYAIClpeW/9ktISEDx4sVhb2+P1q1b4+bNm5/sm5KSgri4OJUbERERyVeeCTdKpRJDhgxBzZo1UaFChU/2K126NFatWoVdu3bhjz/+gFKpRI0aNfD06dMs+/v6+sLMzEy62dvb59ZLICIiojwgz4QbHx8f3LhxA5s2bfrXftWrV4enpydcXFxQt25dBAcHw8rKCsuWLcuy/5gxYxAbGyvdnjx5khvlExERUR6h1Tk3GQYMGIA9e/bg2LFjsLOzU2tdfX19uLq6Ijw8PMvlhoaGMDQ01ESZRERE9BXQ6siNEAIDBgzAjh07cPjwYTg6Oqr9GOnp6bh+/ToKFy6cCxUSERHR10arIzc+Pj7YsGEDdu3ahQIFCiAyMhIAYGZmBmNjYwCAp6cnihYtCl9fXwDAlClT4ObmBicnJ8TExGDOnDmIiIhA7969tfY6iIiIKO/QarhZunQpAKBevXoq7atXr0b37t0BAI8fP4aOzv8GmN68eYM+ffogMjISFhYWqFKlCk6dOoVy5cp9qbKJiIgoD9NquBFC/GefI0eOqNz38/ODn59fLlVEREREX7s8MaFYThx+3avtEkjLHs1sru0SiIi+aXnmUHAiIiIiTWC4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZyVG4uX//PsaPH49OnTohOjoaALBv3z7cvHlTo8URERERqUvtcHP06FFUrFgRZ8+eRXBwMBISEgAAV69excSJEzVeIBEREZE61A43v/76K6ZNm4bQ0FAYGBhI7Q0aNMCZM2c0WhwRERGRutQON9evX0ebNm0ytVtbW+Ply5caKYqIiIgop9QON+bm5nj+/Hmm9suXL6No0aIaKYqIiIgop9QONx07dsTo0aMRGRkJhUIBpVKJkydPYsSIEfD09MyNGomIiIiyTe1wM2PGDJQpUwb29vZISEhAuXLlUKdOHdSoUQPjx4/PjRqJiIiIsk3tq4IbGBhg+fLl+O2333Djxg0kJCTA1dUVpUqVyo36iIiIiNSidrjJUKxYMRQrVkyTtRARERF9NrXDjRAC27ZtQ1hYGKKjo6FUKlWWBwcHa6w4IiIiInWpHW6GDBmCZcuWoX79+rCxsYFCociNuoiIiIhyRO1ws27dOgQHB6NZs2a5UQ8RERHRZ1H7aCkzMzOUKFEiN2ohIiIi+mxqh5tJkyZh8uTJSEpKyo16iIiIiD6L2rul2rdvj40bN8La2hoODg7Q19dXWX7p0iWNFUdERESkLrXDjZeXFy5evIiuXbtyQjERERHlOWqHm7179yIkJAS1atXKjXqIiIiIPovac27s7e1hamqaG7UQERERfTa1w828efMwatQoPHr0KBfKISIiIvo8au+W6tq1K96+fYuSJUvCxMQk04Ti169fa6w4IiIiInWpHW78/f1zoQwiIiIizcjR0VJEREREeVW2wk1cXJw0iTguLu5f+3KyMREREWlTtsKNhYUFnj9/Dmtra5ibm2d5bhshBBQKBdLT0zVeJBEREVF2ZSvcHD58GJaWlgCAsLCwXC2IiIiI6HNkK9zUrVsXJUqUwPnz51G3bt3cromIiIgox7J9nptHjx5xlxMRERHleWqfxI+IiIgoL1PrUPCQkBCYmZn9a59WrVp9VkFEREREn0OtcPNf57jh0VJERESkbWrtloqMjIRSqfzkjcGGiIiItC3b4Sarc9sQERER5TXZDjdCiNysg4iIiEgjsh1uvLy8YGxsnJu1EBEREX22bE8oXr16dW7WQURERKQRPM8NERERyQrDDREREckKww0RERHJSo7DTXh4OEJCQpCUlAQgZ0dT+fr64vvvv0eBAgVgbW0NDw8P3Llz5z/X27p1K8qUKQMjIyNUrFgRf/31l9rPTURERPKkdrh59eoVGjVqhO+++w7NmjXD8+fPAQC9evXC8OHD1Xqso0ePwsfHB2fOnEFoaCjS0tLQuHFjJCYmfnKdU6dOoVOnTujVqxcuX74MDw8PeHh44MaNG+q+FCIiIpIhtcPN0KFDoaenh8ePH8PExERq79ChA/bv36/WY+3fvx/du3dH+fLlUalSJQQFBeHx48e4ePHiJ9dZsGABmjRpgpEjR6Js2bKYOnUqKleujEWLFqn7UoiIiEiG1Lq2FAAcOHAAISEhsLOzU2kvVaoUIiIiPquY2NhYAIClpeUn+5w+fRrDhg1TaXN3d8fOnTuz7J+SkoKUlBTpflxc3GfVSERERHmb2iM3iYmJKiM2GV6/fg1DQ8McF6JUKjFkyBDUrFkTFSpU+GS/yMhI2NjYqLTZ2NggMjIyy/6+vr4wMzOTbvb29jmukYiIiPI+tcNN7dq1sXbtWum+QqGAUqnE7NmzUb9+/RwX4uPjgxs3bmDTpk05foysjBkzBrGxsdLtyZMnGn18IiIiylvU3i01e/ZsNGzYEBcuXEBqaipGjRqFmzdv4vXr1zh58mSOihgwYAD27NmDY8eOZdrd9TFbW1tERUWptEVFRcHW1jbL/oaGhp81okRERERfF7VHbipUqIC7d++iVq1aaN26NRITE9G2bVtcvnwZJUuWVOuxhBAYMGAAduzYgcOHD8PR0fE/16levToOHTqk0hYaGorq1aur9dxEREQkT2qP3ACAmZkZxo0b99lP7uPjgw0bNmDXrl0oUKCANG/GzMxMukinp6cnihYtCl9fXwDA4MGDUbduXcybNw/NmzfHpk2bcOHCBQQGBn52PURERPT1U3vkZv/+/Thx4oR0f/HixXBxcUHnzp3x5s0btR5r6dKliI2NRb169VC4cGHptnnzZqnP48ePpXPpAECNGjWwYcMGBAYGolKlSti2bRt27tz5r5OQiYiI6Nuh9sjNyJEjMWvWLADA9evXMWzYMAwfPhxhYWEYNmyYWlcPz85ZjY8cOZKprV27dmjXrl22n4eIiIi+HWqHm4cPH6JcuXIAgO3bt6Nly5aYMWMGLl26hGbNmmm8QCIiIiJ1qL1bysDAAG/fvgUAHDx4EI0bNwbw/sR7PEEeERERaZvaIze1atXCsGHDULNmTZw7d06aH3P37t3/PIybiIiIKLepPXKzaNEi6OnpYdu2bVi6dCmKFi0KANi3bx+aNGmi8QKJiIiI1KH2yE2xYsWwZ8+eTO1+fn4aKYiIiIjoc+ToPDdKpRLh4eGIjo6GUqlUWVanTh2NFEZERESUE2qHmzNnzqBz586IiIjIdCi3QqFAenq6xoojIiIiUpfa4aZfv36oWrUq9u7di8KFC0OhUORGXUREREQ5ona4uXfvHrZt2wYnJ6fcqIeIiIjos6h9tFS1atUQHh6eG7UQERERfTa1R24GDhyI4cOHIzIyEhUrVoS+vr7KcmdnZ40VR0RERKQutcPNTz/9BADo2bOn1KZQKCCE4IRiIiIi0rocXVuKiIiIKK9SO9wUL148N+ogIiIi0ogcncTv/v378Pf3x61btwAA5cqVw+DBg1GyZEmNFkdERESkLrWPlgoJCUG5cuVw7tw5ODs7w9nZGWfPnkX58uURGhqaGzUSERERZZvaIze//vorhg4dipkzZ2ZqHz16NH788UeNFUdERESkLrVHbm7duoVevXplau/Zsyf+/vtvjRRFRERElFNqhxsrKytcuXIlU/uVK1dgbW2tiZqIiIiIckzt3VJ9+vRB37598eDBA9SoUQMAcPLkScyaNQvDhg3TeIFERERE6lA73Pz2228oUKAA5s2bhzFjxgAAihQpgkmTJmHQoEEaL5CIiIhIHWqHG4VCgaFDh2Lo0KGIj48HABQoUEDjhRERERHlRI7OcwMA0dHRuHPnDgCgTJkysLKy0lhRRERERDml9oTi+Ph4dOvWDUWKFEHdunVRt25dFClSBF27dkVsbGxu1EhERESUbWqHm969e+Ps2bPYu3cvYmJiEBMTgz179uDChQvw9vbOjRqJiIiIsk3t3VJ79uxBSEgIatWqJbW5u7tj+fLlaNKkiUaLIyIiIlKX2iM3BQsWhJmZWaZ2MzMzWFhYaKQoIiIiopxSO9yMHz8ew4YNQ2RkpNQWGRmJkSNH4rffftNocURERETqUnu31NKlSxEeHo5ixYqhWLFiAIDHjx/D0NAQL168wLJly6S+ly5d0lylRERERNmgdrjx8PDIhTKIiIiINEPtcDNx4sTcqIOIiIhII9Sec/PkyRM8ffpUun/u3DkMGTIEgYGBGi2MiIiIKCfUDjedO3dGWFgYgPcTiRs1aoRz585h3LhxmDJlisYLJCIiIlKH2uHmxo0b+OGHHwAAW7ZsQcWKFXHq1CmsX78eQUFBmq6PiIiISC1qh5u0tDQYGhoCAA4ePIhWrVoBeH99qefPn2u2OiIiIiI1qR1uypcvj4CAABw/fhyhoaHSWYn/+ecfFCxYUOMFEhEREalD7XAza9YsLFu2DPXq1UOnTp1QqVIlAMDu3bul3VVERERE2qL2oeD16tXDy5cvERcXp3K5hb59+8LExESjxRERERGpS+2RGwAQQuDixYtYtmwZ4uPjAQAGBgYMN0RERKR1ao/cREREoEmTJnj8+DFSUlLw448/okCBApg1axZSUlIQEBCQG3USERERZYvaIzeDBw9G1apV8ebNGxgbG0vtbdq0waFDhzRaHBEREZG61B65OX78OE6dOgUDAwOVdgcHBzx79kxjhRERERHlhNojN0qlEunp6Znanz59igIFCmikKCIiIqKcUjvcNG7cGP7+/tJ9hUKBhIQETJw4Ec2aNdNkbURERERqU3u31Lx58+Du7o5y5cohOTkZnTt3xr1791CoUCFs3LgxN2okIiIiyja1R27s7Oxw9epVjBs3DkOHDoWrqytmzpyJy5cvw9raWq3HOnbsGFq2bIkiRYpAoVBg586d/9r/yJEjUCgUmW6RkZHqvgwiIiKSKbVHbgBAT08PXbp0QZcuXaS258+fY+TIkVi0aFG2HycxMRGVKlVCz5490bZt22yvd+fOHZiamkr31Q1VREREJF9qhZubN28iLCwMBgYGaN++PczNzfHy5UtMnz4dAQEBKFGihFpP3rRpUzRt2lStdYD3Ycbc3Fzt9YiIiEj+sr1bavfu3XB1dcWgQYPQr18/VK1aFWFhYShbtixu3bqFHTt24ObNm7lZq8TFxQWFCxfGjz/+iJMnT/5r35SUFMTFxanciIiISL6yHW6mTZsGHx8fxMXFYf78+Xjw4AEGDRqEv/76C/v375euDp6bChcujICAAGzfvh3bt2+Hvb096tWrh0uXLn1yHV9fX5iZmUk3e3v7XK+TiIiItCfb4ebOnTvw8fFB/vz5MXDgQOjo6MDPzw/ff/99btanonTp0vD29kaVKlVQo0YNrFq1CjVq1ICfn98n1xkzZgxiY2Ol25MnT75YvURERPTlZXvOTXx8vDSJV1dXF8bGxmrPsckNP/zwA06cOPHJ5YaGhjA0NPyCFREREZE2qTWhOCQkBGZmZgDen6n40KFDuHHjhkqfVq1aaa66bLhy5QoKFy78RZ+TiIiI8i61wo2Xl5fKfW9vb5X7CoUiy0szfEpCQgLCw8Ol+w8fPsSVK1dgaWmJYsWKYcyYMXj27BnWrl0LAPD394ejoyPKly+P5ORkrFixAocPH8aBAwfUeRlEREQkY9kON0qlUuNPfuHCBdSvX1+6P2zYMADvQ1RQUBCeP3+Ox48fS8tTU1MxfPhwPHv2DCYmJnB2dsbBgwdVHoOIiIi+bTk6iZ+m1KtXD0KITy4PCgpSuT9q1CiMGjUql6siIiKir5nal18gIiIiyssYboiIiEhWGG6IiIhIVhhuiIiISFZyFG5iYmKwYsUKjBkzBq9fvwYAXLp0Cc+ePdNocURERETqUvtoqWvXrqFRo0YwMzPDo0eP0KdPH1haWiI4OBiPHz+WzklDREREpA1qj9wMGzYM3bt3x71792BkZCS1N2vWDMeOHdNocURERETqUjvcnD9/PtOZiQGgaNGiiIyM1EhRRERERDmldrgxNDREXFxcpva7d+/CyspKI0URERER5ZTa4aZVq1aYMmUK0tLSALy/ntTjx48xevRo/PTTTxovkIiIiEgdaoebefPmISEhAdbW1khKSkLdunXh5OSEAgUKYPr06blRIxEREVG2qX20lJmZGUJDQ3HixAlcu3YNCQkJqFy5Mho1apQb9RERERGpJccXzqxVqxZq1aqlyVqIiIiIPpva4eb333/Psl2hUMDIyAhOTk6oU6cOdHV1P7s4IiIiInWpHW78/Pzw4sULvH37FhYWFgCAN2/ewMTEBPnz50d0dDRKlCiBsLAw2Nvba7xgIiIion+j9oTiGTNm4Pvvv8e9e/fw6tUrvHr1Cnfv3kW1atWwYMECPH78GLa2thg6dGhu1EtERET0r9QeuRk/fjy2b9+OkiVLSm1OTk6YO3cufvrpJzx48ACzZ8/mYeFERESkFWqP3Dx//hzv3r3L1P7u3TvpDMVFihRBfHz851dHREREpCa1w039+vXh7e2Ny5cvS22XL19G//790aBBAwDA9evX4ejoqLkqiYiIiLJJ7XCzcuVKWFpaokqVKjA0NIShoSGqVq0KS0tLrFy5EgCQP39+zJs3T+PFEhEREf0Xtefc2NraIjQ0FLdv38bdu3cBAKVLl0bp0qWlPvXr19dchURERERqyPFJ/MqUKYMyZcposhYiIiKiz5ajcPP06VPs3r0bjx8/Rmpqqsqy+fPna6QwIiIiopxQO9wcOnQIrVq1QokSJXD79m1UqFABjx49ghAClStXzo0aiYiIiLJN7QnFY8aMwYgRI3D9+nUYGRlh+/btePLkCerWrYt27drlRo1ERERE2aZ2uLl16xY8PT0BAHp6ekhKSkL+/PkxZcoUzJo1S+MFEhEREalD7XCTL18+aZ5N4cKFcf/+fWnZy5cvNVcZERERUQ6oPefGzc0NJ06cQNmyZdGsWTMMHz4c169fR3BwMNzc3HKjRiIiIqJsUzvczJ8/HwkJCQCAyZMnIyEhAZs3b0apUqV4pBQRERFpnVrhJj09HU+fPoWzszOA97uoAgICcqUwIiIiopxQa86Nrq4uGjdujDdv3uRWPURERESfRe0JxRUqVMCDBw9yoxYiIiKiz6Z2uJk2bRpGjBiBPXv24Pnz54iLi1O5EREREWmT2hOKmzVrBgBo1aoVFAqF1C6EgEKhQHp6uuaqIyIiIlKT2uEmLCwsN+ogIiIi0gi1w03dunVzow4iIiIijVB7zg0AHD9+HF27dkWNGjXw7NkzAMC6detw4sQJjRZHREREpC61w8327dvh7u4OY2NjXLp0CSkpKQCA2NhYzJgxQ+MFEhEREakjR0dLBQQEYPny5dDX15faa9asiUuXLmm0OCIiIiJ1qR1u7ty5gzp16mRqNzMzQ0xMjCZqIiIiIsoxtcONra0twsPDM7WfOHECJUqU0EhRRERERDmldrjp06cPBg8ejLNnz0KhUOCff/7B+vXrMWLECPTv3z83aiQiIiLKNrUPBf/111+hVCrRsGFDvH37FnXq1IGhoSFGjBiBgQMH5kaNRERERNmmdrhRKBQYN24cRo4cifDwcCQkJKBcuXLInz9/btRHREREpBa1d0v98ccfePv2LQwMDFCuXDn88MMPDDZERESUZ6gdboYOHQpra2t07twZf/3112ddS+rYsWNo2bIlihQpAoVCgZ07d/7nOkeOHEHlypVhaGgIJycnBAUF5fj5iYiISH7UDjfPnz/Hpk2boFAo0L59exQuXBg+Pj44deqU2k+emJiISpUqYfHixdnq//DhQzRv3hz169fHlStXMGTIEPTu3RshISFqPzcRERHJk9pzbvT09NCiRQu0aNECb9++xY4dO7BhwwbUr18fdnZ2uH//frYfq2nTpmjatGm2+wcEBMDR0RHz5s0DAJQtWxYnTpyAn58f3N3d1X0pREREJENqh5sPmZiYwN3dHW/evEFERARu3bqlqbqydPr0aTRq1Eilzd3dHUOGDPnkOikpKdIlIgAgLi4ut8ojIiKiPCBHF858+/Yt1q9fj2bNmqFo0aLw9/dHmzZtcPPmTU3XpyIyMhI2NjYqbTY2NoiLi0NSUlKW6/j6+sLMzEy62dvb52qNREREpF1qh5uOHTvC2toaQ4cORYkSJXDkyBGEh4dj6tSpKFOmTG7U+FnGjBmD2NhY6fbkyRNtl0RERES5SO3dUrq6utiyZQvc3d2hq6ursuzGjRuoUKGCxor7mK2tLaKiolTaoqKiYGpqCmNj4yzXMTQ0hKGhYa7VRERERHmL2uFm/fr1Kvfj4+OxceNGrFixAhcvXvysQ8P/S/Xq1fHXX3+ptIWGhqJ69eq59pxERET0dcnRnBvg/TlqvLy8ULhwYcydOxcNGjTAmTNn1HqMhIQEXLlyBVeuXAHw/lDvK1eu4PHjxwDe71Ly9PSU+vfr1w8PHjzAqFGjcPv2bSxZsgRbtmzB0KFDc/oyiIiISGbUGrmJjIxEUFAQVq5cibi4OLRv3x4pKSnYuXMnypUrp/aTX7hwAfXr15fuDxs2DADg5eWFoKAgPH/+XAo6AODo6Ii9e/di6NChWLBgAezs7LBixQoeBk5ERESSbIebli1b4tixY2jevDn8/f3RpEkT6OrqIiAgIMdPXq9ePQghPrk8q7MP16tXD5cvX87xcxIREZG8ZTvc7Nu3D4MGDUL//v1RqlSp3KyJiIiIKMeyPefmxIkTiI+PR5UqVVCtWjUsWrQIL1++zM3aiIiIiNSW7XDj5uaG5cuX4/nz5/D29samTZtQpEgRKJVKhIaGIj4+PjfrJCIiIsoWtY+WypcvH3r27IkTJ07g+vXrGD58OGbOnAlra2u0atUqN2okIiIiyrYcHwoOAKVLl8bs2bPx9OlTbNy4UVM1EREREeXYZ4WbDLq6uvDw8MDu3bs18XBEREREOaaRcENERESUVzDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs5Ilws3jxYjg4OMDIyAjVqlXDuXPnPtk3KCgICoVC5WZkZPQFqyUiIqK8TOvhZvPmzRg2bBgmTpyIS5cuoVKlSnB3d0d0dPQn1zE1NcXz58+lW0RExBesmIiIiPIyrYeb+fPno0+fPujRowfKlSuHgIAAmJiYYNWqVZ9cR6FQwNbWVrrZ2Nh8wYqJiIgoL9NquElNTcXFixfRqFEjqU1HRweNGjXC6dOnP7leQkICihcvDnt7e7Ru3Ro3b978ZN+UlBTExcWp3IiIiEi+tBpuXr58ifT09EwjLzY2NoiMjMxyndKlS2PVqlXYtWsX/vjjDyiVStSoUQNPnz7Nsr+vry/MzMykm729vcZfBxEREeUdWt8tpa7q1avD09MTLi4uqFu3LoKDg2FlZYVly5Zl2X/MmDGIjY2Vbk+ePPnCFRMREdGXpKfNJy9UqBB0dXURFRWl0h4VFQVbW9tsPYa+vj5cXV0RHh6e5XJDQ0MYGhp+dq1ERET0ddDqyI2BgQGqVKmCQ4cOSW1KpRKHDh1C9erVs/UY6enpuH79OgoXLpxbZRIREdFXRKsjNwAwbNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwZcoUuLm5wcnJCTExMZgzZw4iIiLQu3dvbb4MIiIiyiO0Hm46dOiAFy9eYMKECYiMjISLiwv2798vTTJ+/PgxdHT+N8D05s0b9OnTB5GRkbCwsECVKlVw6tQplCtXTlsvgYiIiPIQrYcbABgwYAAGDBiQ5bIjR46o3Pfz84Ofn98XqIqIiIi+Rl/d0VJERERE/4bhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkheGGiIiIZIXhhoiIiGSF4YaIiIhkJU+Em8WLF8PBwQFGRkaoVq0azp0796/9t27dijJlysDIyAgVK1bEX3/99YUqJSIiorxO6+Fm8+bNGDZsGCZOnIhLly6hUqVKcHd3R3R0dJb9T506hU6dOqFXr164fPkyPDw84OHhgRs3bnzhyomIiCgv0nq4mT9/Pvr06YMePXqgXLlyCAgIgImJCVatWpVl/wULFqBJkyYYOXIkypYti6lTp6Jy5cpYtGjRF66ciIiI8iKthpvU1FRcvHgRjRo1ktp0dHTQqFEjnD59Ost1Tp8+rdIfANzd3T/Zn4iIiL4tetp88pcvXyI9PR02NjYq7TY2Nrh9+3aW60RGRmbZPzIyMsv+KSkpSElJke7HxsYCAOLi4j6n9E9SprzNlcelr0dubVvZxW2QuA2StuXGNpjxmEKI/+yr1XDzJfj6+mLy5MmZ2u3t7bVQDX0LzPy1XQF967gNkrbl5jYYHx8PMzOzf+2j1XBTqFAh6OrqIioqSqU9KioKtra2Wa5ja2urVv8xY8Zg2LBh0n2lUonXr1+jYMGCUCgUn/kK6ENxcXGwt7fHkydPYGpqqu1y6BvEbZC0jdtg7hFCID4+HkWKFPnPvloNNwYGBqhSpQoOHToEDw8PAO/Dx6FDhzBgwIAs16levToOHTqEIUOGSG2hoaGoXr16lv0NDQ1haGio0mZubq6J8ukTTE1N+UtNWsVtkLSN22Du+K8Rmwxa3y01bNgweHl5oWrVqvjhhx/g7++PxMRE9OjRAwDg6emJokWLwtfXFwAwePBg1K1bF/PmzUPz5s2xadMmXLhwAYGBgdp8GURERJRHaD3cdOjQAS9evMCECRMQGRkJFxcX7N+/X5o0/PjxY+jo/O+grho1amDDhg0YP348xo4di1KlSmHnzp2oUKGCtl4CERER5SEKkZ1px0TZkJKSAl9fX4wZMybTrkCiL4HbIGkbt8G8geGGiIiIZEXrZygmIiIi0iSGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYb+mYolUptl0BERF8Aww19MzIuwPry5UsAAK88Ql/axwGb2yBpw8fboRy/+DHc0DdlwYIF8PDwwP3796FQKLRdDn1jdHR0EBsbi5CQEADgNkhaoaOjg5iYGMyZMwdv3ryRvvjJifxeEdEHPv5mrK+vD2NjYxgYGGipIvqWKZVKzJs3D97e3tizZ4+2y6Fv2IEDBzB//nwsWrRI26XkCl4VnL4JcXFxMDU1BQDExsbCzMxMyxXRt0KpVKp8M7516xZWrlyJWbNmQVdXV4uV0bckPT1dZXtLS0vD5s2b0alTJ1luhww3JHtDhw5Feno6xowZg8KFC2u7HPoGxcTEICYmBvb29iofJB9/4BB9jo+D9MdevXqFkydPokaNGihUqJDULsftkLulSHY+zut2dnZYu3at7H556esghMCvv/6KatWq4dGjRyrLuE3S53j+/Dn++ecfvHjxAsD7uTT/Nl6xZcsWeHh44OjRoyrtctwOOXJDX7WMbxxCCCgUik9+c3nz5g0sLCy0UCHJzX99O86qT0REBMaPH4+goCBZfpDQl7d69WosXrwYT548QcmSJVGrVi3Mnj1bpU9WIzL+/v4YMGAA9PT0vmS5XxzDDX01MgIM8P6XVggBPT09PHv2DDt27ECPHj2QL18+AO93RVlYWGDChAmZ1iXKqQ9Dy+HDh/H48WM4OTmhRIkSKFKkiEqf2NhYKJXKTKFajrsA6Mvas2cP2rdvjyVLlsDExAQPHjzA7NmzUaNGDaxZswYFCxaU/ua9fPkS4eHhcHNzU3mMd+/eyTrgcLcU5VkZuTsuLg5JSUlQKBQ4cOAAwsPDoaurCz09PURERMDV1RX//POPFGwSExOhr68PPz8/vH79msGGNEIIIQWbX3/9Fd27d8fcuXPRt29fjBgxAufPnwfwftdASkoKJkyYgMqVK+PVq1cqj8NgQ5/r/PnzaN68Obp374727dtj1KhRCAkJwbVr19ClSxcA708zkJaWhnXr1qFGjRo4ceKEymPIOdgADDeUx0VGRqJixYo4evQoNmzYgCZNmuDvv/8G8H5XU/ny5dGmTRtMnz5dWidfvnwYNWoU7t27B0tLSwYb0oiM7Wju3Ln4448/sHHjRty4cQNt27bFn3/+ifHjx+P06dMAAAMDA7i6uqJhw4YwNzfXYtUkRw8fPsTz589V2r7//nvs3r0bFy9eRJ8+fQC8P/VFixYtMH369EwjN7IniPK4Hj16CFNTU6GjoyOWL18utaemporNmzeL9PR0qU2pVGqjRPpGREVFibZt24pVq1YJIYTYvXu3MDU1Ff369ROurq6iYcOG4syZM0II1W3x3bt3WqmX5CkkJETY2NiITZs2SW0Z29v69euFk5OTOH/+fKb10tLSvliN2saRG8qzMk4J7uPjg/j4eBgYGMDW1hbJyckA3n8rad++vcrETY7SUG6ytrbGqFGj0KRJE1y+fBk+Pj6YNm0ali5dip9++glnzpyBj48PLl68qLItclcUaVLZsmVRr149rFu3DocOHQLwv799Li4uiI6Oli4z8yG574r6EMMN5VkZocXe3h4nTpyAl5cXOnbsiF27diEpKSlTfzleH4W051Pbk6urKwoXLox9+/bB2dkZffv2BQBYWlrCzc0NLVu2hKur65cslb4x9vb26NevH2JiYuDn54fdu3dLywoXLgxHR0ctVpc3fDsxjr4a4v8nAD9//hxpaWkoVqwYrK2tUaNGDSQnJ6NXr14ICgpCixYtYGRkhICAADRq1AhOTk7aLp1kQnwweXjFihWIjo6GgYEBRowYIV26IyUlBc+ePcOjR49QunRpHDhwAK1atcLAgQP/9bQERJ8j42i7evXqYcmSJRg7dixGjx6NkJAQODs7Y8uWLVAoFPjxxx+1XapW8VBwypOCg4MxadIkREVFoXnz5mjTpg1atmwJAOjRowd27NiB4cOHIyoqCkuXLsX169dRrlw5LVdNcjNx4kT4+/vj+++/x7lz51CtWjWsW7cOtra2+PPPPzFt2jS8efMG+vr6EELg2rVr0NPT4xF6lCsytqvg4GAsWbIEBw4cwO3btxEWFoZFixbB3t4e5ubmWL9+PfT19b/p0w4w3FCec/PmTbi7u2Po0KEwMTHBxo0bYWhoCC8vL3Tt2hUAMHjwYFy6dAkpKSkIDAyEi4uLdosmWfhwtOXdu3fw8vLCwIED4erqikePHqF58+awtbXFjh07YGVlhb179yI8PBwJCQkYPXo09PT0vukPFNKMjBAjPjq3l66uLoKDg+Hp6Yn58+dLu0SB99urjo6Oyvb7Lc2x+RjDDeUpt2/fxtatW5GUlIQZM2YAAK5fv44JEyYgLi4OPXr0kAJOZGQk8uXLhwIFCmizZJKJD4PNrVu3EBcXh2XLlmHChAlwcHAA8P4Q3B9//BE2NjbYuXMnrKysVB6DwYY+14fb4cuXL6FQKFCwYEEA7//mVa5cGRMmTEC/fv2kdT4eKeTIIcMN5RFCCLx58wYtWrTA33//jZYtW2LdunXS8mvXrmHChAlISkpCx44d0aNHDy1WS3I2cuRIaVg/KioKwcHBaNq0qfRh8fDhQzRt2hRCCJw8eVLlAoREn+PDUDJ16lTs3LkTcXFxKFSoEKZPn44GDRrg2bNnKFq0qJYrzfs4243yBIVCAUtLS/j6+qJ8+fK4dOkSQkNDpeXOzs6YOnUq0tLSpF94Ik348KioPXv2YP/+/fj999+xZMkSODo6Yty4cbh69ap0xmxHR0fs2bMHLi4uvF4ZaVRGsJkyZQoWLFggnWqgUKFC6NKlC9asWZNptJCyxpEb0ppPDZ0ePXoUY8eOha2tLXx8fNCgQQNp2c2bN2FmZgY7O7svWSp9A4KDg3Hq1CkULFgQY8aMAQAkJCSgcuXKMDU1xYoVK1CpUqVM2yx3RZEmvXr1Co0bN4aPjw969uwptfft2xd//vknwsLCUKZMGe56+g8cuSGtyPjFPHXqFObPn4/ffvsNJ0+eRFpaGurWrYspU6YgMjISixYtwpEjR6T1ypcvz2BDGpeUlITffvsN8+fPx82bN6X2/Pnz49KlS4iPj4e3t7d0/agPMdiQJr179w4vX76URgUzTloaGBiIIkWKwM/PDwBPWPpfGG7oi/vwcMamTZvi5MmT2L17N8aOHYvp06cjNTUVDRs2xJQpU/Dq1StMnToVx48f13bZJGPGxsY4fvw4GjVqhIsXL2L37t1IT08H8L+Ac/v2bSxbtkzLlZKcZLXjxMbGBra2tli1ahUAwMjICKmpqQAAJycnhppsYrihLy5jxGbQoEGYP38+tm/fjq1bt+LixYvYvHkzxo8fLwWcX3/9Ffr6+jzjJmnMh3NshBDSB4ylpSU2bNgACwsLzJkzByEhIdKyfPnyITIyEoGBgVqpmeRHqVRKQeWff/5BdHQ03r59CwCYNGkSbt++LR0RlXHiyKdPn/JCrNnEOTf0xWT8MisUCixZsgRXrlxBYGAgHj58iEaNGqFWrVowNTXF1q1b4e3tjbFjx8LQ0BBv376FiYmJtssnGfjwMNuFCxfi6tWrePDgAYYMGYLKlSvDzs4OL168QOvWraGrq4uxY8fC3d1d5UzDnGNDn2P9+vVwc3NDyZIlAQBjxoxBSEgIIiIi0KhRI7Rq1QpdunTB8uXLMXXqVBQsWBAVKlTA/fv3ERMTI50okv4dww3lmowPkg/DyZUrV+Di4oK4uDg8efIETk5OaNKkCRwdHbFq1SrExsZKZxru3r07pk+fzolz9Nk+3obGjBmDlStXom/fvnj69ClOnz6N1q1bo2/fvnBycsKLFy/Qtm1bvHjxAkFBQXBzc9Ni9SQX+/btQ4sWLTB69GgMGTIE+/btw6hRo+Dv749Xr17h0qVLCAkJwW+//YZ+/frh+vXr8Pf3h46ODiwsLDBjxgyeKDK7cvWa4/TNe/DggejUqZP4+++/xZYtW4RCoRDnzp0TSqVSCCHE9evXRZkyZcTZs2eFEELcv39ftGjRQowdO1Y8fvxYm6WTzKSnpwshhFi3bp1wdHQUFy9eFEIIcfz4caFQKESpUqXE4MGDxYMHD4QQQjx//lz07dtXvHv3Tms1k/wsWrRI2NnZialTp4oBAwaI5cuXS8uePHkipkyZIhwcHMT+/fuzXD8tLe1LlfpV49gW5ark5GQcP34c3bt3x5UrV7B69Wp8//330i4qIQTevXuH06dPo3z58li7di0AYMSIETyHCH22bt26wcrKCvPnz4eOjg7S0tJgYGCAfv36oXLlyti5cyd69OiBFStWIDIyEtOmTYOOjg769OmDsmXLShOI+U2ZPldqaioMDAzg4+MDExMTjBkzBvHx8Zg2bZrUx87ODp6enjhw4AAuXLgAd3f3TBdg5S6pbNJ2uiL5yvimHBAQIHR0dESlSpXE5cuXVfrExsaK7t27i5IlSwoHBwdhZWUlfaMm+hyxsbFi8uTJwtLSUkyaNElqf/bsmYiKihLPnz8XVatWFfPmzZP6FylSRBQuXFgsWLBACCGkEUYiTfH19RXR0dFi/fr1wsTERDRr1kzcvXtXpU+HDh1E27ZttVShPPBoKcoVQgjo6OhACIEiRYpg3rx5ePfuHcaPH48TJ05I/UxNTTF37lwsWbIEEydOxNmzZ1G5cmUtVk5yEB8fD1NTU/Tv3x/jx4+Hv78/Jk6cCAAoUqQIrK2t8fz5c7x580aaT/Ps2TM0btwYEyZMgI+PDwCeS4Q+n/hgWuuaNWswdepU3Lt3D507d4afnx8uXbqEgIAA3LlzBwAQFxeHhw8folixYtoqWRY4vkUaJ/5/8ubhw4dx9OhRDBkyBC1btkSjRo3Qvn17zJw5E2PHjkWNGjUAvL8wZuPGjbVcNcnFqFGjsGzZMty/fx9WVlbo2rUrhBCYOnUqAGDy5MkA3gcgXV1dnDx5EkIIzJw5EyYmJtLht9wVRZqQEZAPHTqEy5cvIzAwUPrb17dvX6SlpWHy5MnYv38/KleujMTERKSmpmL27NnaLPvrp81hI5KfjGH8bdu2CTMzMzFmzBhx/vx5afm1a9dEuXLlRIsWLcQff/whJk2aJBQKhXjy5Al3AZBGXL16VdSpU0eULl1avHjxQgghRHR0tJg3b54wNzcXEyZMkPoOGDBAlCxZUtjZ2Qk3NzeRmpoqhODuKNKsI0eOiIoVK4qCBQuKnTt3CiGESElJkZavXLlS5M+fX1SuXFmsXbtWmsTOycM5x0PBSePOnTuHJk2aYNasWejTp4/UHhcXB1NTU9y6dQt9+vRBUlISYmNjsWXLFu6KIo04ffo0Xrx4gXLlyqFDhw5ISEiQrtz94sULrFu3DlOnTpUuSAi8Pz2BQqFAxYoVoaOjg3fv3nHSJn0W8dGpBxISEjBnzhwEBgaiWrVq2LhxI4yNjZGWlgZ9fX0AwPz583Hq1Cls3boVCoWCI4efieGGNG7RokXYsWMHDh06hNjYWBw+fBh//PEHbt26hREjRqBnz56Ijo5GbGwszMzMYG1tre2SSSY8PT3xzz//4ODBg3j06BF+/vlnxMfHZwo406ZNw4ABAzBlyhSV9fmBQpq0ePFi2NnZoXXr1khKSsLcuXOxY8cO1KtXDzNmzICRkZFKwMkIRR+HI1IfJxSTxtna2uLixYvw9fXFzz//jNWrV8PIyAjNmzdH7969cffuXVhbW6NUqVIMNqRRixcvxtOnT7Fo0SI4ODhg48aNMDMzQ82aNfHy5UtYWVmhW7dumDBhAqZNm4aVK1eqrM9gQ5ry4sULHD58GL/88gv2798PY2NjDBs2DC1atMCpU6cwbtw4JCcnQ19fH+/evQMABhsN4sgNfZaMX8SEhATkz58fABAVFYWFCxdiy5YtaNCgAbp3744ffvgBUVFRaNWqFYKCglC+fHktV05ykzHq8vvvv+Py5cuYP38+LCwscPv2bXh6eiI2NlYawYmMjMTRo0fx008/cRcUacTH56MBgKtXr+L333/HwYMHERAQgKZNmyIxMRGzZ8/GwYMHUbZsWSxZskS6dhRpDkdu6LMoFArs3bsXnTp1Qr169RAUFAQ9PT1MmzYNZ8+eRUBAANzc3KCjo4OFCxciMTGRozWUKzJGXerVq4djx45h7969AIDSpUtj3bp1sLCwQJ06dRAVFQVbW1t06NABenp60rdmos+REWwiIyOltkqVKmHw4MGoX78++vXrh/379yNfvnwYNWoUfvjhB+jo6Ei7pEjDtDSRmWTi5MmTwsjISIwcOVI0adJEODs7C29vbxEeHi71CQsLE3379hWWlpaZTuJHlFMZJ4nMSkBAgPjuu+/EnTt3pLY7d+4IBwcH0bFjxy9RHn0jPtwON23aJEqUKKFyhKgQQly5ckW0bt1aFCtWTBw5ckQIIURSUpJ0VN6/bcuUMxy5oRyLiIhAaGgopk+fjtmzZ2Pfvn3o27cvrl27Bl9fXzx48ACJiYk4ffo0oqOjcfToUbi4uGi7bJKBD3cBnDt3DqdOncLRo0el5a1atUK1atUQFhYmtX333Xc4duwY/vjjjy9eL8lTSkqKtB2mpqaiZMmSKFOmDHx8fHDx4kWpX6VKleDh4YEnT56gcePGOHXqFIyMjKQ5Nh/vzqLPx58oZcuiRYvw119/Sffv3LmDDh06YNWqVTAyMpLafXx80KVLF9y8eROzZ89GTEwMRo4ciTVr1qBChQraKJ1k5sMPg7Fjx6J79+7o2bMnvLy80KFDB8TFxaFw4cLSfIa0tDRpXXt7e+jq6iI9PV1b5ZNM7Nu3D+vWrQMA9OnTBw0aNEDVqlUxfPhw2NrawtvbGxcuXJD6FytWDB07dsS8efNQrVo1qZ2Th3OJtoeOKO97+PCh6Ny5s7h3755K+6+//iqsra1F27ZtpZOlZVi6dKkoXbq0GDRoEE9ERbli7ty5omDBguLs2bMiPT1dzJgxQygUCnHixAmpT82aNYW3t7cWqyS56tSpk3BwcBDu7u6iUKFC4urVq9Kyw4cPCw8PD1GhQgWxb98+8fDhQ+Hh4SGGDx8u9eHV5nMXww1lS2JiohBCiDNnzoht27ZJ7RMmTBAVK1YU48ePF1FRUSrrLF++XDx8+PBLlknfCKVSKby8vERgYKAQQojt27cLc3NzERAQIIQQIj4+XgghxL59+0SrVq3EtWvXtFYryZeLi4tQKBQqF2bNcPz4cdGtWzehUCjEd999J5ydnaUvejwDdu7jMZCULcbGxoiJiYGvry+ePXsGXV1deHh4YPLkyUhLS8PevXshhMDgwYNhZWUFAOjdu7eWqya5Sk5OxtmzZ1GvXj0cOXIEXl5emDNnDry9vfHu3TvMnj0b1atXh5ubG6ZMmYJz586hYsWK2i6bZCI1NRXJyclwcnJCsWLFsHnzZhQtWhQdO3aUTolRq1YtVKtWDX369EFaWhrq1q0LXV1dngH7C+GcG8oWhUIBc3NzDB8+HI6OjvD390dwcDAAYMaMGWjSpAlCQ0MxY8YMvHz5UsvVkpxcu3YNT58+BQAMHToUR48ehbGxMTp37ow//vgDzZo1g5+fn3TByzdv3uDChQu4c+cOLCwssG7dOhQvXlybL4FkxsDAAKampti6dSt27dqF77//HrNnz8amTZsQHx8v9UtOTkbt2rXRoEEDaa4Xg82XwXBD2SLe78JE7dq1MXToUFhYWOD3339XCThubm64fPkyBM8LSRoghMDdu3dRv359rFq1Cv369cOCBQtgYWEBAHBzc0NERASqVauG6tWrAwD++ecfdO/eHTExMRgwYAAAoGTJkmjUqJHWXgfJjxACSqVSur9mzRrUqFEDfn5+WLt2LR4/fowGDRqgXbt2Un+AZ8D+kniGYsqWjLO/xsbGwsTEBNeuXcP06dPx5s0bDB48GB4eHgDen3I8Y7cUkSYsX74co0aNQnJyMnbt2oXGjRtLZ8bevHkzpkyZAiEE9PT0YGxsDKVSiVOnTkFfX5/XiqLP9vr1a1haWqq0ZWx/W7duRWhoKAIDAwEAffv2xZEjR5Ceng5LS0ucPHmSZx/WEo7c0H969+4ddHV18ejRI9SrVw8HDhxAlSpVMGLECFhZWWHy5MnYs2cPADDYkMZkfDO2t7eHoaEhTE1NcebMGTx69Eg6fLZDhw5Yu3YtpkyZgvbt22P06NE4c+aMdL0eBhv6HAsWLMD333+vsqsJgBRsunfvjkqVKkntgYGBWLZsGRYuXIgzZ87AwMCAZ8DWFu3MY6a86lOz+MPDw4WNjY3o3bu3yiGMR44cEd26dROPHj36UiWSzH28DaampoqkpCSxdOlSUbRoUTF27Nj/3N54mC19rmXLlglDQ0OxYcOGTMseP34sKlasKBYtWiS1ZbXNcTvUHu6WIon4/6HW06dP49atWwgPD4enpycKFy6MNWvW4MKFC1izZk2mK9cmJyernMiPKKc+PPPw69evER8frzIZ2N/fH3PnzkWvXr3Qo0cPODg4oGXLlhg3bhzc3Ny0VTbJzPLlyzFw4ECsW7cO7dq1Q0xMDBITE5GcnAxra2sUKFAA9+7dQ6lSpbRdKn0Cww2p2L59O/r27StdYPDFixfo0KEDRo8ejQIFCmi7PJKxD4PNlClTcODAAdy4cQPt27dHmzZt0LRpUwDvA46/vz8qVKiAV69e4fHjx3j06BEvQEga8eDBAzg5OaF9+/bYtGkTbty4gV9++QUvXrxAREQE6tevj/79+6NFixbaLpX+BY9JI8mNGzcwdOhQzJs3D927d0dcXBzMzc1hbGzMYEO5LiPYTJgwAYGBgZgzZw4cHBzQr18/3Lt3DzExMejUqROGDBmCQoUK4erVq0hOTsbx48elq3vzMFv6XFZWVpg1axYmTJiAESNG4MCBA6hduzZat26NuLg4bNu2DePHj0ehQoU4WpiXaXOfGGnP4cOHxf379zO1Va9eXQghxK1bt0Tx4sVF7969peX379/nPmTKVYcPHxbly5cXx44dE0IIcerUKWFgYCDKlSsnqlWrJrZu3Sr1/fCyHrzEB2lScnKymDt3rtDR0RE9e/YUqamp0rILFy6I0qVLi8WLF2uxQvovPFrqGyOEwOXLl9G0aVMsXboUERER0rJnz55BCIGEhAQ0adIEjRs3xrJlywAAoaGhWLp0Kd68eaOt0kmGxEd7xYsWLYr+/fujdu3aOHDgAFq0aIHAwECEhobi/v37+P3337Fy5UoAUBml4YgNaZKhoSH69euH7du3o3fv3tDX15e21SpVqsDIyAhPnjzRcpX0bxhuvjEKhQKurq6YN28etmzZgqVLl+LBgwcAgObNmyMqKgqmpqZo3rw5AgMDpV0FISEhuHbtGg+tJY1RKpXSpPQHDx4gMTERpUqVQqdOnZCcnIwFCxZg0KBB6NatG4oUKYLy5csjPDwct27d0nLl9C3Ily8fmjZtKp0gMmNbjY6OhrGxMcqXL6/N8ug/8OvONyZjXoKPjw8AYM6cOdDV1UXv3r3h6OiI3377DTNmzMC7d+/w9u1bhIeHY+PGjVixYgVOnDghnR2W6HN8OHl4woQJOH36NEaOHIn69evD0tISiYmJeP78OUxMTKCjo4OUlBQ4ODhg1KhRaNKkiZarJzkSHxwBmsHQ0FD6f3p6Ol6+fIk+ffpAoVCgU6dOX7pEUgPDzTcmY+TlwIED0NHRQVpaGvz9/ZGcnIzRo0ejffv2SEpKwowZM7Bt2zbY2NjAwMAAYWFhqFChgparJ7n4MNgsW7YMgYGBcHV1lY54SklJgaWlJU6cOCFNGn716hVWrVoFHR0dlXBElBMRERF4/fo1ChYsCFtb2389k3BaWhrWrVuHjRs34vXr1zhz5ox0rSiOZudNPBT8GxQSEiJdbDBfvny4d+8efv/9d/zyyy8YPXo0rKysEB8fj6NHj8LBwQHW1tawtrbWdtn0lfs4kNy9exceHh6YNWsWWrZsmanf+fPnMX78eCQkJMDS0hLBwcHQ19dnsKHPtnbtWsybNw/R0dEoVKgQBg4cKI3IZPh4OwsNDcXNmzcxYMAAHp33FWC4+cYolUp06dIFCoUCGzZskNoXLlyIUaNGwcfHB7/88gtKlCihxSpJbtq2bYuxY8eiatWqUtuVK1fQpEkTHD16FKVLl87yxJDJyckQQsDIyAgKhYIfKPTZ1q5dCx8fH+nSCjNmzMCDBw9w8uRJadvKCDYxMTE4cOAA2rdvr/IYHLHJ+/j15xuT8U0kY/g/NTUVADBw4EB4e3tj9erV+P3331WOoiL6XGZmZnB2dlZpMzIywps3b3Djxg2pLeN6UqdPn8b27duho6MDY2NjKBQKKJVKBhv6LBcuXMDUqVOxaNEi9OzZExUrVsTQoUPh5OSEU6dO4ebNm4iLi5N22a9Zswa//PIL/vjjD5XHYbDJ+xhuvhH//POP9P/SpUvjzz//RHR0NAwMDJCWlgYAsLOzg4mJCcLCwmBsbKytUklGnj17BgBYvXo1DAwM8Pvvv+PAgQNITU2Fk5MTOnTogDlz5uDgwYNQKBTQ0dFBeno6pk+fjrCwMJV5ENwVRZ8rJSUFQ4YMQfPmzaW2SZMm4dChQ+jUqRM8PT3RsWNHvH79Gvr6+mjWrBlGjBjBycNfIe6W+gZcvXoVAwYMQOfOndG/f3+kpqaiQYMGePnyJY4cOQJbW1sAwOjRo1G+fHm0aNEClpaWWq6avnZ9+vQBAIwZM0bazens7IyXL19i06ZNqFOnDo4fPw4/Pz9cv34dXbp0gYGBAQ4dOoQXL17g0qVLHKkhjVIqlXjx4gVsbGwAAJ6enjh48CB2794Ne3t7HD16FNOmTcPo0aPRuXNnlTk43BX1deFXoW+AiYkJzM3NsW3bNgQFBcHAwADLli2DlZUVypYtCw8PDzRu3BgLFixA1apVGWxII5ydnbF//34sXboU4eHhAIBr166hdOnS6NKlC44dO4batWtjypQp8PT0xLp163D48GEUK1YMFy9elCZtEmmKjo6OFGwAYMSIETh79iyqVq0KGxsbNG3aFK9fv0ZUVFSmw8IZbL4uHLn5RoSHh2Ps2LGIjIxEnz590K1bN6Snp2Pu3LmIiIiAEAIDBw5EuXLltF0qyciqVaswYcIEdOzYEX369EHp0qUBAHXq1MHDhw+xfv161KlTBwDw9u1bmJiYSOty8jB9aU+fPkXXrl0xYsQIXhjzK8dwI1OXLl3C8+fPVfYth4eHY/z48Xj06BEGDhyILl26aLFCkrMPD6NduXIlJkyYgE6dOmUKOBEREVi7di2qV6+uMr8mqxOqEanjw20o4/8Z/7548QJWVlYq/RMTE9GpUyfExsbi8OHDHKn5yjHcyFB8fDyaN28OXV1djBo1Ck2bNpWWPXr0CE2aNIGJiQl69+6NX375RYuVktx86hw0y5cvx+TJk9GhQwf07dtXCjgNGjTAyZMncebMGbi6un7pckmmstoOM9qCg4OxceNGLFiwAEWKFEFSUhJ27dqFdevW4dmzZzh//jz09fU5x+Yrxzk3MpKRUwsUKIDZs2dDT08PixYtwt69e6U+Dg4OqF+/PiIjI3Ho0CHExMRoqVqSmw8/UE6dOoWwsDBcvXoVwPvJxb/99hs2bdqEwMBA3LlzBwBw+PBh9O7dO9Nh4kQ5deLECemilsOGDcPMmTMBvJ9vs3nzZnh6eqJRo0YoUqQIgPcXXX348CFKlCiBCxcuQF9fH+/evWOw+cpx5EYGMoZaM75pZHzInD17Fr/++ivy5cuH/v37S7uohg8fjhIlSqBt27YoXLiwlqsnOfhwF8CwYcOwefNmJCQkwM7ODsWKFcO+ffsAAMuWLcO0adPQsWNHeHl5qVzSg9+U6XMIIRAbGwtra2s0bdoUhQoVQnBwMI4fP44KFSogJiYGbm5u8PHxwcCBA6V1PvzbCXA7lAuGm69cxi9nWFgYdu/ejdevX6NWrVpo164dzM3NcebMGfz2229ISUlBiRIlYGJigs2bN+Pq1auws7PTdvkkAx8GmwMHDmDIkCEIDAyEubk5/v77b0ycOBH58uXDhQsXALyfg+Pt7Q1/f38MGDBAm6WTDEVHR6NEiRJIT0/H9u3b0axZM2lZVnNtspqbQ18/7pb6yikUCuzYsQMtW7bE27dv8fbtW6xbtw79+/fH69ev4ebmhrlz56Ju3boIDw/HgwcPcPjwYQYb0piMD4Pdu3dj06ZNaNSoEWrVqoUKFSrg559/xtq1a5GQkID+/fsDAHr16oVdu3ZJ94k0JSUlBZGRkTAxMYGuri5WrVolnYYAAAoVKiT9P+Ns2B+GGQYb+eDIzVfuwoUL6NixI3799Vf07t0bERERqFy5MoyNjeHi4oK1a9fC0tJSulbPx4fbEmnC69ev0aJFC1y9ehX169fHnj17VJaPHTsWJ0+exF9//YV8+fJJ7dwFQJ/rU5PYHz16BGdnZ9SvXx/z589HyZIltVAdaQtHbr4ivr6+GDdunPSNA3h/ens3Nzf07t0bjx49QsOGDeHh4YHx48fj/Pnz+OWXX/D69WsYGRkBAIMNacSH2yAAWFpaYs2aNfjxxx9x+fJlrF69WmV5qVKl8OrVKyQlJam0M9jQ5/gw2Bw5cgQbNmzA1atX8ezZMzg4OODkyZMICwvDqFGjpEnsbdq0wcKFC7VZNn0BHLn5iixcuBCDBw/GjBkzMGrUKOmX+tatWyhdujRat24tfcgolUq4uLggPDwczZs3x+bNm3ltHtKIDz9Q7t+/D4VCARMTE9ja2uLhw4fw8fFBYmIi2rVrB29vb0RFRcHLywtGRkbYs2cPh/5J40aMGIE1a9ZAT08P+fPnh62tLfz8/FC1alVcv34d9evXh4ODA1JTU/Hu3TtcvXpVungwyZSgr4JSqRRCCLF8+XKho6Mjpk6dKtLS0qTlT548EWXLlhV79uwRQgjx+vVr0alTJ7Fw4ULx9OlTrdRM8pOxHQohxMSJE0XFihVFmTJlROHChUVgYKAQQojw8HDRrFkzYWRkJEqXLi3atGkj3N3dRVJSkhBCiPT0dK3UTvLx4XYYGhoqKlWqJI4fPy5ev34tdu3aJdq0aSOcnJzEpUuXhBBC3Lt3T0yZMkVMnz5d+rv54d9Pkh+Gm6+AUqmUfpmVSqX4448/hI6Ojpg2bZr0QREdHS1cXFyEt7e3ePTokRg7dqz4/vvvRVRUlDZLJ5maMmWKsLKyEiEhISIhIUG0adNGmJubi5s3bwohhHjw4IFo3ry5cHFxEX5+ftJ6ycnJWqqY5GjNmjViwIABom/fvirt58+fF02aNBFeXl4iISFBCKEaiBhs5I/7Kb4SCoUCBw8exPDhw1GlShXpmj0zZ86EEAIWFhbo0qULjh49Cjc3N6xduxYBAQGwtrbWdukkAx/OsVEqlTh37hz8/PzQuHFjhIaG4siRI5gxYwbKlSuHtLQ0ODo6Yt68ebCxscHevXsRHBwMADA0NNTWSyAZEB/Noti5cycWL16MK1euICUlRWqvWrUqateujRMnTiA9PR2A6pFQvGbZN0Db6YqyZ/v27cLY2FhMnTpVnD9/XgghRGBgoLSLSgghUlJSxM2bN0VoaKh48uSJNsslmZowYYKYOXOmKFq0qLhz544ICwsT+fPnF0uXLhVCCPH27Vsxbtw48ejRIyGEEHfv3hUtWrQQVatWFcHBwdosnb5yH468rF+/Xqxdu1YIIcSAAQOEubm5WLx4sYiNjZX6hISEiDJlykjbIn1bGG6+Anfu3BGOjo5iyZIlmZYtW7ZM2kVFpGkfzo/ZtGmTsLe3Fzdu3BBdu3YV7u7uwsTERKxcuVLq8+zZM1G7dm2xdu1aad1bt26Jn3/+WURERHzx+kkePtwOb9y4IVxdXUWlSpXErl27hBBCeHl5iVKlSonp06eL8PBwER4eLho2bCjq1q2rEoro28Gxua/A48ePoa+vr3KmzYwjVvr27Yt8+fKhW7duMDQ0xIgRI7RYKclNxlFRR48exZEjRzB8+HCUL19eOjlkw4YN0bNnTwDvL9jau3dv6OrqonPnztDR0YFSqUSZMmWwYcMGHp1COZaxHY4cORIPHz6EsbExbt++jaFDh+Ldu3cICgpCz549MX78eCxcuBA1a9ZE/vz5sXnzZigUik+eC4fki+HmK5CQkKByfhClUintPz5y5AiqVKmCzZs3q1ynh0hTIiMj0atXL0RHR2Ps2LEAgH79+uH+/fs4fPgwXF1dUapUKTx+/BjJyck4f/48dHV1VU7QxzkO9LmCgoKwYsUKHDp0CI6OjkhJSYGXlxd8fX2ho6ODVatWwcTEBFu2bEGTJk3QsWNHGBoaIjU1FQYGBtoun74wRtmvQKVKlfDy5UsEBgYCeP8tJiPc7Nq1Cxs2bEDbtm1RtmxZbZZJMmVra4vg4GDY2Njgzz//xMWLF6Grq4s5c+ZgypQpaNCgAWxtbdGhQ4dPXlWZ57ahzxUeHo4KFSrAxcUFZmZmsLW1xapVq6Crq4uhQ4dix44dWLRoERo1aoT58+dj9+7diI+PZ7D5RvHr1FfA0dERixYtQr9+/ZCWlgZPT0/o6uoiKCgIQUFBOH36NM/0SrnK2dkZ27dvh5eXFwICAjBw4EA4OzujVatWaNWqlUrf9PR0jtSQxoj/v5iloaEhkpOTkZqaCiMjI6SlpaFo0aLw9fVFixYt4O/vD2NjY2zYsAGdO3fGiBEjoKenh/bt22v7JZAW8AzFXwmlUont27fD29sb+fLlg5GREXR1dbFx40a4urpquzz6Rly+fBm9e/dGlSpVMHjwYJQvX17bJdE34vr163B1dcVvv/2GiRMnSu0hISFYvnw53rx5g/T0dBw5cgQA0KNHD/z2228oUaKEliombWK4+cr8888/iIiIgEKhgKOjI2xsbLRdEn1jLl++DG9vbxQvXhyzZ8+Go6Ojtkuib0RQUBD69u2LIUOGoEOHDrCwsMCgQYNQo0YNtGnTBuXLl8fevXvRtGlTbZdKWsZwQ0RqO3fuHAICArBixQoehUJf1Pbt2/HLL7/AwMAAQghYW1vj1KlTiIqKwo8//oht27bB2dlZ22WSljHcEFGOZMyF4GG29KU9e/YMT548QVpaGmrWrAkdHR2MGTMGO3fuRFhYGGxtbbVdImkZww0R5VhGwCHSlps3b2LWrFn466+/cPDgQbi4uGi7JMoDeEgDEeUYgw1p07t375Camgpra2scPXqUE9xJwpEbIiL6qqWlpfEM2KSC4YaIiIhkhbMAiYiISFYYboiIiEhWGG6IiIhIVhhuiIiISFYYbohI9o4cOQKFQoGYmJhsr+Pg4AB/f/9cq4mIcg/DDRFpXffu3aFQKNCvX79My3x8fKBQKNC9e/cvXxgRfZUYbogoT7C3t8emTZuQlJQktSUnJ2PDhg0oVqyYFisjoq8Nww0R5QmVK1eGvb09goODpbbg4GAUK1YMrq6uUltKSgoGDRoEa2trGBkZoVatWjh//rzKY/3111/47rvvYGxsjPr16+PRo0eZnu/EiROoXbs2jI2NYW9vj0GDBiExMTHXXh8RfTkMN0SUZ/Ts2ROrV6+W7q9atQo9evRQ6TNq1Chs374da9aswaVLl+Dk5AR3d3e8fv0aAPDkyRO0bdsWLVu2xJUrV9C7d2/8+uuvKo9x//59NGnSBD/99BOuXbuGzZs348SJExgwYEDuv0giynUMN0SUZ3Tt2hUnTpxAREQEIiIicPLkSXTt2lVanpiYiKVLl2LOnDlo2rQpypUrh+XLl8PY2BgrV64EACxduhQlS5bEvHnzULp0aXTp0iXTfB1fX1906dIFQ4YMQalSpVCjRg38/vvvWLt2LZKTk7/kSyaiXMALZxJRnmFlZYXmzZsjKCgIQgg0b94chQoVkpbfv38faWlpqFmzptSmr6+PH374Abdu3QIA3Lp1C9WqVVN53OrVq6vcv3r1Kq5du4b169dLbUIIKJVKPHz4EGXLls2Nl0dEXwjDDRHlKT179pR2Dy1evDhXniMhIQHe3t4YNGhQpmWcvEz09WO4IaI8pUmTJkhNTYVCoYC7u7vKspIlS8LAwAAnT55E8eLFAby/IvT58+cxZMgQAEDZsmWxe/dulfXOnDmjcr9y5cr4+++/4eTklHsvhIi0hnNuiChP0dXVxa1bt/D3339DV1dXZVm+fPnQv39/jBw5Evv378fff/+NPn364O3bt+jVqxcAoF+/frh37x5GjhyJO3fuYMOGDQgKClJ5nNGjR+PUqVMYMGAArly5gnv37mHXrl2cUEwkEww3RJTnmJqawtTUNMtlM2fOxE8//YRu3bqhcuXKCA8PR0hICCwsLAC83620fft27Ny5E5UqVUJAQABmzJih8hjOzs44evQo7t69i9q1a8PV1RUTJkxAkSJFcv21EVHuUwghhLaLICIiItIUjtwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGs/B+XLE52CERTBAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" ] + }, + "metadata": {}, + "output_type": "display_data" } - ] + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "## calculate avg response time\n", + "unique_models = set(unique_result[\"response\"]['model'] for unique_result in result[0][\"results\"])\n", + "model_dict = {model: {\"response_time\": []} for model in unique_models}\n", + "for iteration in result:\n", + " for completion_result in iteration[\"results\"]:\n", + " model_dict[completion_result[\"response\"][\"model\"]][\"response_time\"].append(completion_result[\"response_time\"])\n", + "\n", + "avg_response_time = {}\n", + "for model, data in model_dict.items():\n", + " avg_response_time[model] = sum(data[\"response_time\"]) / len(data[\"response_time\"])\n", + "\n", + "models = list(avg_response_time.keys())\n", + "response_times = list(avg_response_time.values())\n", + "\n", + "plt.bar(models, response_times)\n", + "plt.xlabel('Model', fontsize=10)\n", + "plt.ylabel('Average Response Time')\n", + "plt.title('Average Response Times for each Model')\n", + "\n", + "plt.xticks(models, [model[:15]+'...' if len(model) > 15 else model for model in models], rotation=45)\n", + "plt.show()" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/cookbook/litellm_model_fallback.ipynb b/cookbook/litellm_model_fallback.ipynb index d0a4bfe79c28..2e7987b96933 100644 --- a/cookbook/litellm_model_fallback.ipynb +++ b/cookbook/litellm_model_fallback.ipynb @@ -1,52 +1,51 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "j6yJsCGeaq8G" + }, + "outputs": [], + "source": [ + "!pip install litellm" + ] }, - "cells": [ - { - "cell_type": "code", - "source": [ - "!pip install litellm" - ], - "metadata": { - "id": "j6yJsCGeaq8G" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "u129iWNPaf72" - }, - "outputs": [], - "source": [ - "import litellm\n", - "from litellm import embedding, completion\n", - "\n", - "model_fallback_list = [\"claude-instant-1\", \"gpt-3.5-turbo\", \"chatgpt-test\"]\n", - "\n", - "user_message = \"Hello, how are you?\"\n", - "messages = [{ \"content\": user_message,\"role\": \"user\"}]\n", - "\n", - "for model in model_fallback_list:\n", - " try:\n", - " response = completion(model=model, messages=messages)\n", - " except Exception as e:\n", - " print(f\"error occurred: {traceback.format_exc()}\")" - ] - } - ] + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "u129iWNPaf72" + }, + "outputs": [], + "source": [ + "from litellm import completion\n", + "\n", + "model_fallback_list = [\"claude-instant-1\", \"gpt-3.5-turbo\", \"chatgpt-test\"]\n", + "\n", + "user_message = \"Hello, how are you?\"\n", + "messages = [{ \"content\": user_message,\"role\": \"user\"}]\n", + "\n", + "for model in model_fallback_list:\n", + " try:\n", + " response = completion(model=model, messages=messages)\n", + " except Exception:\n", + " print(f\"error occurred: {traceback.format_exc()}\")" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/cookbook/litellm_router/load_test_proxy.py b/cookbook/litellm_router/load_test_proxy.py index adba968baad5..9ae6e764d91e 100644 --- a/cookbook/litellm_router/load_test_proxy.py +++ b/cookbook/litellm_router/load_test_proxy.py @@ -1,14 +1,12 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv load_dotenv() -import os, io sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import pytest from litellm import Router import litellm @@ -137,7 +135,7 @@ def make_openai_completion(question): else: failed_calls += 1 -print(f"Load test Summary:") +print("Load test Summary:") print(f"Total Requests: {concurrent_calls}") print(f"Successful Calls: {successful_calls}") print(f"Failed Calls: {failed_calls}") diff --git a/cookbook/litellm_router/load_test_queuing.py b/cookbook/litellm_router/load_test_queuing.py index 7c22f2f42258..7d4d44b2528a 100644 --- a/cookbook/litellm_router/load_test_queuing.py +++ b/cookbook/litellm_router/load_test_queuing.py @@ -1,14 +1,12 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv load_dotenv() -import os, io sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import pytest from litellm import Router import litellm @@ -160,7 +158,7 @@ def make_openai_completion(question): else: failed_calls += 1 -print(f"Load test Summary:") +print("Load test Summary:") print(f"Total Requests: {concurrent_calls}") print(f"Successful Calls: {successful_calls}") print(f"Failed Calls: {failed_calls}") diff --git a/cookbook/litellm_router/load_test_router.py b/cookbook/litellm_router/load_test_router.py index 5eed3867dd4d..92533b6c9294 100644 --- a/cookbook/litellm_router/load_test_router.py +++ b/cookbook/litellm_router/load_test_router.py @@ -1,14 +1,12 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv load_dotenv() -import os, io sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import pytest from litellm import Router import litellm @@ -132,7 +130,7 @@ def make_openai_completion(question): else: failed_calls += 1 -print(f"Load test Summary:") +print("Load test Summary:") print(f"Total Requests: {concurrent_calls}") print(f"Successful Calls: {successful_calls}") print(f"Failed Calls: {failed_calls}") diff --git a/cookbook/litellm_router_load_test/memory_usage/router_endpoint.py b/cookbook/litellm_router_load_test/memory_usage/router_endpoint.py index 78704e3a7d17..689f105bc5f2 100644 --- a/cookbook/litellm_router_load_test/memory_usage/router_endpoint.py +++ b/cookbook/litellm_router_load_test/memory_usage/router_endpoint.py @@ -1,14 +1,9 @@ from fastapi import FastAPI import uvicorn -from memory_profiler import profile, memory_usage +from memory_profiler import profile import os -import traceback -import asyncio -import pytest import litellm from litellm import Router -from concurrent.futures import ThreadPoolExecutor -from collections import defaultdict from dotenv import load_dotenv import uuid diff --git a/cookbook/litellm_router_load_test/memory_usage/router_memory_usage copy.py b/cookbook/litellm_router_load_test/memory_usage/router_memory_usage copy.py index f6d549e72f78..a8aa506e8a29 100644 --- a/cookbook/litellm_router_load_test/memory_usage/router_memory_usage copy.py +++ b/cookbook/litellm_router_load_test/memory_usage/router_memory_usage copy.py @@ -1,17 +1,16 @@ #### What this tests #### -from memory_profiler import profile, memory_usage -import sys, os, time -import traceback, asyncio -import pytest +from memory_profiler import profile +import sys +import os +import time +import asyncio sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm import Router -from concurrent.futures import ThreadPoolExecutor -from collections import defaultdict from dotenv import load_dotenv import uuid diff --git a/cookbook/litellm_router_load_test/memory_usage/router_memory_usage.py b/cookbook/litellm_router_load_test/memory_usage/router_memory_usage.py index f6d549e72f78..a8aa506e8a29 100644 --- a/cookbook/litellm_router_load_test/memory_usage/router_memory_usage.py +++ b/cookbook/litellm_router_load_test/memory_usage/router_memory_usage.py @@ -1,17 +1,16 @@ #### What this tests #### -from memory_profiler import profile, memory_usage -import sys, os, time -import traceback, asyncio -import pytest +from memory_profiler import profile +import sys +import os +import time +import asyncio sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm import Router -from concurrent.futures import ThreadPoolExecutor -from collections import defaultdict from dotenv import load_dotenv import uuid diff --git a/cookbook/litellm_router_load_test/test_loadtest_openai_client.py b/cookbook/litellm_router_load_test/test_loadtest_openai_client.py index 63a0abd68ca8..8c50825be129 100644 --- a/cookbook/litellm_router_load_test/test_loadtest_openai_client.py +++ b/cookbook/litellm_router_load_test/test_loadtest_openai_client.py @@ -1,17 +1,14 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv -import copy load_dotenv() sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import asyncio -from litellm import Router, Timeout +from litellm import Timeout import time -from litellm.caching.caching import Cache -import litellm import openai ### Test just calling AsyncAzureOpenAI diff --git a/cookbook/litellm_router_load_test/test_loadtest_router.py b/cookbook/litellm_router_load_test/test_loadtest_router.py index a44bf4ccbbe9..280e495e771f 100644 --- a/cookbook/litellm_router_load_test/test_loadtest_router.py +++ b/cookbook/litellm_router_load_test/test_loadtest_router.py @@ -1,7 +1,6 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv -import copy load_dotenv() sys.path.insert( diff --git a/cookbook/litellm_router_load_test/test_loadtest_router_withs3_cache.py b/cookbook/litellm_router_load_test/test_loadtest_router_withs3_cache.py index 4df8b7f5e699..b093489be1be 100644 --- a/cookbook/litellm_router_load_test/test_loadtest_router_withs3_cache.py +++ b/cookbook/litellm_router_load_test/test_loadtest_router_withs3_cache.py @@ -1,7 +1,6 @@ -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv -import copy load_dotenv() sys.path.insert( diff --git a/cookbook/misc/add_new_models.py b/cookbook/misc/add_new_models.py index c9b5a91e301d..3cd0bfb2fcc2 100644 --- a/cookbook/misc/add_new_models.py +++ b/cookbook/misc/add_new_models.py @@ -1,5 +1,4 @@ import requests -import json def get_initial_config(): diff --git a/cookbook/misc/migrate_proxy_config.py b/cookbook/misc/migrate_proxy_config.py index 53551a0ce75e..31c3f32c08a1 100644 --- a/cookbook/misc/migrate_proxy_config.py +++ b/cookbook/misc/migrate_proxy_config.py @@ -36,7 +36,7 @@ def migrate_models(config_file, proxy_base_url): litellm_model_name = litellm_params.get("model", "") or "" if "vertex_ai/" in litellm_model_name: - print(f"\033[91m\nSkipping Vertex AI model\033[0m", model) + print("\033[91m\nSkipping Vertex AI model\033[0m", model) continue for param, value in litellm_params.items(): diff --git a/cookbook/misc/openai_timeouts.py b/cookbook/misc/openai_timeouts.py index 0192d7054554..fe3e6d426d2f 100644 --- a/cookbook/misc/openai_timeouts.py +++ b/cookbook/misc/openai_timeouts.py @@ -1,7 +1,6 @@ import os from openai import OpenAI from dotenv import load_dotenv -import httpx import concurrent.futures load_dotenv() diff --git a/cookbook/misc/sagmaker_streaming.py b/cookbook/misc/sagmaker_streaming.py index 81d857b07f14..1a6cc2e32ce3 100644 --- a/cookbook/misc/sagmaker_streaming.py +++ b/cookbook/misc/sagmaker_streaming.py @@ -2,21 +2,16 @@ import json import boto3 -import sys, os -import traceback +import sys +import os from dotenv import load_dotenv load_dotenv() -import os, io +import io sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import pytest -import litellm - -import io -import json class TokenIterator: @@ -48,7 +43,6 @@ def __next__(self): "stream": True, } -import boto3 client = boto3.client("sagemaker-runtime", region_name="us-west-2") response = client.invoke_endpoint_with_response_stream( diff --git a/cookbook/mlflow_langchain_tracing_litellm_proxy.ipynb b/cookbook/mlflow_langchain_tracing_litellm_proxy.ipynb index 0c684942f646..1aca0e13c87c 100644 --- a/cookbook/mlflow_langchain_tracing_litellm_proxy.ipynb +++ b/cookbook/mlflow_langchain_tracing_litellm_proxy.ipynb @@ -111,7 +111,6 @@ }, "outputs": [], "source": [ - "import mlflow\n", "mlflow.langchain.autolog()" ] }, diff --git a/db_scripts/create_views.py b/db_scripts/create_views.py index 7a913c7f8fd2..43226db23c15 100644 --- a/db_scripts/create_views.py +++ b/db_scripts/create_views.py @@ -3,7 +3,6 @@ """ import asyncio -import os # Enter your DATABASE_URL here @@ -33,7 +32,7 @@ async def check_view_exists(): # noqa: PLR0915 # Try to select one row from the view await db.query_raw("""SELECT 1 FROM "LiteLLM_VerificationTokenView" LIMIT 1""") print("LiteLLM_VerificationTokenView Exists!") # noqa - except Exception as e: + except Exception: # If an error occurs, the view does not exist, so create it await db.execute_raw( """ @@ -54,7 +53,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM "MonthlyGlobalSpend" LIMIT 1""") print("MonthlyGlobalSpend Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW "MonthlyGlobalSpend" AS SELECT @@ -74,7 +73,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM "Last30dKeysBySpend" LIMIT 1""") print("Last30dKeysBySpend Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW "Last30dKeysBySpend" AS SELECT @@ -102,7 +101,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM "Last30dModelsBySpend" LIMIT 1""") print("Last30dModelsBySpend Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW "Last30dModelsBySpend" AS SELECT @@ -124,7 +123,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM "MonthlyGlobalSpendPerKey" LIMIT 1""") print("MonthlyGlobalSpendPerKey Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW "MonthlyGlobalSpendPerKey" AS SELECT @@ -147,7 +146,7 @@ async def check_view_exists(): # noqa: PLR0915 """SELECT 1 FROM "MonthlyGlobalSpendPerUserPerKey" LIMIT 1""" ) print("MonthlyGlobalSpendPerUserPerKey Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW "MonthlyGlobalSpendPerUserPerKey" AS SELECT @@ -171,7 +170,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM DailyTagSpend LIMIT 1""") print("DailyTagSpend Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE OR REPLACE VIEW DailyTagSpend AS SELECT @@ -189,7 +188,7 @@ async def check_view_exists(): # noqa: PLR0915 try: await db.query_raw("""SELECT 1 FROM "Last30dTopEndUsersSpend" LIMIT 1""") print("Last30dTopEndUsersSpend Exists!") # noqa - except Exception as e: + except Exception: sql_query = """ CREATE VIEW "Last30dTopEndUsersSpend" AS SELECT end_user, COUNT(*) AS total_events, SUM(spend) AS total_spend diff --git a/enterprise/enterprise_callbacks/example_logging_api.py b/enterprise/enterprise_callbacks/example_logging_api.py index c3d3f5e63fb5..c4ad4c40d167 100644 --- a/enterprise/enterprise_callbacks/example_logging_api.py +++ b/enterprise/enterprise_callbacks/example_logging_api.py @@ -17,7 +17,7 @@ async def log_event(request: Request): # For now, just printing the received data return {"message": "Request received successfully"} - except Exception as e: + except Exception: raise HTTPException(status_code=500, detail="Internal Server Error") diff --git a/enterprise/enterprise_callbacks/generic_api_callback.py b/enterprise/enterprise_callbacks/generic_api_callback.py index cfeea7d69670..2f39ce856b7a 100644 --- a/enterprise/enterprise_callbacks/generic_api_callback.py +++ b/enterprise/enterprise_callbacks/generic_api_callback.py @@ -2,12 +2,10 @@ #### What this does #### # On success, logs events to Promptlayer -import dotenv, os +import os -from litellm.proxy._types import UserAPIKeyAuth -from litellm.caching.caching import DualCache -from typing import Literal, Union, Optional +from typing import Optional import traceback @@ -15,10 +13,8 @@ #### What this does #### # On success + failure, log events to Supabase -import dotenv, os -import traceback -import datetime, subprocess, sys -import litellm, uuid +import litellm +import uuid from litellm._logging import print_verbose, verbose_logger diff --git a/enterprise/enterprise_hooks/aporia_ai.py b/enterprise/enterprise_hooks/aporia_ai.py index 27645257e2fd..d258f0023389 100644 --- a/enterprise/enterprise_hooks/aporia_ai.py +++ b/enterprise/enterprise_hooks/aporia_ai.py @@ -11,9 +11,9 @@ sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -from typing import Optional, Literal, Union, Any -import litellm, traceback, sys, uuid -from litellm.caching.caching import DualCache +from typing import Optional, Literal, Any +import litellm +import sys from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_guardrail import CustomGuardrail from fastapi import HTTPException @@ -23,14 +23,10 @@ convert_litellm_response_object_to_str, ) from typing import List -from datetime import datetime -import aiohttp, asyncio -from litellm._logging import verbose_proxy_logger from litellm.llms.custom_httpx.http_handler import ( get_async_httpx_client, httpxSpecialProvider, ) -import httpx import json from litellm.types.guardrails import GuardrailEventHooks @@ -147,7 +143,6 @@ async def async_post_call_success_hook( from litellm.proxy.common_utils.callback_utils import ( add_guardrail_to_applied_guardrails_header, ) - from litellm.types.guardrails import GuardrailEventHooks """ Use this for the post call moderation with Guardrails @@ -183,7 +178,6 @@ async def async_moderation_hook( ### 👈 KEY CHANGE ### from litellm.proxy.common_utils.callback_utils import ( add_guardrail_to_applied_guardrails_header, ) - from litellm.types.guardrails import GuardrailEventHooks event_type: GuardrailEventHooks = GuardrailEventHooks.during_call if self.should_run_guardrail(data=data, event_type=event_type) is not True: diff --git a/enterprise/enterprise_hooks/banned_keywords.py b/enterprise/enterprise_hooks/banned_keywords.py index 7a6306ed5bbc..4df138939ad0 100644 --- a/enterprise/enterprise_hooks/banned_keywords.py +++ b/enterprise/enterprise_hooks/banned_keywords.py @@ -7,14 +7,13 @@ ## Reject a call / response if it contains certain keywords -from typing import Optional, Literal +from typing import Literal import litellm from litellm.caching.caching import DualCache from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_logger import CustomLogger from litellm._logging import verbose_proxy_logger from fastapi import HTTPException -import json, traceback class _ENTERPRISE_BannedKeywords(CustomLogger): @@ -73,7 +72,7 @@ async def async_pre_call_hook( - check if user id part of call - check if user id part of blocked list """ - self.print_verbose(f"Inside Banned Keyword List Pre-Call Hook") + self.print_verbose("Inside Banned Keyword List Pre-Call Hook") if call_type == "completion" and "messages" in data: for m in data["messages"]: if "content" in m and isinstance(m["content"], str): diff --git a/enterprise/enterprise_hooks/blocked_user_list.py b/enterprise/enterprise_hooks/blocked_user_list.py index f978d87562c2..09fb1735a0a6 100644 --- a/enterprise/enterprise_hooks/blocked_user_list.py +++ b/enterprise/enterprise_hooks/blocked_user_list.py @@ -15,7 +15,6 @@ from litellm.integrations.custom_logger import CustomLogger from litellm._logging import verbose_proxy_logger from fastapi import HTTPException -import json, traceback class _ENTERPRISE_BlockedUserList(CustomLogger): @@ -69,7 +68,7 @@ async def async_pre_call_hook( - check if end-user in cache - check if end-user in db """ - self.print_verbose(f"Inside Blocked User List Pre-Call Hook") + self.print_verbose("Inside Blocked User List Pre-Call Hook") if "user_id" in data or "user" in data: user = data.get("user_id", data.get("user", "")) if ( diff --git a/enterprise/enterprise_hooks/google_text_moderation.py b/enterprise/enterprise_hooks/google_text_moderation.py index 06d95ff87f04..af5ea3598719 100644 --- a/enterprise/enterprise_hooks/google_text_moderation.py +++ b/enterprise/enterprise_hooks/google_text_moderation.py @@ -7,21 +7,12 @@ # Thank you users! We ❤️ you! - Krrish & Ishaan -from typing import Optional, Literal, Union -import litellm, traceback, sys, uuid -from litellm.caching.caching import DualCache +from typing import Literal +import litellm from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_logger import CustomLogger from fastapi import HTTPException from litellm._logging import verbose_proxy_logger -from litellm.utils import ( - ModelResponse, - EmbeddingResponse, - ImageResponse, - StreamingChoices, -) -from datetime import datetime -import aiohttp, asyncio class _ENTERPRISE_GoogleTextModeration(CustomLogger): diff --git a/enterprise/enterprise_hooks/llama_guard.py b/enterprise/enterprise_hooks/llama_guard.py index 5ee6f3b30346..8abbc996d39c 100644 --- a/enterprise/enterprise_hooks/llama_guard.py +++ b/enterprise/enterprise_hooks/llama_guard.py @@ -7,28 +7,24 @@ # +-------------------------------------------------------------+ # Thank you users! We ❤️ you! - Krrish & Ishaan -import sys, os +import sys +import os from collections.abc import Iterable sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -from typing import Optional, Literal, Union -import litellm, traceback, sys, uuid -from litellm.caching.caching import DualCache +from typing import Optional, Literal +import litellm +import sys from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_logger import CustomLogger from fastapi import HTTPException from litellm._logging import verbose_proxy_logger from litellm.types.utils import ( ModelResponse, - EmbeddingResponse, - ImageResponse, - StreamingChoices, Choices, ) -from datetime import datetime -import aiohttp, asyncio litellm.set_verbose = True diff --git a/enterprise/enterprise_hooks/llm_guard.py b/enterprise/enterprise_hooks/llm_guard.py index 04ac662112c0..1b639b8a08e7 100644 --- a/enterprise/enterprise_hooks/llm_guard.py +++ b/enterprise/enterprise_hooks/llm_guard.py @@ -7,26 +7,13 @@ # Thank you users! We ❤️ you! - Krrish & Ishaan ## This provides an LLM Guard Integration for content moderation on the proxy -from typing import Optional, Literal, Union +from typing import Optional, Literal import litellm -import traceback -import sys -import uuid -import os -from litellm.caching.caching import DualCache from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_logger import CustomLogger from fastapi import HTTPException from litellm._logging import verbose_proxy_logger -from litellm.utils import ( - ModelResponse, - EmbeddingResponse, - ImageResponse, - StreamingChoices, -) -from datetime import datetime import aiohttp -import asyncio from litellm.utils import get_formatted_prompt from litellm.secret_managers.main import get_secret_str @@ -164,7 +151,7 @@ async def async_moderation_hook( "moderation", "audio_transcription", ] - except Exception as e: + except Exception: self.print_verbose( f"Call Type - {call_type}, not in accepted list - ['completion','embeddings','image_generation','moderation','audio_transcription']" ) diff --git a/enterprise/enterprise_hooks/openai_moderation.py b/enterprise/enterprise_hooks/openai_moderation.py index 0b9efc25fefc..47506a00c422 100644 --- a/enterprise/enterprise_hooks/openai_moderation.py +++ b/enterprise/enterprise_hooks/openai_moderation.py @@ -5,27 +5,19 @@ # +-------------------------------------------------------------+ # Thank you users! We ❤️ you! - Krrish & Ishaan -import sys, os +import sys +import os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -from typing import Optional, Literal, Union -import litellm, traceback, sys, uuid -from litellm.caching.caching import DualCache +from typing import Literal +import litellm +import sys from litellm.proxy._types import UserAPIKeyAuth from litellm.integrations.custom_logger import CustomLogger from fastapi import HTTPException from litellm._logging import verbose_proxy_logger -from litellm.utils import ( - ModelResponse, - EmbeddingResponse, - ImageResponse, - StreamingChoices, -) -from datetime import datetime -import aiohttp, asyncio -from litellm._logging import verbose_proxy_logger litellm.set_verbose = True diff --git a/enterprise/enterprise_hooks/secret_detection.py b/enterprise/enterprise_hooks/secret_detection.py index 50ccccfde40b..459fd374d1dd 100644 --- a/enterprise/enterprise_hooks/secret_detection.py +++ b/enterprise/enterprise_hooks/secret_detection.py @@ -471,8 +471,6 @@ async def async_pre_call_hook( data: dict, call_type: str, # "completion", "embeddings", "image_generation", "moderation" ): - from detect_secrets import SecretsCollection - from detect_secrets.settings import default_settings if await self.should_run_check(user_api_key_dict) is False: return diff --git a/enterprise/utils.py b/enterprise/utils.py index cc97661d74f6..b252a064bb4d 100644 --- a/enterprise/utils.py +++ b/enterprise/utils.py @@ -1,6 +1,5 @@ # Enterprise Proxy Util Endpoints from typing import Optional, List -from litellm._logging import verbose_logger from litellm.proxy.proxy_server import PrismaClient, HTTPException from litellm.llms.custom_httpx.http_handler import HTTPHandler import collections @@ -116,7 +115,7 @@ async def ui_get_spend_by_tags( def _forecast_daily_cost(data: list): - from datetime import datetime, timedelta + from datetime import timedelta if len(data) == 0: return { diff --git a/litellm/__init__.py b/litellm/__init__.py index 7ec48da07354..59a88abfd116 100644 --- a/litellm/__init__.py +++ b/litellm/__init__.py @@ -1063,9 +1063,9 @@ def add_known_models(): from .llms.ollama_chat import OllamaChatConfig from .llms.bedrock.chat.invoke_handler import ( AmazonCohereChatConfig, - AmazonConverseConfig, bedrock_tool_name_mappings, ) +from .llms.bedrock.chat.converse_transformation import AmazonConverseConfig from .llms.bedrock.common_utils import ( AmazonTitanConfig, AmazonAI21Config, diff --git a/litellm/_logging.py b/litellm/_logging.py index daa1a1dd2b88..ae17d0e52572 100644 --- a/litellm/_logging.py +++ b/litellm/_logging.py @@ -1,7 +1,6 @@ import json import logging import os -import traceback from datetime import datetime from logging import Formatter diff --git a/litellm/_redis.py b/litellm/_redis.py index d905f1c9d038..70c38cf7f56a 100644 --- a/litellm/_redis.py +++ b/litellm/_redis.py @@ -12,12 +12,11 @@ # s/o [@Frank Colson](https://www.linkedin.com/in/frank-colson-422b9b183/) for this redis implementation import os -from typing import Dict, List, Optional, Union +from typing import List, Optional, Union import redis # type: ignore import redis.asyncio as async_redis # type: ignore -import litellm from litellm import get_secret, get_secret_str from ._logging import verbose_logger diff --git a/litellm/adapters/anthropic_adapter.py b/litellm/adapters/anthropic_adapter.py index b8ce225adab2..961bc7752793 100644 --- a/litellm/adapters/anthropic_adapter.py +++ b/litellm/adapters/anthropic_adapter.py @@ -1,23 +1,12 @@ # What is this? ## Translates OpenAI call to Anthropic `/v1/messages` format -import json -import os import traceback -import uuid -from typing import Any, Literal, Optional - -import dotenv -import httpx -from pydantic import BaseModel +from typing import Any, Optional import litellm from litellm import ChatCompletionRequest, verbose_logger from litellm.integrations.custom_logger import CustomLogger -from litellm.types.llms.anthropic import ( - AnthropicMessagesRequest, - AnthropicResponse, - ContentBlockDelta, -) +from litellm.types.llms.anthropic import AnthropicMessagesRequest, AnthropicResponse from litellm.types.utils import AdapterCompletionStreamWrapper, ModelResponse diff --git a/litellm/assistants/main.py b/litellm/assistants/main.py index 76222ca787e6..acb37b1e6f69 100644 --- a/litellm/assistants/main.py +++ b/litellm/assistants/main.py @@ -7,12 +7,11 @@ from typing import Any, Coroutine, Dict, Iterable, List, Literal, Optional, Union import httpx -from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI +from openai import AsyncOpenAI, OpenAI from openai.types.beta.assistant import Assistant from openai.types.beta.assistant_deleted import AssistantDeleted import litellm -from litellm.llms.azure import assistants from litellm.types.router import GenericLiteLLMParams from litellm.utils import ( exception_type, diff --git a/litellm/batch_completion/main.py b/litellm/batch_completion/main.py index bb8374c7ae46..7100fb004f8d 100644 --- a/litellm/batch_completion/main.py +++ b/litellm/batch_completion/main.py @@ -144,7 +144,6 @@ def batch_completion_models(*args, **kwargs): This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models. It sends requests concurrently and returns the response from the first model that responds. """ - import concurrent if "model" in kwargs: kwargs.pop("model") diff --git a/litellm/batches/main.py b/litellm/batches/main.py index 555ec62ad581..71c2d3b5cfdf 100644 --- a/litellm/batches/main.py +++ b/litellm/batches/main.py @@ -19,24 +19,11 @@ import httpx import litellm -from litellm import client from litellm.llms.azure.azure import AzureBatchesAPI from litellm.llms.openai.openai import OpenAIBatchesAPI -from litellm.llms.vertex_ai.batches.handler import ( - VertexAIBatchPrediction, -) -from litellm.secret_managers.main import get_secret, get_secret_str -from litellm.types.llms.openai import ( - Batch, - CancelBatchRequest, - CreateBatchRequest, - CreateFileRequest, - FileContentRequest, - FileObject, - FileTypes, - HttpxBinaryResponseContent, - RetrieveBatchRequest, -) +from litellm.llms.vertex_ai.batches.handler import VertexAIBatchPrediction +from litellm.secret_managers.main import get_secret_str +from litellm.types.llms.openai import Batch, CreateBatchRequest, RetrieveBatchRequest from litellm.types.router import GenericLiteLLMParams from litellm.utils import supports_httpx_timeout diff --git a/litellm/budget_manager.py b/litellm/budget_manager.py index a17edcdbe884..e664c4f44f8a 100644 --- a/litellm/budget_manager.py +++ b/litellm/budget_manager.py @@ -11,7 +11,7 @@ import os import threading import time -from typing import Literal, Optional, Union +from typing import Literal, Optional import litellm from litellm.utils import ModelResponse diff --git a/litellm/caching/caching.py b/litellm/caching/caching.py index 17c09b997763..e50e8b76d64d 100644 --- a/litellm/caching/caching.py +++ b/litellm/caching/caching.py @@ -8,16 +8,12 @@ # Thank you users! We ❤️ you! - Krrish & Ishaan import ast -import asyncio import hashlib -import inspect -import io import json -import logging import time import traceback from enum import Enum -from typing import Any, Dict, List, Literal, Optional, Set, Tuple, Union +from typing import Any, Dict, List, Optional, Set, Union from openai.types.audio.transcription_create_params import TranscriptionCreateParams from openai.types.chat.completion_create_params import ( @@ -41,7 +37,7 @@ from .base_cache import BaseCache from .disk_cache import DiskCache -from .dual_cache import DualCache +from .dual_cache import DualCache # noqa from .in_memory_cache import InMemoryCache from .qdrant_semantic_cache import QdrantSemanticCache from .redis_cache import RedisCache diff --git a/litellm/caching/caching_handler.py b/litellm/caching/caching_handler.py index 11ae600b74a2..821224652cbd 100644 --- a/litellm/caching/caching_handler.py +++ b/litellm/caching/caching_handler.py @@ -35,13 +35,7 @@ import litellm from litellm._logging import print_verbose, verbose_logger -from litellm.caching.caching import ( - Cache, - QdrantSemanticCache, - RedisCache, - RedisSemanticCache, - S3Cache, -) +from litellm.caching.caching import S3Cache from litellm.litellm_core_utils.logging_utils import ( _assemble_complete_response_from_streaming_chunks, ) @@ -550,12 +544,7 @@ def _convert_cached_result_to_model_response( Returns: Optional[Any]: """ - from litellm.utils import ( - CustomStreamWrapper, - convert_to_model_response_object, - convert_to_streaming_response, - convert_to_streaming_response_async, - ) + from litellm.utils import convert_to_model_response_object if ( call_type == CallTypes.acompletion.value diff --git a/litellm/caching/disk_cache.py b/litellm/caching/disk_cache.py index 94f82926d33e..abf3203f507a 100644 --- a/litellm/caching/disk_cache.py +++ b/litellm/caching/disk_cache.py @@ -1,8 +1,6 @@ import json from typing import TYPE_CHECKING, Any, Optional -from litellm._logging import print_verbose - from .base_cache import BaseCache if TYPE_CHECKING: diff --git a/litellm/caching/dual_cache.py b/litellm/caching/dual_cache.py index f4abc6f15392..5f598f7d7036 100644 --- a/litellm/caching/dual_cache.py +++ b/litellm/caching/dual_cache.py @@ -12,7 +12,7 @@ import time import traceback from concurrent.futures import ThreadPoolExecutor -from typing import TYPE_CHECKING, Any, List, Optional, Tuple +from typing import TYPE_CHECKING, Any, List, Optional import litellm from litellm._logging import print_verbose, verbose_logger diff --git a/litellm/caching/qdrant_semantic_cache.py b/litellm/caching/qdrant_semantic_cache.py index acaa8e918928..bdfd3770ae20 100644 --- a/litellm/caching/qdrant_semantic_cache.py +++ b/litellm/caching/qdrant_semantic_cache.py @@ -15,7 +15,6 @@ import litellm from litellm._logging import print_verbose -from litellm.types.caching import LiteLLMCacheType from .base_cache import BaseCache diff --git a/litellm/caching/redis_cache.py b/litellm/caching/redis_cache.py index fa0002fe6231..21455fa7f2e8 100644 --- a/litellm/caching/redis_cache.py +++ b/litellm/caching/redis_cache.py @@ -13,7 +13,6 @@ import inspect import json import time -import traceback from datetime import timedelta from typing import TYPE_CHECKING, Any, List, Optional, Tuple @@ -21,8 +20,7 @@ from litellm._logging import print_verbose, verbose_logger from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs from litellm.types.caching import RedisPipelineIncrementOperation -from litellm.types.services import ServiceLoggerPayload, ServiceTypes -from litellm.types.utils import all_litellm_params +from litellm.types.services import ServiceTypes from .base_cache import BaseCache @@ -53,7 +51,6 @@ def __init__( startup_nodes: Optional[List] = None, # for redis-cluster **kwargs, ): - import redis from litellm._service_logger import ServiceLogging diff --git a/litellm/caching/redis_semantic_cache.py b/litellm/caching/redis_semantic_cache.py index e3098f085625..b609286a55bb 100644 --- a/litellm/caching/redis_semantic_cache.py +++ b/litellm/caching/redis_semantic_cache.py @@ -32,7 +32,6 @@ def __init__( **kwargs, ): from redisvl.index import SearchIndex - from redisvl.query import VectorQuery print_verbose( "redis semantic-cache initializing INDEX - litellm_semantic_cache_index" @@ -141,7 +140,6 @@ def set_cache(self, key, value, **kwargs): def get_cache(self, key, **kwargs): print_verbose(f"sync redis semantic-cache get_cache, kwargs: {kwargs}") - import numpy as np from redisvl.query import VectorQuery # query @@ -253,7 +251,6 @@ async def async_set_cache(self, key, value, **kwargs): async def async_get_cache(self, key, **kwargs): print_verbose(f"async redis semantic-cache get_cache, kwargs: {kwargs}") - import numpy as np from redisvl.query import VectorQuery from litellm.proxy.proxy_server import llm_model_list, llm_router diff --git a/litellm/caching/s3_cache.py b/litellm/caching/s3_cache.py index 6be16e289a4f..301591c64fec 100644 --- a/litellm/caching/s3_cache.py +++ b/litellm/caching/s3_cache.py @@ -12,11 +12,9 @@ import ast import asyncio import json -from typing import Any, Optional +from typing import Optional -import litellm from litellm._logging import print_verbose, verbose_logger -from litellm.types.caching import LiteLLMCacheType from .base_cache import BaseCache @@ -103,7 +101,6 @@ async def async_set_cache(self, key, value, **kwargs): self.set_cache(key=key, value=value, **kwargs) def get_cache(self, key, **kwargs): - import boto3 import botocore try: diff --git a/litellm/cost_calculator.py b/litellm/cost_calculator.py index 45bd24aab3cc..234ca1a1d437 100644 --- a/litellm/cost_calculator.py +++ b/litellm/cost_calculator.py @@ -1,7 +1,6 @@ # What is this? ## File for 'response_cost' calculation in Logging import time -import traceback from typing import Any, List, Literal, Optional, Tuple, Union from pydantic import BaseModel @@ -44,14 +43,12 @@ cost_per_second as openai_cost_per_second, ) from litellm.llms.openai.cost_calculation import cost_per_token as openai_cost_per_token -from litellm.llms.openai.cost_calculation import cost_router as openai_cost_router from litellm.llms.together_ai.cost_calculator import get_model_params_and_category from litellm.llms.vertex_ai.image_generation.cost_calculator import ( cost_calculator as vertex_ai_image_cost_calculator, ) from litellm.types.llms.openai import HttpxBinaryResponseContent from litellm.types.rerank import RerankResponse -from litellm.types.router import SPECIAL_MODEL_INFO_PARAMS from litellm.types.utils import CallTypesLiteral, PassthroughCallTypes, Usage from litellm.utils import ( CallTypes, diff --git a/litellm/files/main.py b/litellm/files/main.py index 8637c624c08c..9f81b2e385de 100644 --- a/litellm/files/main.py +++ b/litellm/files/main.py @@ -14,14 +14,11 @@ import httpx import litellm -from litellm import client, get_secret_str +from litellm import get_secret_str from litellm.llms.azure.files.handler import AzureOpenAIFilesAPI from litellm.llms.openai.openai import FileDeleted, FileObject, OpenAIFilesAPI -from litellm.llms.vertex_ai.files.handler import ( - VertexAIFilesHandler, -) +from litellm.llms.vertex_ai.files.handler import VertexAIFilesHandler from litellm.types.llms.openai import ( - Batch, CreateFileRequest, FileContentRequest, FileTypes, diff --git a/litellm/fine_tuning/main.py b/litellm/fine_tuning/main.py index e5620a40e91e..eace2f64a4b3 100644 --- a/litellm/fine_tuning/main.py +++ b/litellm/fine_tuning/main.py @@ -19,10 +19,10 @@ import litellm from litellm._logging import verbose_logger from litellm.llms.azure.fine_tuning.handler import AzureOpenAIFineTuningAPI -from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI, FineTuningJob, FineTuningJobCreate +from litellm.llms.openai.fine_tuning.handler import FineTuningJob, OpenAIFineTuningAPI from litellm.llms.vertex_ai.fine_tuning.handler import VertexFineTuningAPI from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import Hyperparameters +from litellm.types.llms.openai import FineTuningJobCreate, Hyperparameters from litellm.types.router import * from litellm.utils import supports_httpx_timeout diff --git a/litellm/integrations/SlackAlerting/batching_handler.py b/litellm/integrations/SlackAlerting/batching_handler.py index 7c4e9c6f5346..f52147a00131 100644 --- a/litellm/integrations/SlackAlerting/batching_handler.py +++ b/litellm/integrations/SlackAlerting/batching_handler.py @@ -6,11 +6,9 @@ see custom_batch_logger.py for more details / defaults """ -import os -from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union +from typing import TYPE_CHECKING, Any -from litellm._logging import verbose_logger, verbose_proxy_logger -from litellm.proxy._types import AlertType, WebhookEvent +from litellm._logging import verbose_proxy_logger if TYPE_CHECKING: from .slack_alerting import SlackAlerting as _SlackAlerting @@ -21,7 +19,6 @@ def squash_payloads(queue): - import json squashed = {} if len(queue) == 0: diff --git a/litellm/integrations/SlackAlerting/slack_alerting.py b/litellm/integrations/SlackAlerting/slack_alerting.py index bd3c3b825383..3c71332de7c1 100644 --- a/litellm/integrations/SlackAlerting/slack_alerting.py +++ b/litellm/integrations/SlackAlerting/slack_alerting.py @@ -4,16 +4,10 @@ import datetime import os import random -import threading import time -import traceback -from datetime import datetime as dt -from datetime import timedelta, timezone -from enum import Enum -from typing import Any, Dict, List, Literal, Optional, Set, TypedDict, Union, get_args - -import aiohttp -import dotenv +from datetime import timedelta +from typing import Any, Dict, List, Literal, Optional, Union + from openai import APIError import litellm @@ -26,22 +20,13 @@ from litellm.litellm_core_utils.exception_mapping_utils import ( _add_key_name_and_team_to_alert, ) -from litellm.litellm_core_utils.litellm_logging import Logging from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) -from litellm.proxy._types import ( - AlertType, - CallInfo, - UserAPIKeyAuth, - VirtualKeyEvent, - WebhookEvent, -) +from litellm.proxy._types import AlertType, CallInfo, VirtualKeyEvent, WebhookEvent from litellm.router import Router from litellm.types.integrations.slack_alerting import * -from litellm.types.router import LiteLLM_Params from ..email_templates.templates import * from .batching_handler import send_to_webhook, squash_payloads @@ -1261,7 +1246,7 @@ async def send_email_alert_using_smtp( Returns -> True if sent, False if not. """ - from litellm.proxy.proxy_server import premium_user, prisma_client + from litellm.proxy.proxy_server import premium_user from litellm.proxy.utils import send_email email_logo_url = os.getenv( @@ -1370,7 +1355,6 @@ async def send_alert( if alert_type not in self.alert_types: return - import json from datetime import datetime # Get the current timestamp diff --git a/litellm/integrations/SlackAlerting/utils.py b/litellm/integrations/SlackAlerting/utils.py index d6c0a3168f58..87e78afa9008 100644 --- a/litellm/integrations/SlackAlerting/utils.py +++ b/litellm/integrations/SlackAlerting/utils.py @@ -5,7 +5,6 @@ import asyncio from typing import Dict, List, Optional, Union -import litellm from litellm.litellm_core_utils.litellm_logging import Logging from litellm.proxy._types import AlertType from litellm.secret_managers.main import get_secret diff --git a/litellm/integrations/argilla.py b/litellm/integrations/argilla.py index 1ec7924b6f36..055ad90259af 100644 --- a/litellm/integrations/argilla.py +++ b/litellm/integrations/argilla.py @@ -6,14 +6,9 @@ import json import os import random -import time -import traceback import types -import uuid -from datetime import datetime, timezone -from typing import Any, Dict, List, Optional, TypedDict, Union +from typing import Any, Dict, List, Optional -import dotenv # type: ignore import httpx from pydantic import BaseModel # type: ignore @@ -21,11 +16,7 @@ from litellm._logging import verbose_logger from litellm.integrations.custom_batch_logger import CustomBatchLogger from litellm.integrations.custom_logger import CustomLogger -from litellm.litellm_core_utils.prompt_templates.common_utils import ( - get_content_from_model_response, -) from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) @@ -33,7 +24,6 @@ SUPPORTED_PAYLOAD_FIELDS, ArgillaCredentialsObject, ArgillaItem, - ArgillaPayload, ) from litellm.types.utils import StandardLoggingPayload diff --git a/litellm/integrations/arize_ai.py b/litellm/integrations/arize_ai.py index acd3f745bd84..10c6af69b1a2 100644 --- a/litellm/integrations/arize_ai.py +++ b/litellm/integrations/arize_ai.py @@ -5,7 +5,7 @@ """ import json -from typing import TYPE_CHECKING, Any, Optional, Union +from typing import TYPE_CHECKING, Any, Optional from litellm._logging import verbose_logger @@ -30,7 +30,6 @@ class ArizeLogger: def set_arize_ai_attributes(span: Span, kwargs, response_obj): from litellm.integrations._types.open_inference import ( MessageAttributes, - MessageContentAttributes, OpenInferenceSpanKindValues, SpanAttributes, ) diff --git a/litellm/integrations/azure_storage/azure_storage.py b/litellm/integrations/azure_storage/azure_storage.py index 977a253f691f..ddc46b117ffb 100644 --- a/litellm/integrations/azure_storage/azure_storage.py +++ b/litellm/integrations/azure_storage/azure_storage.py @@ -3,23 +3,8 @@ import os import uuid from datetime import datetime, timedelta -from re import S, T -from typing import ( - TYPE_CHECKING, - Any, - Callable, - Dict, - List, - Optional, - Tuple, - TypedDict, - Union, -) - -import httpx -from pydantic import BaseModel, Field +from typing import List, Optional -import litellm from litellm._logging import verbose_logger from litellm.constants import AZURE_STORAGE_MSFT_VERSION from litellm.integrations.custom_batch_logger import CustomBatchLogger diff --git a/litellm/integrations/braintrust_logging.py b/litellm/integrations/braintrust_logging.py index 6de691093736..8a4273d68a81 100644 --- a/litellm/integrations/braintrust_logging.py +++ b/litellm/integrations/braintrust_logging.py @@ -2,15 +2,10 @@ ## Log success + failure events to Braintrust import copy -import json import os -import threading -import traceback -import uuid from datetime import datetime -from typing import Literal, Optional +from typing import Optional -import dotenv import httpx from pydantic import BaseModel @@ -18,12 +13,11 @@ from litellm import verbose_logger from litellm.integrations.custom_logger import CustomLogger from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, HTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) -from litellm.utils import get_formatted_prompt, print_verbose +from litellm.utils import print_verbose global_braintrust_http_handler = get_async_httpx_client( llm_provider=httpxSpecialProvider.LoggingCallback diff --git a/litellm/integrations/custom_batch_logger.py b/litellm/integrations/custom_batch_logger.py index 292c836b31ee..9fc3c3298282 100644 --- a/litellm/integrations/custom_batch_logger.py +++ b/litellm/integrations/custom_batch_logger.py @@ -6,7 +6,7 @@ import asyncio import time -from typing import List, Literal, Optional +from typing import List, Optional import litellm from litellm._logging import verbose_logger diff --git a/litellm/integrations/custom_guardrail.py b/litellm/integrations/custom_guardrail.py index 816b024c7259..39f762533d55 100644 --- a/litellm/integrations/custom_guardrail.py +++ b/litellm/integrations/custom_guardrail.py @@ -1,4 +1,4 @@ -from typing import List, Literal, Optional +from typing import List, Optional from litellm._logging import verbose_logger from litellm.integrations.custom_logger import CustomLogger diff --git a/litellm/integrations/custom_logger.py b/litellm/integrations/custom_logger.py index b7149369203d..dac95324864a 100644 --- a/litellm/integrations/custom_logger.py +++ b/litellm/integrations/custom_logger.py @@ -1,18 +1,14 @@ #### What this does #### # On success, logs events to Promptlayer -import os import traceback -from datetime import datetime as datetimeObj from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, Union -import dotenv from pydantic import BaseModel from litellm.caching.caching import DualCache from litellm.proxy._types import UserAPIKeyAuth from litellm.types.integrations.argilla import ArgillaItem from litellm.types.llms.openai import AllMessageValues, ChatCompletionRequest -from litellm.types.services import ServiceLoggerPayload from litellm.types.utils import ( AdapterCompletionStreamWrapper, EmbeddingResponse, diff --git a/litellm/integrations/datadog/datadog.py b/litellm/integrations/datadog/datadog.py index 113600a95aef..315a35c8332e 100644 --- a/litellm/integrations/datadog/datadog.py +++ b/litellm/integrations/datadog/datadog.py @@ -16,11 +16,10 @@ import asyncio import datetime import os -import sys import traceback import uuid from datetime import datetime as datetimeObj -from typing import Any, Dict, List, Optional, Union +from typing import Any, List, Optional, Union from httpx import Response @@ -32,7 +31,6 @@ get_async_httpx_client, httpxSpecialProvider, ) -from litellm.proxy._types import UserAPIKeyAuth from litellm.types.integrations.datadog import * from litellm.types.services import ServiceLoggerPayload from litellm.types.utils import StandardLoggingPayload diff --git a/litellm/integrations/datadog/datadog_llm_obs.py b/litellm/integrations/datadog/datadog_llm_obs.py index 9666c45814ea..6b7aa435465a 100644 --- a/litellm/integrations/datadog/datadog_llm_obs.py +++ b/litellm/integrations/datadog/datadog_llm_obs.py @@ -8,12 +8,9 @@ import asyncio import os -import traceback import uuid from datetime import datetime -from typing import Any, Dict, List, Optional, Union - -from httpx import Response +from typing import Any, Dict, List, Optional import litellm from litellm._logging import verbose_logger diff --git a/litellm/integrations/dynamodb.py b/litellm/integrations/dynamodb.py index 5257020b4438..2c527ea8aa9f 100644 --- a/litellm/integrations/dynamodb.py +++ b/litellm/integrations/dynamodb.py @@ -1,14 +1,11 @@ #### What this does #### # On success + failure, log events to Supabase -import datetime import os import traceback import uuid from typing import Any -import dotenv - import litellm diff --git a/litellm/integrations/email_alerting.py b/litellm/integrations/email_alerting.py index c626c7efc807..b45b9aa7f5c0 100644 --- a/litellm/integrations/email_alerting.py +++ b/litellm/integrations/email_alerting.py @@ -2,7 +2,6 @@ Functions for sending Email Alerts """ -import asyncio import os from typing import List, Optional @@ -20,7 +19,7 @@ async def get_all_team_member_emails(team_id: Optional[str] = None) -> list: ) if team_id is None: return [] - from litellm.proxy.proxy_server import premium_user, prisma_client + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise Exception("Not connected to DB!") @@ -72,7 +71,6 @@ async def send_team_budget_alert(webhook_event: WebhookEvent) -> bool: Send an Email Alert to All Team Members when the Team Budget is crossed Returns -> True if sent, False if not. """ - from litellm.proxy.proxy_server import premium_user, prisma_client from litellm.proxy.utils import send_email _team_id = webhook_event.team_id diff --git a/litellm/integrations/galileo.py b/litellm/integrations/galileo.py index 11dde2d535c2..e99d5f23a4c4 100644 --- a/litellm/integrations/galileo.py +++ b/litellm/integrations/galileo.py @@ -1,15 +1,12 @@ import os -from datetime import datetime from typing import Any, Dict, List, Optional -import httpx from pydantic import BaseModel, Field import litellm from litellm._logging import verbose_logger from litellm.integrations.custom_logger import CustomLogger from litellm.llms.custom_httpx.http_handler import ( - _get_httpx_client, get_async_httpx_client, httpxSpecialProvider, ) diff --git a/litellm/integrations/gcs_bucket/gcs_bucket.py b/litellm/integrations/gcs_bucket/gcs_bucket.py index b9de271b5984..0c59d0c93c3c 100644 --- a/litellm/integrations/gcs_bucket/gcs_bucket.py +++ b/litellm/integrations/gcs_bucket/gcs_bucket.py @@ -1,27 +1,14 @@ import asyncio -import json import os import uuid from datetime import datetime -from re import S -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypedDict, Union +from typing import TYPE_CHECKING, Any, Dict, List, Optional -import httpx -from pydantic import BaseModel, Field - -import litellm from litellm._logging import verbose_logger -from litellm.integrations.custom_batch_logger import CustomBatchLogger -from litellm.integrations.custom_logger import CustomLogger from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase -from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler -from litellm.proxy._types import CommonProxyErrors, SpendLogsMetadata, SpendLogsPayload +from litellm.proxy._types import CommonProxyErrors from litellm.types.integrations.gcs_bucket import * -from litellm.types.utils import ( - StandardCallbackDynamicParams, - StandardLoggingMetadata, - StandardLoggingPayload, -) +from litellm.types.utils import StandardLoggingPayload if TYPE_CHECKING: from litellm.llms.vertex_ai.vertex_llm_base import VertexBase diff --git a/litellm/integrations/gcs_bucket/gcs_bucket_base.py b/litellm/integrations/gcs_bucket/gcs_bucket_base.py index 3bec1c6b9fe8..66995d8482f3 100644 --- a/litellm/integrations/gcs_bucket/gcs_bucket_base.py +++ b/litellm/integrations/gcs_bucket/gcs_bucket_base.py @@ -1,13 +1,7 @@ import json import os -import uuid -from datetime import datetime -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypedDict, Union +from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union -import httpx -from pydantic import BaseModel, Field - -import litellm from litellm._logging import verbose_logger from litellm.integrations.custom_batch_logger import CustomBatchLogger from litellm.llms.custom_httpx.http_handler import ( @@ -15,11 +9,7 @@ httpxSpecialProvider, ) from litellm.types.integrations.gcs_bucket import * -from litellm.types.utils import ( - StandardCallbackDynamicParams, - StandardLoggingMetadata, - StandardLoggingPayload, -) +from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload if TYPE_CHECKING: from litellm.llms.vertex_ai.vertex_llm_base import VertexBase @@ -190,9 +180,7 @@ async def get_or_create_vertex_instance( This function is used to get the Vertex instance for the GCS Bucket Logger. It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it. """ - from litellm.llms.vertex_ai.vertex_llm_base import ( - VertexBase, - ) + from litellm.llms.vertex_ai.vertex_llm_base import VertexBase _in_memory_key = self._get_in_memory_key_for_vertex_instance(credentials) if _in_memory_key not in self.vertex_instances: diff --git a/litellm/integrations/helicone.py b/litellm/integrations/helicone.py index 013bf3c6cdcb..a526a74fbea3 100644 --- a/litellm/integrations/helicone.py +++ b/litellm/integrations/helicone.py @@ -3,10 +3,7 @@ import os import traceback -import dotenv - import litellm -from litellm._logging import verbose_logger class HeliconeLogger: diff --git a/litellm/integrations/lago.py b/litellm/integrations/lago.py index c473bfeefd01..5dfb1ce097d5 100644 --- a/litellm/integrations/lago.py +++ b/litellm/integrations/lago.py @@ -3,11 +3,9 @@ import json import os -import traceback import uuid from typing import Literal, Optional -import dotenv import httpx import litellm diff --git a/litellm/integrations/langfuse/langfuse.py b/litellm/integrations/langfuse/langfuse.py index 047f213b7ef2..888fcde88706 100644 --- a/litellm/integrations/langfuse/langfuse.py +++ b/litellm/integrations/langfuse/langfuse.py @@ -3,7 +3,6 @@ import copy import os import traceback -import types from collections.abc import MutableMapping, MutableSequence, MutableSet from typing import TYPE_CHECKING, Any, Dict, Optional, cast diff --git a/litellm/integrations/langfuse/langfuse_handler.py b/litellm/integrations/langfuse/langfuse_handler.py index 6377bab29d3f..e3ce736b5449 100644 --- a/litellm/integrations/langfuse/langfuse_handler.py +++ b/litellm/integrations/langfuse/langfuse_handler.py @@ -6,11 +6,8 @@ Handles Key/Team Based Langfuse Logging """ -import os from typing import TYPE_CHECKING, Any, Dict, Optional -from packaging.version import Version - from litellm.litellm_core_utils.litellm_logging import StandardCallbackDynamicParams from .langfuse import LangFuseLogger, LangfuseLoggingConfig diff --git a/litellm/integrations/langsmith.py b/litellm/integrations/langsmith.py index 4c5ec17fc80e..b727c69e03b6 100644 --- a/litellm/integrations/langsmith.py +++ b/litellm/integrations/langsmith.py @@ -3,14 +3,12 @@ import asyncio import os import random -import time import traceback import types import uuid from datetime import datetime, timezone -from typing import Any, Dict, List, Optional, TypedDict, Union +from typing import Any, Dict, List, Optional -import dotenv # type: ignore import httpx from pydantic import BaseModel # type: ignore @@ -18,7 +16,6 @@ from litellm._logging import verbose_logger from litellm.integrations.custom_batch_logger import CustomBatchLogger from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) diff --git a/litellm/integrations/langtrace.py b/litellm/integrations/langtrace.py index f5dcfacdf7b8..51cd272ff1c1 100644 --- a/litellm/integrations/langtrace.py +++ b/litellm/integrations/langtrace.py @@ -1,9 +1,7 @@ -import traceback import json -from litellm.integrations.custom_logger import CustomLogger -from litellm.proxy._types import SpanAttributes +from typing import TYPE_CHECKING, Any -from typing import TYPE_CHECKING, Any, Optional, Union +from litellm.proxy._types import SpanAttributes if TYPE_CHECKING: from opentelemetry.trace import Span as _Span diff --git a/litellm/integrations/openmeter.py b/litellm/integrations/openmeter.py index b1621afc7537..ebfed5323ba4 100644 --- a/litellm/integrations/openmeter.py +++ b/litellm/integrations/openmeter.py @@ -3,17 +3,12 @@ import json import os -import traceback -import uuid -import dotenv import httpx import litellm -from litellm import verbose_logger from litellm.integrations.custom_logger import CustomLogger from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, HTTPHandler, get_async_httpx_client, httpxSpecialProvider, diff --git a/litellm/integrations/opentelemetry.py b/litellm/integrations/opentelemetry.py index 7ba86164fec4..45afb9d71ee5 100644 --- a/litellm/integrations/opentelemetry.py +++ b/litellm/integrations/opentelemetry.py @@ -1,7 +1,6 @@ import os from dataclasses import dataclass from datetime import datetime -from functools import wraps from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union import litellm @@ -10,10 +9,7 @@ from litellm.types.services import ServiceLoggerPayload from litellm.types.utils import ( ChatCompletionMessageToolCall, - EmbeddingResponse, Function, - ImageResponse, - ModelResponse, StandardLoggingPayload, ) @@ -139,7 +135,6 @@ async def async_service_success_hook( end_time: Optional[Union[datetime, float]] = None, event_metadata: Optional[dict] = None, ): - from datetime import datetime from opentelemetry import trace from opentelemetry.trace import Status, StatusCode @@ -201,7 +196,6 @@ async def async_service_failure_hook( end_time: Optional[Union[float, datetime]] = None, event_metadata: Optional[dict] = None, ): - from datetime import datetime from opentelemetry import trace from opentelemetry.trace import Status, StatusCode @@ -666,7 +660,6 @@ def safe_set_attribute(self, span: Span, key: str, value: Any): span.set_attribute(key, primitive_value) def set_raw_request_attributes(self, span: Span, kwargs, response_obj): - from litellm.proxy._types import SpanAttributes kwargs.get("optional_params", {}) litellm_params = kwargs.get("litellm_params", {}) or {} @@ -834,7 +827,6 @@ async def async_management_endpoint_success_hook( logging_payload: ManagementEndpointLoggingPayload, parent_otel_span: Optional[Span] = None, ): - from datetime import datetime from opentelemetry import trace from opentelemetry.trace import Status, StatusCode @@ -889,7 +881,6 @@ async def async_management_endpoint_failure_hook( logging_payload: ManagementEndpointLoggingPayload, parent_otel_span: Optional[Span] = None, ): - from datetime import datetime from opentelemetry import trace from opentelemetry.trace import Status, StatusCode diff --git a/litellm/integrations/opik/utils.py b/litellm/integrations/opik/utils.py index f4671026eeaa..7b3b64dcf381 100644 --- a/litellm/integrations/opik/utils.py +++ b/litellm/integrations/opik/utils.py @@ -3,8 +3,6 @@ import time from typing import Dict, Final, List, Optional -from litellm.types.utils import ModelResponse - CONFIG_FILE_PATH_DEFAULT: Final[str] = "~/.opik.config" diff --git a/litellm/integrations/prometheus.py b/litellm/integrations/prometheus.py index c3d81f13e8d0..569d9daaf06a 100644 --- a/litellm/integrations/prometheus.py +++ b/litellm/integrations/prometheus.py @@ -1,15 +1,10 @@ # used for /metrics endpoint on LiteLLM Proxy #### What this does #### # On success, log events to Prometheus -import os -import subprocess import sys -import traceback -import uuid -from datetime import date, datetime, timedelta -from typing import Optional, TypedDict, Union +from datetime import datetime, timedelta +from typing import Optional -import litellm from litellm._logging import print_verbose, verbose_logger from litellm.integrations.custom_logger import CustomLogger from litellm.proxy._types import UserAPIKeyAuth diff --git a/litellm/integrations/prometheus_helpers/prometheus_api.py b/litellm/integrations/prometheus_helpers/prometheus_api.py index c599390198e0..b25da577237e 100644 --- a/litellm/integrations/prometheus_helpers/prometheus_api.py +++ b/litellm/integrations/prometheus_helpers/prometheus_api.py @@ -2,13 +2,10 @@ Helper functions to query prometheus API """ -import asyncio -import os import time from datetime import datetime, timedelta from typing import Optional -import litellm from litellm import get_secret from litellm._logging import verbose_logger from litellm.llms.custom_httpx.http_handler import ( diff --git a/litellm/integrations/prometheus_services.py b/litellm/integrations/prometheus_services.py index 407a8e698b8b..cea606c24535 100644 --- a/litellm/integrations/prometheus_services.py +++ b/litellm/integrations/prometheus_services.py @@ -3,15 +3,8 @@ # On success + failure, log events to Prometheus for litellm / adjacent services (litellm, redis, postgres, llm api providers) -import datetime -import os -import subprocess -import sys -import traceback -import uuid from typing import List, Optional, Union -import litellm from litellm._logging import print_verbose, verbose_logger from litellm.types.integrations.prometheus import LATENCY_BUCKETS from litellm.types.services import ServiceLoggerPayload, ServiceTypes diff --git a/litellm/integrations/s3.py b/litellm/integrations/s3.py index 1f82406e1060..bcc59c416f76 100644 --- a/litellm/integrations/s3.py +++ b/litellm/integrations/s3.py @@ -1,12 +1,6 @@ #### What this does #### # On success + failure, log events to Supabase -import datetime -import os -import subprocess -import sys -import traceback -import uuid from typing import Optional import litellm diff --git a/litellm/integrations/supabase.py b/litellm/integrations/supabase.py index 7f64e0ff1233..7eb007f813d4 100644 --- a/litellm/integrations/supabase.py +++ b/litellm/integrations/supabase.py @@ -1,14 +1,11 @@ #### What this does #### # On success + failure, log events to Supabase -import datetime import os import subprocess import sys import traceback -import dotenv - import litellm diff --git a/litellm/integrations/traceloop.py b/litellm/integrations/traceloop.py index 06ba4b7f7021..b4f3905c8e8f 100644 --- a/litellm/integrations/traceloop.py +++ b/litellm/integrations/traceloop.py @@ -1,6 +1,5 @@ import traceback -import litellm from litellm._logging import verbose_logger @@ -12,9 +11,7 @@ class TraceloopLogger: def __init__(self): try: - from opentelemetry.sdk.trace.export import ConsoleSpanExporter from traceloop.sdk import Traceloop - from traceloop.sdk.instruments import Instruments from traceloop.sdk.tracing.tracing import TracerWrapper except ModuleNotFoundError as e: verbose_logger.error( @@ -39,7 +36,6 @@ def log_event( level="DEFAULT", status_message=None, ): - from opentelemetry import trace from opentelemetry.semconv.ai import SpanAttributes from opentelemetry.trace import SpanKind, Status, StatusCode @@ -78,7 +74,7 @@ def log_event( ) if "top_p" in optional_params: span.set_attribute( - SpanAttributes.LLM_TOP_P, optional_params.get("top_p") + SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p") ) if "tools" in optional_params or "functions" in optional_params: span.set_attribute( diff --git a/litellm/integrations/weights_biases.py b/litellm/integrations/weights_biases.py index f835eb93e7ce..5fcbab04b3ec 100644 --- a/litellm/integrations/weights_biases.py +++ b/litellm/integrations/weights_biases.py @@ -173,16 +173,14 @@ def _request_response_result_to_trace( #### What this does #### # On success, logs events to Langfuse -import os import traceback -from datetime import datetime class WeightsBiasesLogger: # Class variables or attributes def __init__(self): try: - import wandb + pass except Exception: raise Exception( "\033[91m wandb not installed, try running 'pip install wandb' to fix this error\033[0m" diff --git a/litellm/litellm_core_utils/asyncify.py b/litellm/litellm_core_utils/asyncify.py index 1dbc08f50465..5181236e94cb 100644 --- a/litellm/litellm_core_utils/asyncify.py +++ b/litellm/litellm_core_utils/asyncify.py @@ -3,7 +3,6 @@ import anyio import anyio.to_thread -from anyio import to_thread from typing_extensions import ParamSpec, TypeVar T_ParamSpec = ParamSpec("T_ParamSpec") diff --git a/litellm/litellm_core_utils/core_helpers.py b/litellm/litellm_core_utils/core_helpers.py index 816dff81ee92..bf11205f6d9c 100644 --- a/litellm/litellm_core_utils/core_helpers.py +++ b/litellm/litellm_core_utils/core_helpers.py @@ -1,7 +1,6 @@ # What is this? ## Helper utilities -import os -from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, Union +from typing import TYPE_CHECKING, Any, Optional, Union import httpx diff --git a/litellm/litellm_core_utils/exception_mapping_utils.py b/litellm/litellm_core_utils/exception_mapping_utils.py index 58308216123d..32d47368ed0a 100644 --- a/litellm/litellm_core_utils/exception_mapping_utils.py +++ b/litellm/litellm_core_utils/exception_mapping_utils.py @@ -1,6 +1,4 @@ import json -import os -import threading import traceback from typing import Optional @@ -14,17 +12,14 @@ APIError, AuthenticationError, BadRequestError, - BudgetExceededError, ContentPolicyViolationError, ContextWindowExceededError, NotFoundError, - OpenAIError, PermissionDeniedError, RateLimitError, ServiceUnavailableError, Timeout, UnprocessableEntityError, - UnsupportedParamsError, ) diff --git a/litellm/litellm_core_utils/get_llm_provider_logic.py b/litellm/litellm_core_utils/get_llm_provider_logic.py index 8039dfb28953..4583dc2107f7 100644 --- a/litellm/litellm_core_utils/get_llm_provider_logic.py +++ b/litellm/litellm_core_utils/get_llm_provider_logic.py @@ -3,7 +3,6 @@ import httpx import litellm -from litellm._logging import verbose_logger from litellm.secret_managers.main import get_secret, get_secret_str from ..types.router import LiteLLM_Params diff --git a/litellm/litellm_core_utils/litellm_logging.py b/litellm/litellm_core_utils/litellm_logging.py index 3fca34aa3944..725ba5e8902d 100644 --- a/litellm/litellm_core_utils/litellm_logging.py +++ b/litellm/litellm_core_utils/litellm_logging.py @@ -24,7 +24,7 @@ turn_off_message_logging, verbose_logger, ) -from litellm.caching.caching import DualCache, InMemoryCache, S3Cache +from litellm.caching.caching import DualCache, InMemoryCache from litellm.caching.caching_handler import LLMCachingHandler from litellm.cost_calculator import _select_model_name_for_cost_calc from litellm.integrations.custom_guardrail import CustomGuardrail @@ -34,7 +34,6 @@ redact_message_input_output_from_custom_logger, redact_message_input_output_from_logging, ) -from litellm.proxy._types import CommonProxyErrors from litellm.types.llms.openai import HttpxBinaryResponseContent from litellm.types.rerank import RerankResponse from litellm.types.router import SPECIAL_MODEL_INFO_PARAMS @@ -53,16 +52,11 @@ StandardLoggingPayload, StandardLoggingPayloadErrorInformation, StandardLoggingPayloadStatus, - StandardPassThroughResponseObject, TextCompletionResponse, TranscriptionResponse, Usage, ) -from litellm.utils import ( - _get_base_model_from_metadata, - print_verbose, - prompt_token_calculator, -) +from litellm.utils import _get_base_model_from_metadata, print_verbose from ..integrations.argilla import ArgillaLogger from ..integrations.arize_ai import ArizeLogger @@ -87,14 +81,12 @@ from ..integrations.openmeter import OpenMeterLogger from ..integrations.opik.opik import OpikLogger from ..integrations.prometheus import PrometheusLogger -from ..integrations.prometheus_services import PrometheusServicesLogger from ..integrations.prompt_layer import PromptLayerLogger from ..integrations.s3 import S3Logger from ..integrations.supabase import Supabase from ..integrations.traceloop import TraceloopLogger from ..integrations.weights_biases import WeightsBiasesLogger from .exception_mapping_utils import _get_response_headers -from .llm_response_utils.get_formatted_prompt import get_formatted_prompt from .logging_utils import _assemble_complete_response_from_streaming_chunks try: diff --git a/litellm/litellm_core_utils/llm_cost_calc/google.py b/litellm/litellm_core_utils/llm_cost_calc/google.py index cad907cd60ab..95c79819b7ff 100644 --- a/litellm/litellm_core_utils/llm_cost_calc/google.py +++ b/litellm/litellm_core_utils/llm_cost_calc/google.py @@ -1,7 +1,6 @@ # What is this? ## Cost calculation for Google AI Studio / Vertex AI models -import traceback -from typing import List, Literal, Optional, Tuple, Union +from typing import Literal, Optional, Tuple, Union import litellm from litellm import verbose_logger diff --git a/litellm/litellm_core_utils/llm_cost_calc/utils.py b/litellm/litellm_core_utils/llm_cost_calc/utils.py index 631682a98469..809c94263947 100644 --- a/litellm/litellm_core_utils/llm_cost_calc/utils.py +++ b/litellm/litellm_core_utils/llm_cost_calc/utils.py @@ -1,8 +1,7 @@ # What is this? ## Helper utilities for cost_per_token() -import traceback -from typing import List, Literal, Optional, Tuple +from typing import Optional, Tuple import litellm from litellm import verbose_logger diff --git a/litellm/litellm_core_utils/mock_functions.py b/litellm/litellm_core_utils/mock_functions.py index 76425651aa19..a6e560c751c4 100644 --- a/litellm/litellm_core_utils/mock_functions.py +++ b/litellm/litellm_core_utils/mock_functions.py @@ -1,16 +1,6 @@ from typing import List, Optional -from ..types.utils import ( - Categories, - CategoryAppliedInputTypes, - CategoryScores, - Embedding, - EmbeddingResponse, - ImageObject, - ImageResponse, - Moderation, - ModerationCreateResponse, -) +from ..types.utils import Embedding, EmbeddingResponse, ImageObject, ImageResponse def mock_embedding(model: str, mock_response: Optional[List[float]]): diff --git a/litellm/litellm_core_utils/prompt_templates/common_utils.py b/litellm/litellm_core_utils/prompt_templates/common_utils.py index 370258a66778..6ce8faa5c661 100644 --- a/litellm/litellm_core_utils/prompt_templates/common_utils.py +++ b/litellm/litellm_core_utils/prompt_templates/common_utils.py @@ -2,15 +2,11 @@ Common utility functions used for translating messages across providers """ -import json -from copy import deepcopy from typing import Dict, List, Literal, Optional, Union, cast -import litellm from litellm.types.llms.openai import ( AllMessageValues, ChatCompletionAssistantMessage, - ChatCompletionResponseMessage, ChatCompletionUserMessage, ) from litellm.types.utils import Choices, ModelResponse, StreamingChoices diff --git a/litellm/litellm_core_utils/prompt_templates/factory.py b/litellm/litellm_core_utils/prompt_templates/factory.py index 71de4398a05b..d05e649544a0 100644 --- a/litellm/litellm_core_utils/prompt_templates/factory.py +++ b/litellm/litellm_core_utils/prompt_templates/factory.py @@ -5,19 +5,8 @@ import uuid import xml.etree.ElementTree as ET from enum import Enum -from typing import ( - Any, - List, - Mapping, - MutableMapping, - Optional, - Sequence, - Tuple, - cast, - overload, -) +from typing import Any, List, Optional, Tuple, cast, overload -from jinja2 import BaseLoader, Template, exceptions, meta from jinja2.sandbox import ImmutableSandboxedEnvironment import litellm @@ -25,14 +14,6 @@ import litellm.types.llms from litellm import verbose_logger from litellm.llms.custom_httpx.http_handler import HTTPHandler -from litellm.types.completion import ( - ChatCompletionFunctionMessageParam, - ChatCompletionMessageParam, - ChatCompletionMessageToolCallParam, - ChatCompletionSystemMessageParam, - ChatCompletionToolMessageParam, - ChatCompletionUserMessageParam, -) from litellm.types.llms.anthropic import * from litellm.types.llms.bedrock import MessageBlock as BedrockMessageBlock from litellm.types.llms.ollama import OllamaVisionModelObject @@ -42,7 +23,6 @@ ChatCompletionAssistantToolCall, ChatCompletionFunctionMessage, ChatCompletionImageObject, - ChatCompletionImageUrlObject, ChatCompletionTextObject, ChatCompletionToolCallFunctionChunk, ChatCompletionToolMessage, @@ -55,7 +35,7 @@ from litellm.types.utils import GenericImageParsingChunk from .common_utils import convert_content_list_to_str, is_non_content_values_set -from .image_handling import async_convert_url_to_base64, convert_url_to_base64 +from .image_handling import convert_url_to_base64 def default_pt(messages): @@ -2109,7 +2089,7 @@ def gemini_text_image_pt(messages: list): } """ try: - import google.generativeai as genai # type: ignore + pass # type: ignore except Exception: raise Exception( "Importing google.generativeai failed, please run 'pip install -q google-generativeai" @@ -2175,10 +2155,6 @@ def stringify_json_tool_call_content(messages: List) -> List: from litellm.types.llms.bedrock import ImageBlock as BedrockImageBlock from litellm.types.llms.bedrock import SourceBlock as BedrockSourceBlock from litellm.types.llms.bedrock import ToolBlock as BedrockToolBlock -from litellm.types.llms.bedrock import ( - ToolChoiceValuesBlock as BedrockToolChoiceValuesBlock, -) -from litellm.types.llms.bedrock import ToolConfigBlock as BedrockToolConfigBlock from litellm.types.llms.bedrock import ( ToolInputSchemaBlock as BedrockToolInputSchemaBlock, ) @@ -2225,7 +2201,6 @@ def _process_bedrock_converse_image_block( ) -> BedrockContentBlock: if "base64" in image_url: # Case 1: Images with base64 encoding - import base64 import re # base 64 is passed as data:image/jpeg;base64, diff --git a/litellm/litellm_core_utils/prompt_templates/image_handling.py b/litellm/litellm_core_utils/prompt_templates/image_handling.py index d9d7c5383c7a..a9ff14d6c827 100644 --- a/litellm/litellm_core_utils/prompt_templates/image_handling.py +++ b/litellm/litellm_core_utils/prompt_templates/image_handling.py @@ -9,10 +9,6 @@ import litellm from litellm import verbose_logger from litellm.caching.caching import InMemoryCache -from litellm.llms.custom_httpx.http_handler import ( - _get_httpx_client, - get_async_httpx_client, -) MAX_IMGS_IN_MEMORY = 10 diff --git a/litellm/litellm_core_utils/realtime_streaming.py b/litellm/litellm_core_utils/realtime_streaming.py index 440deac1ccbc..aebd0496922c 100644 --- a/litellm/litellm_core_utils/realtime_streaming.py +++ b/litellm/litellm_core_utils/realtime_streaming.py @@ -27,8 +27,6 @@ import asyncio import concurrent.futures import json -import traceback -from asyncio import Task from typing import Any, Dict, List, Optional, Union import litellm diff --git a/litellm/litellm_core_utils/streaming_chunk_builder_utils.py b/litellm/litellm_core_utils/streaming_chunk_builder_utils.py index 2c6ad53fbc80..7d28c156691e 100644 --- a/litellm/litellm_core_utils/streaming_chunk_builder_utils.py +++ b/litellm/litellm_core_utils/streaming_chunk_builder_utils.py @@ -2,12 +2,9 @@ import time from typing import Any, Dict, List, Optional, Union -from litellm.exceptions import APIError from litellm.types.llms.openai import ( ChatCompletionAssistantContentValue, ChatCompletionAudioDelta, - ChatCompletionToolCallChunk, - ChatCompletionToolCallFunctionChunk, ) from litellm.types.utils import ( ChatCompletionAudioResponse, diff --git a/litellm/litellm_core_utils/streaming_handler.py b/litellm/litellm_core_utils/streaming_handler.py index b4fe4cbee5cf..30a34e76a874 100644 --- a/litellm/litellm_core_utils/streaming_handler.py +++ b/litellm/litellm_core_utils/streaming_handler.py @@ -12,10 +12,7 @@ import litellm from litellm import verbose_logger -from litellm.litellm_core_utils.redact_messages import ( - LiteLLMLoggingObject, - redact_message_input_output_from_logging, -) +from litellm.litellm_core_utils.redact_messages import LiteLLMLoggingObject from litellm.types.utils import Delta from litellm.types.utils import GenericStreamingChunk as GChunk from litellm.types.utils import ( @@ -27,7 +24,6 @@ from ..exceptions import OpenAIError from .core_helpers import map_finish_reason, process_response_headers -from .default_encoding import encoding from .exception_mapping_utils import exception_type from .llm_response_utils.get_api_base import get_api_base from .rules import Rules diff --git a/litellm/llms/ai21/chat/transformation.py b/litellm/llms/ai21/chat/transformation.py index 06f87a6fe448..1a07b50de5b4 100644 --- a/litellm/llms/ai21/chat/transformation.py +++ b/litellm/llms/ai21/chat/transformation.py @@ -4,7 +4,6 @@ this is OpenAI compatible - no translation needed / occurs """ -import types from typing import Optional, Union from ...openai_like.chat.transformation import OpenAILikeChatConfig diff --git a/litellm/llms/anthropic/chat/handler.py b/litellm/llms/anthropic/chat/handler.py index f7df3b01c6a8..36fc45095f8f 100644 --- a/litellm/llms/anthropic/chat/handler.py +++ b/litellm/llms/anthropic/chat/handler.py @@ -4,31 +4,22 @@ import copy import json -import os -import time -import traceback -import types -from enum import Enum -from functools import partial -from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union +from typing import Any, Callable, List, Optional, Tuple, Union import httpx # type: ignore -from openai.types.chat.chat_completion_chunk import Choice as OpenAIStreamingChoice import litellm import litellm.litellm_core_utils import litellm.types import litellm.types.utils -from litellm import LlmProviders, verbose_logger +from litellm import LlmProviders from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, - _get_httpx_client, get_async_httpx_client, ) from litellm.types.llms.anthropic import ( - AllAnthropicToolsValues, AnthropicChatCompletionUsageBlock, ContentBlockDelta, ContentBlockStart, @@ -38,9 +29,7 @@ UsageDelta, ) from litellm.types.llms.openai import ( - AllMessageValues, ChatCompletionToolCallChunk, - ChatCompletionToolCallFunctionChunk, ChatCompletionUsageBlock, ) from litellm.types.utils import GenericStreamingChunk diff --git a/litellm/llms/anthropic/chat/transformation.py b/litellm/llms/anthropic/chat/transformation.py index b3328e048e81..fa8a6cee1d72 100644 --- a/litellm/llms/anthropic/chat/transformation.py +++ b/litellm/llms/anthropic/chat/transformation.py @@ -1,19 +1,6 @@ import json import time -import types -from re import A -from typing import ( - TYPE_CHECKING, - Any, - Callable, - Dict, - List, - Literal, - Optional, - Tuple, - Union, - cast, -) +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union, cast import httpx @@ -27,8 +14,6 @@ AnthropicComputerTool, AnthropicHostedTools, AnthropicInputSchema, - AnthropicMessageRequestBase, - AnthropicMessagesRequest, AnthropicMessagesTool, AnthropicMessagesToolChoice, AnthropicSystemMessageContent, @@ -40,18 +25,10 @@ ChatCompletionToolCallChunk, ChatCompletionToolCallFunctionChunk, ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, - ChatCompletionUsageBlock, ) from litellm.types.utils import Message as LitellmMessage from litellm.types.utils import PromptTokensDetailsWrapper -from litellm.utils import ( - CustomStreamWrapper, - ModelResponse, - Usage, - add_dummy_tool, - has_tool_call_blocks, -) +from litellm.utils import ModelResponse, Usage, add_dummy_tool, has_tool_call_blocks from ..common_utils import AnthropicError, process_anthropic_headers @@ -132,7 +109,6 @@ def get_anthropic_headers( pdf_used: bool = False, is_vertex_request: bool = False, ) -> dict: - import json betas = [] if prompt_caching_set: diff --git a/litellm/llms/anthropic/completion/transformation.py b/litellm/llms/anthropic/completion/transformation.py index 57cdd95524a9..a94bac038381 100644 --- a/litellm/llms/anthropic/completion/transformation.py +++ b/litellm/llms/anthropic/completion/transformation.py @@ -6,7 +6,7 @@ import json import time -from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union +from typing import AsyncIterator, Dict, Iterator, List, Optional, Union import httpx diff --git a/litellm/llms/anthropic/experimental_pass_through/transformation.py b/litellm/llms/anthropic/experimental_pass_through/transformation.py index 7880827cce18..b24cf47ad473 100644 --- a/litellm/llms/anthropic/experimental_pass_through/transformation.py +++ b/litellm/llms/anthropic/experimental_pass_through/transformation.py @@ -1,40 +1,24 @@ import json -import types -from typing import Any, Dict, List, Literal, Optional, Tuple, Union +from typing import List, Literal, Optional, Tuple, Union from openai.types.chat.chat_completion_chunk import Choice as OpenAIStreamingChoice -import litellm -from litellm.litellm_core_utils.prompt_templates.factory import ( - anthropic_messages_pt, - custom_prompt, - prompt_factory, -) -from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper from litellm.types.llms.anthropic import ( AllAnthropicToolsValues, AnthopicMessagesAssistantMessageParam, - AnthropicChatCompletionUsageBlock, - AnthropicComputerTool, AnthropicFinishReason, - AnthropicHostedTools, AnthropicMessagesRequest, - AnthropicMessagesTool, AnthropicMessagesToolChoice, AnthropicMessagesUserMessageParam, AnthropicResponse, AnthropicResponseContentBlockText, AnthropicResponseContentBlockToolUse, AnthropicResponseUsageBlock, - AnthropicSystemMessageContent, ContentBlockDelta, - ContentBlockStart, - ContentBlockStop, ContentJsonBlockDelta, ContentTextBlockDelta, MessageBlockDelta, MessageDelta, - MessageStartBlock, UsageDelta, ) from litellm.types.llms.openai import ( @@ -44,10 +28,8 @@ ChatCompletionImageObject, ChatCompletionImageUrlObject, ChatCompletionRequest, - ChatCompletionResponseMessage, ChatCompletionSystemMessage, ChatCompletionTextObject, - ChatCompletionToolCallChunk, ChatCompletionToolCallFunctionChunk, ChatCompletionToolChoiceFunctionParam, ChatCompletionToolChoiceObjectParam, @@ -55,13 +37,9 @@ ChatCompletionToolMessage, ChatCompletionToolParam, ChatCompletionToolParamFunctionChunk, - ChatCompletionUsageBlock, ChatCompletionUserMessage, - OpenAIMessageContent, ) -from litellm.types.utils import Choices, GenericStreamingChunk, ModelResponse, Usage - -from ...base import BaseLLM +from litellm.types.utils import Choices, ModelResponse, Usage class AnthropicExperimentalPassThroughConfig: diff --git a/litellm/llms/azure/assistants.py b/litellm/llms/azure/assistants.py index 55f1e8a196c9..2f67b5506f04 100644 --- a/litellm/llms/azure/assistants.py +++ b/litellm/llms/azure/assistants.py @@ -1,13 +1,9 @@ -import uuid -from typing import Any, Callable, Coroutine, Iterable, List, Literal, Optional, Union +from typing import Coroutine, Iterable, Literal, Optional, Union import httpx from openai import AsyncAzureOpenAI, AzureOpenAI from typing_extensions import overload -import litellm -from litellm.types.utils import FileTypes # type: ignore - from ...types.llms.openai import ( Assistant, AssistantEventHandler, diff --git a/litellm/llms/azure/audio_transcriptions.py b/litellm/llms/azure/audio_transcriptions.py index efe183b9b2aa..94793295cacd 100644 --- a/litellm/llms/azure/audio_transcriptions.py +++ b/litellm/llms/azure/audio_transcriptions.py @@ -1,13 +1,11 @@ import uuid -from typing import Any, Optional, Union +from typing import Any, Optional -import httpx from openai import AsyncAzureOpenAI, AzureOpenAI from pydantic import BaseModel import litellm from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name -from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.types.utils import FileTypes from litellm.utils import TranscriptionResponse, convert_to_model_response_object diff --git a/litellm/llms/azure/azure.py b/litellm/llms/azure/azure.py index ffef8007e67a..c2be42648c4d 100644 --- a/litellm/llms/azure/azure.py +++ b/litellm/llms/azure/azure.py @@ -2,12 +2,10 @@ import json import os import time -import types -from typing import Any, Callable, Coroutine, Iterable, List, Literal, Optional, Union +from typing import Any, Callable, Coroutine, List, Literal, Optional, Union import httpx # type: ignore from openai import AsyncAzureOpenAI, AzureOpenAI -from typing_extensions import overload import litellm from litellm.caching.caching import DualCache @@ -25,7 +23,6 @@ ) from litellm.utils import ( CustomStreamWrapper, - UnsupportedParamsError, convert_to_model_response_object, get_secret, modify_url, diff --git a/litellm/llms/azure/chat/gpt_transformation.py b/litellm/llms/azure/chat/gpt_transformation.py index d770803eb69e..23353ab0c819 100644 --- a/litellm/llms/azure/chat/gpt_transformation.py +++ b/litellm/llms/azure/chat/gpt_transformation.py @@ -1,5 +1,4 @@ -import types -from typing import TYPE_CHECKING, Any, List, Optional, Type, Union +from typing import TYPE_CHECKING, Any, List, Optional, Union from httpx._models import Headers, Response diff --git a/litellm/llms/azure/chat/o1_transformation.py b/litellm/llms/azure/chat/o1_transformation.py index 2ba8841d0add..5a15a884e99e 100644 --- a/litellm/llms/azure/chat/o1_transformation.py +++ b/litellm/llms/azure/chat/o1_transformation.py @@ -12,12 +12,6 @@ - Temperature => drop param (if user opts in to dropping param) """ -import types -from typing import Any, List, Optional, Union - -import litellm -from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage - from ...openai.chat.o1_transformation import OpenAIO1Config diff --git a/litellm/llms/azure/common_utils.py b/litellm/llms/azure/common_utils.py index dfcb3d82b97c..f374c18cf8f3 100644 --- a/litellm/llms/azure/common_utils.py +++ b/litellm/llms/azure/common_utils.py @@ -66,11 +66,7 @@ def get_azure_ad_token_from_entrata_id( Returns: callable that returns a bearer token. """ - from azure.identity import ( - ClientSecretCredential, - DefaultAzureCredential, - get_bearer_token_provider, - ) + from azure.identity import ClientSecretCredential, get_bearer_token_provider verbose_logger.debug("Getting Azure AD Token from Entrata ID") diff --git a/litellm/llms/azure/completion/handler.py b/litellm/llms/azure/completion/handler.py index 16211926a430..42309bdd2359 100644 --- a/litellm/llms/azure/completion/handler.py +++ b/litellm/llms/azure/completion/handler.py @@ -1,29 +1,12 @@ -import json -import types # type: ignore -import uuid -from typing import Any, Callable, Optional, Union +from typing import Any, Callable, Optional -import httpx from openai import AsyncAzureOpenAI, AzureOpenAI import litellm -from litellm import OpenAIConfig -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) -from litellm.utils import ( - Choices, - CustomStreamWrapper, - Message, - ModelResponse, - TextCompletionResponse, - TranscriptionResponse, - convert_to_model_response_object, -) +from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory +from litellm.utils import CustomStreamWrapper, ModelResponse, TextCompletionResponse from ...base import BaseLLM -from ...openai.completion.handler import OpenAITextCompletion from ...openai.completion.transformation import OpenAITextCompletionConfig from ..common_utils import AzureOpenAIError diff --git a/litellm/llms/azure/files/handler.py b/litellm/llms/azure/files/handler.py index 22e41d301027..b299145ad4a4 100644 --- a/litellm/llms/azure/files/handler.py +++ b/litellm/llms/azure/files/handler.py @@ -1,4 +1,4 @@ -from typing import Any, Coroutine, Dict, List, Optional, Union +from typing import Any, Coroutine, Optional, Union import httpx from openai import AsyncAzureOpenAI, AzureOpenAI diff --git a/litellm/llms/azure/fine_tuning/handler.py b/litellm/llms/azure/fine_tuning/handler.py index f336efa33117..c55c53f90794 100644 --- a/litellm/llms/azure/fine_tuning/handler.py +++ b/litellm/llms/azure/fine_tuning/handler.py @@ -2,13 +2,11 @@ import httpx from openai import AsyncAzureOpenAI, AzureOpenAI -from openai.pagination import AsyncCursorPage from openai.types.fine_tuning import FineTuningJob from litellm._logging import verbose_logger -from litellm.llms.base import BaseLLM from litellm.llms.azure.files.handler import get_azure_openai_client -from litellm.types.llms.openai import FineTuningJobCreate +from litellm.llms.base import BaseLLM class AzureOpenAIFineTuningAPI(BaseLLM): diff --git a/litellm/llms/azure/realtime/handler.py b/litellm/llms/azure/realtime/handler.py index a6c0f1967b4d..5a4865e7d731 100644 --- a/litellm/llms/azure/realtime/handler.py +++ b/litellm/llms/azure/realtime/handler.py @@ -4,7 +4,6 @@ This requires websockets, and is currently only supported on LiteLLM Proxy. """ -import asyncio from typing import Any, Optional from ....litellm_core_utils.litellm_logging import Logging as LiteLLMLogging diff --git a/litellm/llms/azure_ai/cost_calculator.py b/litellm/llms/azure_ai/cost_calculator.py index 00e754214c26..96d7018458ce 100644 --- a/litellm/llms/azure_ai/cost_calculator.py +++ b/litellm/llms/azure_ai/cost_calculator.py @@ -6,7 +6,6 @@ from typing import Tuple -from litellm.types.utils import Usage from litellm.utils import get_model_info diff --git a/litellm/llms/azure_ai/embed/cohere_transformation.py b/litellm/llms/azure_ai/embed/cohere_transformation.py index 1c7e1cc1800b..38b0dbbe2340 100644 --- a/litellm/llms/azure_ai/embed/cohere_transformation.py +++ b/litellm/llms/azure_ai/embed/cohere_transformation.py @@ -9,11 +9,11 @@ Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html """ -from typing import List, Optional, Tuple, Union +from typing import List, Optional, Tuple from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest from litellm.types.llms.openai import EmbeddingCreateParams -from litellm.types.utils import Embedding, EmbeddingResponse, Usage +from litellm.types.utils import EmbeddingResponse, Usage from litellm.utils import is_base64_encoded diff --git a/litellm/llms/azure_ai/embed/handler.py b/litellm/llms/azure_ai/embed/handler.py index f5c3a1a6b5ae..f33c979ca299 100644 --- a/litellm/llms/azure_ai/embed/handler.py +++ b/litellm/llms/azure_ai/embed/handler.py @@ -1,25 +1,17 @@ -import asyncio -import copy -import json -import os -from copy import deepcopy -from typing import Any, Callable, List, Literal, Optional, Tuple, Union - -import httpx +from typing import List, Optional, Union + from openai import OpenAI import litellm -from litellm.llms.cohere.embed.handler import embedding as cohere_embedding from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, - _get_httpx_client, get_async_httpx_client, ) from litellm.llms.openai.openai import OpenAIChatCompletion from litellm.types.llms.azure_ai import ImageEmbeddingRequest -from litellm.types.utils import Embedding, EmbeddingResponse -from litellm.utils import convert_to_model_response_object, is_base64_encoded +from litellm.types.utils import EmbeddingResponse +from litellm.utils import convert_to_model_response_object from .cohere_transformation import AzureAICohereConfig diff --git a/litellm/llms/base_llm/base_model_iterator.py b/litellm/llms/base_llm/base_model_iterator.py index 7dcd75d0b1d3..961941e7e049 100644 --- a/litellm/llms/base_llm/base_model_iterator.py +++ b/litellm/llms/base_llm/base_model_iterator.py @@ -1,15 +1,8 @@ import json -from abc import ABC, abstractmethod -from typing import List, Optional, Tuple - -import litellm -from litellm.litellm_core_utils.core_helpers import map_finish_reason -from litellm.types.utils import ( - ChatCompletionToolCallChunk, - ChatCompletionUsageBlock, - GenericStreamingChunk, - ModelResponse, -) +from abc import abstractmethod +from typing import Optional + +from litellm.types.utils import GenericStreamingChunk class BaseModelResponseIterator: diff --git a/litellm/llms/base_llm/chat/transformation.py b/litellm/llms/base_llm/chat/transformation.py index 6c5fcc01f1f4..afb2b1db225e 100644 --- a/litellm/llms/base_llm/chat/transformation.py +++ b/litellm/llms/base_llm/chat/transformation.py @@ -4,18 +4,7 @@ import types from abc import ABC, abstractmethod -from typing import ( - TYPE_CHECKING, - Any, - AsyncIterator, - Callable, - Dict, - Iterator, - List, - Optional, - TypedDict, - Union, -) +from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union import httpx diff --git a/litellm/llms/base_llm/embedding/transformation.py b/litellm/llms/base_llm/embedding/transformation.py index 7b2873b6d716..be2e72bc34bb 100644 --- a/litellm/llms/base_llm/embedding/transformation.py +++ b/litellm/llms/base_llm/embedding/transformation.py @@ -1,17 +1,5 @@ -import types from abc import ABC, abstractmethod -from typing import ( - TYPE_CHECKING, - Any, - AsyncIterator, - Callable, - Dict, - Iterator, - List, - Optional, - TypedDict, - Union, -) +from typing import TYPE_CHECKING, Any, List, Optional, Union import httpx diff --git a/litellm/llms/baseten.py b/litellm/llms/baseten.py index d0d42b6d1b00..7bcf2fbafbae 100644 --- a/litellm/llms/baseten.py +++ b/litellm/llms/baseten.py @@ -1,7 +1,5 @@ import json -import os import time -from enum import Enum from typing import Callable import litellm diff --git a/litellm/llms/bedrock/base_aws_llm.py b/litellm/llms/bedrock/base_aws_llm.py index 2f225b7b146d..1984b9d913b6 100644 --- a/litellm/llms/bedrock/base_aws_llm.py +++ b/litellm/llms/bedrock/base_aws_llm.py @@ -7,7 +7,7 @@ from pydantic import BaseModel from litellm._logging import verbose_logger -from litellm.caching.caching import DualCache, InMemoryCache +from litellm.caching.caching import DualCache from litellm.secret_managers.main import get_secret, get_secret_str if TYPE_CHECKING: @@ -335,9 +335,6 @@ def _get_boto_credentials_from_optional_params( Credentials: Boto3 credentials object """ try: - import boto3 - from botocore.auth import SigV4Auth - from botocore.awsrequest import AWSRequest from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") diff --git a/litellm/llms/bedrock/chat/converse_handler.py b/litellm/llms/bedrock/chat/converse_handler.py index 4b1f1b4f70a2..0e3b21c373a3 100644 --- a/litellm/llms/bedrock/chat/converse_handler.py +++ b/litellm/llms/bedrock/chat/converse_handler.py @@ -203,7 +203,6 @@ def completion( # noqa: PLR0915 client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest from botocore.credentials import Credentials diff --git a/litellm/llms/bedrock/chat/converse_transformation.py b/litellm/llms/bedrock/chat/converse_transformation.py index 9536f385470e..e50159a8fc08 100644 --- a/litellm/llms/bedrock/chat/converse_transformation.py +++ b/litellm/llms/bedrock/chat/converse_transformation.py @@ -5,7 +5,7 @@ import copy import time import types -from typing import List, Literal, Optional, Tuple, Union, cast, overload +from typing import List, Literal, Optional, Tuple, Union, overload import httpx @@ -378,11 +378,14 @@ def _transform_request( for key in additional_request_keys: inference_params.pop(key, None) - if 'topK' in inference_params: - additional_request_params["inferenceConfig"] = {'topK': inference_params.pop("topK")} - elif 'top_k' in inference_params: - additional_request_params["inferenceConfig"] = {'topK': inference_params.pop("top_k")} - + if "topK" in inference_params: + additional_request_params["inferenceConfig"] = { + "topK": inference_params.pop("topK") + } + elif "top_k" in inference_params: + additional_request_params["inferenceConfig"] = { + "topK": inference_params.pop("top_k") + } bedrock_tools: List[ToolBlock] = _bedrock_tools_pt( inference_params.pop("tools", []) diff --git a/litellm/llms/bedrock/chat/invoke_handler.py b/litellm/llms/bedrock/chat/invoke_handler.py index 6348a2bfe97c..046f0dc60f26 100644 --- a/litellm/llms/bedrock/chat/invoke_handler.py +++ b/litellm/llms/bedrock/chat/invoke_handler.py @@ -4,25 +4,12 @@ import copy import json -import os import time import types import urllib.parse import uuid -from enum import Enum from functools import partial -from typing import ( - Any, - AsyncIterator, - Callable, - Iterator, - List, - Literal, - Optional, - Tuple, - TypedDict, - Union, -) +from typing import Any, AsyncIterator, Callable, Iterator, List, Optional, Tuple, Union import httpx # type: ignore @@ -32,8 +19,6 @@ from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.litellm_core_utils.litellm_logging import Logging from litellm.litellm_core_utils.prompt_templates.factory import ( - _bedrock_converse_messages_pt, - _bedrock_tools_pt, cohere_message_pt, construct_tool_use_system_prompt, contains_tag, @@ -50,13 +35,7 @@ ) from litellm.types.llms.bedrock import * from litellm.types.llms.openai import ( - ChatCompletionResponseMessage, ChatCompletionToolCallChunk, - ChatCompletionToolCallFunctionChunk, - ChatCompletionToolChoiceFunctionParam, - ChatCompletionToolChoiceObjectParam, - ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, ChatCompletionUsageBlock, ) from litellm.types.utils import GenericStreamingChunk as GChunk @@ -65,7 +44,6 @@ from ..base_aws_llm import BaseAWSLLM from ..common_utils import BedrockError, ModelResponseIterator, get_bedrock_tool_name -from .converse_transformation import AmazonConverseConfig _response_stream_shape_cache = None bedrock_tool_name_mappings: InMemoryCache = InMemoryCache( @@ -597,7 +575,6 @@ def completion( # noqa: PLR0915 client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None, ) -> Union[ModelResponse, CustomStreamWrapper]: try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest from botocore.credentials import Credentials diff --git a/litellm/llms/bedrock/common_utils.py b/litellm/llms/bedrock/common_utils.py index 332b1e2b377a..7f74cc6ebf2b 100644 --- a/litellm/llms/bedrock/common_utils.py +++ b/litellm/llms/bedrock/common_utils.py @@ -5,7 +5,7 @@ import os import types from enum import Enum -from typing import List, Optional, Tuple, Union +from typing import List, Optional, Union import httpx diff --git a/litellm/llms/bedrock/embed/amazon_titan_g1_transformation.py b/litellm/llms/bedrock/embed/amazon_titan_g1_transformation.py index 591f87209b75..63219868f4f3 100644 --- a/litellm/llms/bedrock/embed/amazon_titan_g1_transformation.py +++ b/litellm/llms/bedrock/embed/amazon_titan_g1_transformation.py @@ -10,7 +10,7 @@ """ import types -from typing import List, Optional +from typing import List from litellm.types.llms.bedrock import ( AmazonTitanG1EmbeddingRequest, diff --git a/litellm/llms/bedrock/embed/cohere_transformation.py b/litellm/llms/bedrock/embed/cohere_transformation.py index 1020aa92306d..490cd71b7930 100644 --- a/litellm/llms/bedrock/embed/cohere_transformation.py +++ b/litellm/llms/bedrock/embed/cohere_transformation.py @@ -6,10 +6,8 @@ from typing import List -import litellm from litellm.llms.cohere.embed.transformation import CohereEmbeddingConfig -from litellm.types.llms.bedrock import CohereEmbeddingRequest, CohereEmbeddingResponse -from litellm.types.utils import Embedding, EmbeddingResponse +from litellm.types.llms.bedrock import CohereEmbeddingRequest class BedrockCohereEmbeddingConfig: diff --git a/litellm/llms/bedrock/embed/embedding.py b/litellm/llms/bedrock/embed/embedding.py index 9cb97f72f84d..55e8201f0ab2 100644 --- a/litellm/llms/bedrock/embed/embedding.py +++ b/litellm/llms/bedrock/embed/embedding.py @@ -4,9 +4,7 @@ import copy import json -import os -from copy import deepcopy -from typing import Any, Callable, List, Literal, Optional, Tuple, Union +from typing import Any, Callable, List, Optional, Tuple, Union import httpx @@ -20,7 +18,7 @@ ) from litellm.secret_managers.main import get_secret from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest -from litellm.types.utils import Embedding, EmbeddingResponse, Usage +from litellm.types.utils import EmbeddingResponse from ..base_aws_llm import BaseAWSLLM from ..common_utils import BedrockError @@ -160,10 +158,8 @@ def _single_func_embeddings( logging_obj: Any, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") @@ -251,10 +247,8 @@ async def _async_single_func_embeddings( logging_obj: Any, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") @@ -346,10 +340,8 @@ def embeddings( litellm_params: dict, ) -> EmbeddingResponse: try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") diff --git a/litellm/llms/bedrock/image/image_handler.py b/litellm/llms/bedrock/image/image_handler.py index a32161c22279..5b14833f4269 100644 --- a/litellm/llms/bedrock/image/image_handler.py +++ b/litellm/llms/bedrock/image/image_handler.py @@ -1,10 +1,9 @@ import copy import json import os -from typing import TYPE_CHECKING, Any, List, Optional, Union +from typing import TYPE_CHECKING, Any, Optional, Union import httpx -from openai.types.image import Image from pydantic import BaseModel import litellm @@ -159,10 +158,8 @@ def _prepare_request( body (bytes): The request body """ try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") boto3_credentials_info = self._get_boto_credentials_from_optional_params( diff --git a/litellm/llms/bedrock/rerank/handler.py b/litellm/llms/bedrock/rerank/handler.py index e11ed8d84a01..3683be06b6c2 100644 --- a/litellm/llms/bedrock/rerank/handler.py +++ b/litellm/llms/bedrock/rerank/handler.py @@ -1,20 +1,15 @@ -import copy import json -import os from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union, cast import httpx -from openai.types.image import Image -from pydantic import BaseModel import litellm -from litellm._logging import verbose_logger from litellm.litellm_core_utils.litellm_logging import Logging as LitellmLogging from litellm.llms.custom_httpx.http_handler import ( _get_httpx_client, get_async_httpx_client, ) -from litellm.types.llms.bedrock import BedrockPreparedRequest, BedrockRerankRequest +from litellm.types.llms.bedrock import BedrockPreparedRequest from litellm.types.rerank import RerankRequest from litellm.types.utils import RerankResponse @@ -110,10 +105,8 @@ def _prepare_request( optional_params: dict, ) -> BedrockPreparedRequest: try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") boto3_credentials_info = self._get_boto_credentials_from_optional_params( diff --git a/litellm/llms/cerebras/chat.py b/litellm/llms/cerebras/chat.py index 09e8ffb834cb..4e9c6811a77e 100644 --- a/litellm/llms/cerebras/chat.py +++ b/litellm/llms/cerebras/chat.py @@ -4,8 +4,7 @@ this is OpenAI compatible - no translation needed / occurs """ -import types -from typing import Optional, Union +from typing import Optional from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/clarifai/chat/transformation.py b/litellm/llms/clarifai/chat/transformation.py index c832ff89244f..f7ab00ac312c 100644 --- a/litellm/llms/clarifai/chat/transformation.py +++ b/litellm/llms/clarifai/chat/transformation.py @@ -1,10 +1,8 @@ import json -import types from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union import httpx -import litellm from litellm.litellm_core_utils.prompt_templates.common_utils import ( convert_content_list_to_str, ) diff --git a/litellm/llms/clarifai/common_utils.py b/litellm/llms/clarifai/common_utils.py index 9190e8554a44..611d2ccf30bc 100644 --- a/litellm/llms/clarifai/common_utils.py +++ b/litellm/llms/clarifai/common_utils.py @@ -1,5 +1,3 @@ -import httpx - from litellm.llms.base_llm.chat.transformation import BaseLLMException diff --git a/litellm/llms/codestral/completion/handler.py b/litellm/llms/codestral/completion/handler.py index 0a9e86654e07..fc6d2886a99d 100644 --- a/litellm/llms/codestral/completion/handler.py +++ b/litellm/llms/codestral/completion/handler.py @@ -1,21 +1,13 @@ # What is this? ## handler file for TextCompletionCodestral Integration - https://codestral.com/ -import copy import json -import os -import time -import traceback -import types -from enum import Enum from functools import partial -from typing import Callable, List, Literal, Optional, Union +from typing import Callable, List, Optional, Union import httpx # type: ignore import litellm -from litellm import verbose_logger -from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging from litellm.litellm_core_utils.prompt_templates.factory import ( custom_prompt, @@ -25,16 +17,8 @@ AsyncHTTPHandler, get_async_httpx_client, ) -from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig -from litellm.types.llms.databricks import GenericStreamingChunk from litellm.types.utils import TextChoices -from litellm.utils import ( - Choices, - CustomStreamWrapper, - Message, - TextCompletionResponse, - Usage, -) +from litellm.utils import CustomStreamWrapper, TextCompletionResponse class TextCompletionCodestralError(Exception): diff --git a/litellm/llms/cohere/completion/transformation.py b/litellm/llms/cohere/completion/transformation.py index 23ba87f11544..95faa169a50b 100644 --- a/litellm/llms/cohere/completion/transformation.py +++ b/litellm/llms/cohere/completion/transformation.py @@ -1,6 +1,4 @@ -import json import time -import types from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union import httpx @@ -11,15 +9,7 @@ ) from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.types.llms.openai import AllMessageValues -from litellm.types.utils import ( - ChatCompletionToolCallChunk, - ChatCompletionUsageBlock, - Choices, - GenericStreamingChunk, - Message, - ModelResponse, - Usage, -) +from litellm.types.utils import Choices, Message, ModelResponse, Usage from ..common_utils import CohereError from ..common_utils import ModelResponseIterator as CohereModelResponseIterator diff --git a/litellm/llms/cohere/embed/handler.py b/litellm/llms/cohere/embed/handler.py index 2a9d7512e3ce..e7f22ea72ada 100644 --- a/litellm/llms/cohere/embed/handler.py +++ b/litellm/llms/cohere/embed/handler.py @@ -1,9 +1,4 @@ import json -import os -import time -import traceback -import types -from enum import Enum from typing import Any, Callable, Optional, Union import httpx @@ -17,7 +12,6 @@ ) from litellm.types.llms.bedrock import CohereEmbeddingRequest from litellm.types.utils import EmbeddingResponse -from litellm.utils import Choices, Message, ModelResponse, Usage from .transformation import CohereEmbeddingConfig diff --git a/litellm/llms/cohere/embed/transformation.py b/litellm/llms/cohere/embed/transformation.py index e6bb0f392a5c..22e157a0fd9e 100644 --- a/litellm/llms/cohere/embed/transformation.py +++ b/litellm/llms/cohere/embed/transformation.py @@ -10,7 +10,6 @@ Docs - https://docs.cohere.com/v2/reference/embed """ -import types from typing import Any, List, Optional, Union import httpx @@ -18,16 +17,10 @@ from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.types.llms.bedrock import ( - COHERE_EMBEDDING_INPUT_TYPES, CohereEmbeddingRequest, CohereEmbeddingRequestWithModel, ) -from litellm.types.utils import ( - Embedding, - EmbeddingResponse, - PromptTokensDetailsWrapper, - Usage, -) +from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage from litellm.utils import is_base64_encoded diff --git a/litellm/llms/custom_httpx/http_handler.py b/litellm/llms/custom_httpx/http_handler.py index 6d37828498fb..82a6f9614a11 100644 --- a/litellm/llms/custom_httpx/http_handler.py +++ b/litellm/llms/custom_httpx/http_handler.py @@ -1,13 +1,11 @@ import asyncio import os -import traceback from typing import TYPE_CHECKING, Any, Callable, List, Mapping, Optional, Union import httpx from httpx import USE_CLIENT_DEFAULT, AsyncHTTPTransport, HTTPTransport import litellm -from litellm.caching import InMemoryCache from litellm.types.llms.custom_http import * if TYPE_CHECKING: @@ -28,8 +26,6 @@ _DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0) _DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour -import re - def mask_sensitive_info(error_message): # Find the start of the key parameter diff --git a/litellm/llms/custom_httpx/llm_http_handler.py b/litellm/llms/custom_httpx/llm_http_handler.py index 01043a6d9b22..277c698b918b 100644 --- a/litellm/llms/custom_httpx/llm_http_handler.py +++ b/litellm/llms/custom_httpx/llm_http_handler.py @@ -1,26 +1,12 @@ -import copy import json -from typing import ( - TYPE_CHECKING, - Any, - Callable, - Dict, - List, - Literal, - Optional, - Tuple, - Union, -) +from typing import TYPE_CHECKING, Any, Optional, Tuple, Union import httpx # type: ignore -from openai.types.chat.chat_completion_chunk import Choice as OpenAIStreamingChoice import litellm import litellm.litellm_core_utils import litellm.types import litellm.types.utils -from litellm import verbose_logger -from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig from litellm.llms.custom_httpx.http_handler import ( diff --git a/litellm/llms/custom_llm.py b/litellm/llms/custom_llm.py index 90f7875e66af..a2d04b1838d2 100644 --- a/litellm/llms/custom_llm.py +++ b/litellm/llms/custom_llm.py @@ -8,40 +8,13 @@ - async_streaming """ -import copy -import json -import os -import time -import types -from enum import Enum -from functools import partial -from typing import ( - Any, - AsyncGenerator, - AsyncIterator, - Callable, - Coroutine, - Iterator, - List, - Literal, - Optional, - Tuple, - Union, -) +from typing import Any, AsyncIterator, Callable, Iterator, Optional, Union import httpx -import litellm -from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler -from litellm.types.utils import GenericStreamingChunk, ProviderField -from litellm.utils import ( - CustomStreamWrapper, - EmbeddingResponse, - ImageResponse, - ModelResponse, - Usage, -) +from litellm.types.utils import GenericStreamingChunk +from litellm.utils import ImageResponse, ModelResponse from .base import BaseLLM diff --git a/litellm/llms/databricks/chat/handler.py b/litellm/llms/databricks/chat/handler.py index 39fb79493bce..abb714746cf5 100644 --- a/litellm/llms/databricks/chat/handler.py +++ b/litellm/llms/databricks/chat/handler.py @@ -2,7 +2,7 @@ Handles the chat completion request for Databricks """ -from typing import Any, Callable, List, Literal, Optional, Tuple, Union, cast +from typing import Callable, List, Optional, Union, cast from httpx._config import Timeout @@ -13,7 +13,6 @@ from ...openai_like.chat.handler import OpenAILikeChatHandler from ..common_utils import DatabricksBase -from ..exceptions import DatabricksError from .transformation import DatabricksConfig diff --git a/litellm/llms/databricks/chat/transformation.py b/litellm/llms/databricks/chat/transformation.py index f154ed5c1c52..b1f79d565b29 100644 --- a/litellm/llms/databricks/chat/transformation.py +++ b/litellm/llms/databricks/chat/transformation.py @@ -2,7 +2,6 @@ Translates from OpenAI's `/v1/chat/completions` to Databricks' `/chat/completions` """ -import types from typing import List, Optional, Union from pydantic import BaseModel diff --git a/litellm/llms/databricks/embed/handler.py b/litellm/llms/databricks/embed/handler.py index 284988ffec50..2eabcdbc866f 100644 --- a/litellm/llms/databricks/embed/handler.py +++ b/litellm/llms/databricks/embed/handler.py @@ -4,7 +4,6 @@ from typing import Optional -import litellm from litellm.utils import EmbeddingResponse from ...openai_like.embedding.handler import OpenAILikeEmbeddingHandler diff --git a/litellm/llms/databricks/streaming_utils.py b/litellm/llms/databricks/streaming_utils.py index b9f54c04dd54..8c75145d2b9d 100644 --- a/litellm/llms/databricks/streaming_utils.py +++ b/litellm/llms/databricks/streaming_utils.py @@ -1,16 +1,14 @@ import json -from typing import List, Optional +from typing import Optional import litellm from litellm import verbose_logger from litellm.types.llms.openai import ( - ChatCompletionDeltaChunk, - ChatCompletionResponseMessage, ChatCompletionToolCallChunk, ChatCompletionToolCallFunctionChunk, ChatCompletionUsageBlock, ) -from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage +from litellm.types.utils import GenericStreamingChunk, Usage class ModelResponseIterator: diff --git a/litellm/llms/deepinfra/chat/transformation.py b/litellm/llms/deepinfra/chat/transformation.py index 0137f409b355..429759fad164 100644 --- a/litellm/llms/deepinfra/chat/transformation.py +++ b/litellm/llms/deepinfra/chat/transformation.py @@ -1,4 +1,3 @@ -import types from typing import Optional, Tuple, Union import litellm diff --git a/litellm/llms/deepseek/chat/transformation.py b/litellm/llms/deepseek/chat/transformation.py index b2c72b00107f..e6704de1a186 100644 --- a/litellm/llms/deepseek/chat/transformation.py +++ b/litellm/llms/deepseek/chat/transformation.py @@ -2,19 +2,14 @@ Translates from OpenAI's `/v1/chat/completions` to DeepSeek's `/v1/chat/completions` """ -import types -from typing import List, Optional, Tuple, Union +from typing import List, Optional, Tuple -from pydantic import BaseModel - -import litellm from litellm.litellm_core_utils.prompt_templates.common_utils import ( handle_messages_with_content_list_to_str_conversion, ) from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage +from litellm.types.llms.openai import AllMessageValues -from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/deprecated_providers/aleph_alpha.py b/litellm/llms/deprecated_providers/aleph_alpha.py index 90da85d3b0a8..a4c5d155f486 100644 --- a/litellm/llms/deprecated_providers/aleph_alpha.py +++ b/litellm/llms/deprecated_providers/aleph_alpha.py @@ -1,8 +1,6 @@ import json -import os import time import types -from enum import Enum from typing import Callable, Optional import httpx # type: ignore diff --git a/litellm/llms/deprecated_providers/palm.py b/litellm/llms/deprecated_providers/palm.py index d3626113d8c9..4afc952a51a4 100644 --- a/litellm/llms/deprecated_providers/palm.py +++ b/litellm/llms/deprecated_providers/palm.py @@ -7,7 +7,6 @@ import httpx import litellm -from litellm import verbose_logger from litellm.utils import Choices, Message, ModelResponse, Usage diff --git a/litellm/llms/fireworks_ai/chat/transformation.py b/litellm/llms/fireworks_ai/chat/transformation.py index 2d22a564d8a9..34eb4acac408 100644 --- a/litellm/llms/fireworks_ai/chat/transformation.py +++ b/litellm/llms/fireworks_ai/chat/transformation.py @@ -1,4 +1,3 @@ -import types from typing import Literal, Optional, Tuple, Union from litellm.secret_managers.main import get_secret_str diff --git a/litellm/llms/fireworks_ai/embed/fireworks_ai_transformation.py b/litellm/llms/fireworks_ai/embed/fireworks_ai_transformation.py index ccc1ac6b49fa..80906443984b 100644 --- a/litellm/llms/fireworks_ai/embed/fireworks_ai_transformation.py +++ b/litellm/llms/fireworks_ai/embed/fireworks_ai_transformation.py @@ -3,9 +3,6 @@ """ -import types -from typing import Literal, Optional, Union - import litellm diff --git a/litellm/llms/friendliai/chat/transformation.py b/litellm/llms/friendliai/chat/transformation.py index 02bb4c7f295d..168549142f34 100644 --- a/litellm/llms/friendliai/chat/transformation.py +++ b/litellm/llms/friendliai/chat/transformation.py @@ -2,21 +2,6 @@ Translate from OpenAI's `/v1/chat/completions` to Friendliai's `/v1/chat/completions` """ -import json -import types -from typing import List, Optional, Tuple, Union - -from pydantic import BaseModel - -import litellm -from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionAssistantMessage, - ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, -) - from ...openai_like.chat.handler import OpenAILikeChatConfig diff --git a/litellm/llms/galadriel/chat/transformation.py b/litellm/llms/galadriel/chat/transformation.py index 9ce39ed01ae0..1e3280bb16f5 100644 --- a/litellm/llms/galadriel/chat/transformation.py +++ b/litellm/llms/galadriel/chat/transformation.py @@ -2,21 +2,6 @@ Translate from OpenAI's `/v1/chat/completions` to Galadriel's `/v1/chat/completions` """ -import json -import types -from typing import List, Optional, Tuple, Union - -from pydantic import BaseModel - -import litellm -from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionAssistantMessage, - ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, -) - from ...openai_like.chat.handler import OpenAILikeChatConfig diff --git a/litellm/llms/github/chat/transformation.py b/litellm/llms/github/chat/transformation.py index 9d7adff3d2f7..9197b3983cc4 100644 --- a/litellm/llms/github/chat/transformation.py +++ b/litellm/llms/github/chat/transformation.py @@ -2,21 +2,6 @@ Translate from OpenAI's `/v1/chat/completions` to Github's `/v1/chat/completions` """ -import json -import types -from typing import List, Optional, Tuple, Union - -from pydantic import BaseModel - -import litellm -from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionAssistantMessage, - ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, -) - from ...openai_like.chat.handler import OpenAILikeChatConfig diff --git a/litellm/llms/groq/chat/handler.py b/litellm/llms/groq/chat/handler.py index a29a9009dd75..dc4c3222b120 100644 --- a/litellm/llms/groq/chat/handler.py +++ b/litellm/llms/groq/chat/handler.py @@ -2,7 +2,7 @@ Handles the chat completion request for groq """ -from typing import Any, Callable, List, Optional, Union, cast +from typing import Callable, List, Optional, Union, cast from httpx._config import Timeout diff --git a/litellm/llms/groq/chat/transformation.py b/litellm/llms/groq/chat/transformation.py index 78e844f5058a..000ec87b2a3b 100644 --- a/litellm/llms/groq/chat/transformation.py +++ b/litellm/llms/groq/chat/transformation.py @@ -2,13 +2,10 @@ Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions` """ -import json -import types from typing import List, Optional, Tuple, Union from pydantic import BaseModel -import litellm from litellm.secret_managers.main import get_secret_str from litellm.types.llms.openai import ( AllMessageValues, diff --git a/litellm/llms/hosted_vllm/chat/transformation.py b/litellm/llms/hosted_vllm/chat/transformation.py index 37425929eda3..9332e98789f8 100644 --- a/litellm/llms/hosted_vllm/chat/transformation.py +++ b/litellm/llms/hosted_vllm/chat/transformation.py @@ -2,14 +2,9 @@ Translate from OpenAI's `/v1/chat/completions` to VLLM's `/v1/chat/completions` """ -import types -from typing import List, Optional, Tuple, Union +from typing import Optional, Tuple -from pydantic import BaseModel - -import litellm from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/huggingface/chat/handler.py b/litellm/llms/huggingface/chat/handler.py index b1b7a6c2d9fd..d357edf32977 100644 --- a/litellm/llms/huggingface/chat/handler.py +++ b/litellm/llms/huggingface/chat/handler.py @@ -1,11 +1,6 @@ ## Uses the huggingface text generation inference API -import copy -import enum import json import os -import time -import types -from enum import Enum from typing import ( Any, Callable, @@ -33,15 +28,13 @@ from litellm.llms.huggingface.chat.transformation import ( HuggingfaceChatConfig as HuggingfaceConfig, ) -from litellm.secret_managers.main import get_secret_str -from litellm.types.completion import ChatCompletionMessageToolCallParam from litellm.types.llms.openai import AllMessageValues from litellm.types.utils import EmbeddingResponse from litellm.types.utils import Logprobs as TextCompletionLogprobs -from litellm.types.utils import ModelResponse, Usage +from litellm.types.utils import ModelResponse from ...base import BaseLLM -from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks +from ..common_utils import HuggingfaceError hf_chat_config = HuggingfaceConfig() diff --git a/litellm/llms/huggingface/chat/transformation.py b/litellm/llms/huggingface/chat/transformation.py index 2c35f2a20d78..2d3fa46caf5a 100644 --- a/litellm/llms/huggingface/chat/transformation.py +++ b/litellm/llms/huggingface/chat/transformation.py @@ -1,7 +1,6 @@ import json import os import time -import types from copy import deepcopy from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union diff --git a/litellm/llms/jina_ai/embedding/transformation.py b/litellm/llms/jina_ai/embedding/transformation.py index 97b7b2cfacbf..a8fca2010086 100644 --- a/litellm/llms/jina_ai/embedding/transformation.py +++ b/litellm/llms/jina_ai/embedding/transformation.py @@ -11,7 +11,6 @@ from litellm import LlmProviders from litellm.secret_managers.main import get_secret_str -from litellm.types.utils import Embedding, EmbeddingResponse, Usage class JinaAIEmbeddingConfig: diff --git a/litellm/llms/jina_ai/rerank/handler.py b/litellm/llms/jina_ai/rerank/handler.py index a2cfdd49ef0d..355624cd2ac2 100644 --- a/litellm/llms/jina_ai/rerank/handler.py +++ b/litellm/llms/jina_ai/rerank/handler.py @@ -4,12 +4,8 @@ LiteLLM supports the re rank API format, no paramter transformation occurs """ -import uuid from typing import Any, Dict, List, Optional, Union -import httpx -from pydantic import BaseModel - import litellm from litellm.llms.base import BaseLLM from litellm.llms.custom_httpx.http_handler import ( diff --git a/litellm/llms/lm_studio/chat/transformation.py b/litellm/llms/lm_studio/chat/transformation.py index 62dd4dbd7b99..a4380cc5df07 100644 --- a/litellm/llms/lm_studio/chat/transformation.py +++ b/litellm/llms/lm_studio/chat/transformation.py @@ -2,16 +2,10 @@ Translate from OpenAI's `/v1/chat/completions` to LM Studio's `/chat/completions` """ -import types -from typing import List, Optional, Tuple, Union +from typing import Optional, Tuple -from pydantic import BaseModel - -import litellm from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage -from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/lm_studio/embed/transformation.py b/litellm/llms/lm_studio/embed/transformation.py index 17b2173a7ce1..5ef121ea7a6a 100644 --- a/litellm/llms/lm_studio/embed/transformation.py +++ b/litellm/llms/lm_studio/embed/transformation.py @@ -7,11 +7,7 @@ """ import types -from typing import List, Optional, Tuple - -from litellm import LlmProviders -from litellm.secret_managers.main import get_secret_str -from litellm.types.utils import Embedding, EmbeddingResponse, Usage +from typing import List class LmStudioEmbeddingConfig: diff --git a/litellm/llms/maritalk.py b/litellm/llms/maritalk.py index 1c7c882fa255..62fa0113eb54 100644 --- a/litellm/llms/maritalk.py +++ b/litellm/llms/maritalk.py @@ -1,17 +1,9 @@ -import json -import os -import time -import traceback -import types -from enum import Enum -from typing import Any, Callable, List, Optional, Union +from typing import List, Optional, Union from httpx._models import Headers -import litellm from litellm.llms.base_llm.chat.transformation import BaseLLMException from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig -from litellm.utils import Choices, Message, ModelResponse, Usage class MaritalkError(BaseLLMException): diff --git a/litellm/llms/mistral/mistral_chat_transformation.py b/litellm/llms/mistral/mistral_chat_transformation.py index 97af6d4229d5..6174952aae6a 100644 --- a/litellm/llms/mistral/mistral_chat_transformation.py +++ b/litellm/llms/mistral/mistral_chat_transformation.py @@ -6,7 +6,6 @@ Docs - https://docs.mistral.ai/api/ """ -import types from typing import List, Literal, Optional, Tuple, Union from litellm.litellm_core_utils.prompt_templates.common_utils import ( diff --git a/litellm/llms/nlp_cloud/chat/handler.py b/litellm/llms/nlp_cloud/chat/handler.py index 959832ab880d..b0abdda587a3 100644 --- a/litellm/llms/nlp_cloud/chat/handler.py +++ b/litellm/llms/nlp_cloud/chat/handler.py @@ -1,24 +1,14 @@ import json -import os -import time -import types -from enum import Enum -from typing import Any, Callable, List, Optional, Union - -import httpx +from typing import Callable, Optional, Union import litellm -from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, _get_httpx_client, - get_async_httpx_client, ) -from litellm.types.llms.openai import AllMessageValues -from litellm.utils import ModelResponse, Usage +from litellm.utils import ModelResponse -from ..common_utils import NLPCloudError from .transformation import NLPCloudConfig nlp_config = NLPCloudConfig() diff --git a/litellm/llms/nvidia_nim/chat.py b/litellm/llms/nvidia_nim/chat.py index 3f50c02dd92e..eedac6e38fe1 100644 --- a/litellm/llms/nvidia_nim/chat.py +++ b/litellm/llms/nvidia_nim/chat.py @@ -8,7 +8,6 @@ API calling is done using the OpenAI SDK with an api_base """ -import types from typing import Optional, Union from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/nvidia_nim/embed.py b/litellm/llms/nvidia_nim/embed.py index cd27f341e6db..bf5d4d4ae6b8 100644 --- a/litellm/llms/nvidia_nim/embed.py +++ b/litellm/llms/nvidia_nim/embed.py @@ -9,7 +9,7 @@ """ import types -from typing import Optional, Union +from typing import Optional class NvidiaNimEmbeddingConfig: diff --git a/litellm/llms/ollama/completion/handler.py b/litellm/llms/ollama/completion/handler.py index 8b6f26995d79..b7608e62fb89 100644 --- a/litellm/llms/ollama/completion/handler.py +++ b/litellm/llms/ollama/completion/handler.py @@ -5,37 +5,15 @@ """ import asyncio -import json -import time -import traceback -import types -import uuid -from copy import deepcopy -from itertools import chain -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List import litellm -from litellm import verbose_logger -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) -from litellm.llms.custom_httpx.http_handler import get_async_httpx_client -from litellm.secret_managers.main import get_secret_str -from litellm.types.utils import ( - EmbeddingResponse, - ModelInfo, - ModelResponse, - ProviderField, - StreamingChoices, -) - -from ..common_utils import OllamaError -from .transformation import OllamaConfig +from litellm.types.utils import EmbeddingResponse # ollama wants plain base64 jpeg/png files as images. strip any leading dataURI # and convert to jpeg if necessary. + async def ollama_aembeddings( api_base: str, model: str, diff --git a/litellm/llms/ollama/completion/transformation.py b/litellm/llms/ollama/completion/transformation.py index 46e67b4720e0..52198893219f 100644 --- a/litellm/llms/ollama/completion/transformation.py +++ b/litellm/llms/ollama/completion/transformation.py @@ -1,6 +1,5 @@ import json import time -import types import uuid from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union @@ -15,18 +14,12 @@ from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionToolCallChunk, - ChatCompletionUsageBlock, -) +from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock from litellm.types.utils import ( GenericStreamingChunk, - ModelInfo, ModelInfoBase, ModelResponse, ProviderField, - StreamingChoices, ) from ..common_utils import OllamaError, _convert_image diff --git a/litellm/llms/ollama_chat.py b/litellm/llms/ollama_chat.py index 5fb35ba2bf10..5aa26ced46dd 100644 --- a/litellm/llms/ollama_chat.py +++ b/litellm/llms/ollama_chat.py @@ -1,9 +1,6 @@ import json import time -import traceback -import types import uuid -from itertools import chain from typing import Any, List, Optional import aiohttp diff --git a/litellm/llms/oobabooga/chat/oobabooga.py b/litellm/llms/oobabooga/chat/oobabooga.py index 30eaa049e16e..8829d2233ead 100644 --- a/litellm/llms/oobabooga/chat/oobabooga.py +++ b/litellm/llms/oobabooga/chat/oobabooga.py @@ -1,15 +1,8 @@ import json -import os -import time -from enum import Enum from typing import Any, Callable, Optional import litellm -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) -from litellm.llms.custom_httpx.http_handler import HTTPHandler, _get_httpx_client +from litellm.llms.custom_httpx.http_handler import _get_httpx_client from litellm.utils import EmbeddingResponse, ModelResponse, Usage from ..common_utils import OobaboogaError diff --git a/litellm/llms/oobabooga/chat/transformation.py b/litellm/llms/oobabooga/chat/transformation.py index f3a25f1df2ba..02283f93e259 100644 --- a/litellm/llms/oobabooga/chat/transformation.py +++ b/litellm/llms/oobabooga/chat/transformation.py @@ -1,16 +1,12 @@ -import json import time -import types from typing import TYPE_CHECKING, Any, List, Optional, Union import httpx -import litellm -from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException +from litellm.llms.base_llm.chat.transformation import BaseLLMException from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig from litellm.types.llms.openai import AllMessageValues -from litellm.types.utils import Choices, Message, ModelResponse, Usage -from litellm.utils import token_counter +from litellm.types.utils import ModelResponse, Usage from ..common_utils import OobaboogaError diff --git a/litellm/llms/openai/chat/gpt_audio_transformation.py b/litellm/llms/openai/chat/gpt_audio_transformation.py index 867575e79622..581ffea2db48 100644 --- a/litellm/llms/openai/chat/gpt_audio_transformation.py +++ b/litellm/llms/openai/chat/gpt_audio_transformation.py @@ -4,11 +4,7 @@ OpenAI Doc: https://platform.openai.com/docs/guides/audio/quickstart?audio-generation-quickstart-example=audio-in&lang=python """ -import types -from typing import Optional, Union - import litellm -from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage from .gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/openai/chat/gpt_transformation.py b/litellm/llms/openai/chat/gpt_transformation.py index 01bd720ba461..7b732a5557a4 100644 --- a/litellm/llms/openai/chat/gpt_transformation.py +++ b/litellm/llms/openai/chat/gpt_transformation.py @@ -2,14 +2,13 @@ Support for gpt model family """ -import types from typing import TYPE_CHECKING, Any, List, Optional, Union, cast import httpx import litellm from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException -from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage +from litellm.types.llms.openai import AllMessageValues from litellm.types.utils import ModelResponse from ..common_utils import OpenAIError diff --git a/litellm/llms/openai/chat/o1_transformation.py b/litellm/llms/openai/chat/o1_transformation.py index b9c1b4271794..c1925926d610 100644 --- a/litellm/llms/openai/chat/o1_transformation.py +++ b/litellm/llms/openai/chat/o1_transformation.py @@ -11,8 +11,7 @@ - Logprobs => drop param (if user opts in to dropping param) """ -import types -from typing import Any, List, Optional, Union +from typing import List, Optional import litellm from litellm import verbose_logger diff --git a/litellm/llms/openai/completion/transformation.py b/litellm/llms/openai/completion/transformation.py index 85a9115c7450..781745cd28b8 100644 --- a/litellm/llms/openai/completion/transformation.py +++ b/litellm/llms/openai/completion/transformation.py @@ -2,14 +2,11 @@ Support for gpt model family """ -import types from typing import List, Optional, Union, cast -import litellm from litellm.litellm_core_utils.prompt_templates.common_utils import ( convert_content_list_to_str, ) -from litellm.llms.base_llm.chat.transformation import BaseConfig from litellm.types.llms.openai import ( AllMessageValues, AllPromptValues, @@ -18,7 +15,6 @@ from litellm.types.utils import Choices, Message, ModelResponse, TextCompletionResponse from ..chat.gpt_transformation import OpenAIGPTConfig -from ..common_utils import OpenAIError from .utils import is_tokens_or_list_of_tokens diff --git a/litellm/llms/openai/completion/utils.py b/litellm/llms/openai/completion/utils.py index 096f69180614..8b9650db14d0 100644 --- a/litellm/llms/openai/completion/utils.py +++ b/litellm/llms/openai/completion/utils.py @@ -1,4 +1,3 @@ -from collections.abc import Iterable from typing import List diff --git a/litellm/llms/openai/fine_tuning/handler.py b/litellm/llms/openai/fine_tuning/handler.py index 00099608c145..a3f088a861f4 100644 --- a/litellm/llms/openai/fine_tuning/handler.py +++ b/litellm/llms/openai/fine_tuning/handler.py @@ -2,11 +2,9 @@ import httpx from openai import AsyncOpenAI, OpenAI -from openai.pagination import AsyncCursorPage from openai.types.fine_tuning import FineTuningJob from litellm._logging import verbose_logger -from litellm.types.llms.openai import FineTuningJobCreate class OpenAIFineTuningAPI: diff --git a/litellm/llms/openai/openai.py b/litellm/llms/openai/openai.py index 75752d249af7..90b642a567a7 100644 --- a/litellm/llms/openai/openai.py +++ b/litellm/llms/openai/openai.py @@ -1,8 +1,5 @@ import hashlib -import json import os -import time -import traceback import types from typing import ( Any, @@ -22,32 +19,18 @@ from openai.types.beta.assistant_deleted import AssistantDeleted from openai.types.file_deleted import FileDeleted from pydantic import BaseModel -from typing_extensions import overload, override +from typing_extensions import overload import litellm from litellm import LlmProviders from litellm._logging import verbose_logger from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS -from litellm.secret_managers.main import get_secret_str -from litellm.types.utils import ( - EmbeddingResponse, - ImageResponse, - ModelResponse, - ProviderField, - TextCompletionResponse, - Usage, -) +from litellm.types.utils import EmbeddingResponse, ImageResponse, ModelResponse from litellm.utils import ( - Choices, CustomStreamWrapper, - Message, ProviderConfigManager, convert_to_model_response_object, ) diff --git a/litellm/llms/openai/realtime/handler.py b/litellm/llms/openai/realtime/handler.py index a790b180035b..83398ad11a6f 100644 --- a/litellm/llms/openai/realtime/handler.py +++ b/litellm/llms/openai/realtime/handler.py @@ -4,7 +4,6 @@ This requires websockets, and is currently only supported on LiteLLM Proxy. """ -import asyncio from typing import Any, Optional from ....litellm_core_utils.litellm_logging import Logging as LiteLLMLogging diff --git a/litellm/llms/openai_like/chat/handler.py b/litellm/llms/openai_like/chat/handler.py index dee57b9a28b5..f190d3745587 100644 --- a/litellm/llms/openai_like/chat/handler.py +++ b/litellm/llms/openai_like/chat/handler.py @@ -4,40 +4,20 @@ For handling OpenAI-like chat completions, like IBM WatsonX, etc. """ -import copy import json -import os -import time -import types -from enum import Enum -from functools import partial -from typing import Any, Callable, List, Literal, Optional, Tuple, Union +from typing import Any, Callable, Optional, Union import httpx import litellm from litellm import LlmProviders -from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator -from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - HTTPHandler, - get_async_httpx_client, -) +from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler from litellm.llms.databricks.streaming_utils import ModelResponseIterator from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig from litellm.llms.openai.openai import OpenAIConfig from litellm.types.utils import CustomStreamingDecoder, ModelResponse -from litellm.utils import ( - Choices, - CustomStreamWrapper, - EmbeddingResponse, - Message, - ProviderConfigManager, - TextCompletionResponse, - Usage, - convert_to_model_response_object, -) +from litellm.utils import CustomStreamWrapper, ProviderConfigManager from ..common_utils import OpenAILikeBase, OpenAILikeError from .transformation import OpenAILikeChatConfig diff --git a/litellm/llms/openai_like/chat/transformation.py b/litellm/llms/openai_like/chat/transformation.py index 9d89e5d09ff5..37cfabdab52f 100644 --- a/litellm/llms/openai_like/chat/transformation.py +++ b/litellm/llms/openai_like/chat/transformation.py @@ -2,18 +2,14 @@ OpenAI-like chat completion transformation """ -import types from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union import httpx -from pydantic import BaseModel -import litellm from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage +from litellm.types.llms.openai import ChatCompletionAssistantMessage from litellm.types.utils import ModelResponse -from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig if TYPE_CHECKING: diff --git a/litellm/llms/openai_like/embedding/handler.py b/litellm/llms/openai_like/embedding/handler.py index 03e7c0fb2ebb..6e2471bacab2 100644 --- a/litellm/llms/openai_like/embedding/handler.py +++ b/litellm/llms/openai_like/embedding/handler.py @@ -2,19 +2,12 @@ ## Handler file for OpenAI-like endpoints. ## Allows jina ai embedding calls - which don't allow 'encoding_format' in payload. -import copy import json -import os -import time -import types -from enum import Enum -from functools import partial -from typing import Any, Callable, List, Literal, Optional, Tuple, Union +from typing import Optional import httpx import litellm -from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, diff --git a/litellm/llms/openrouter/chat/transformation.py b/litellm/llms/openrouter/chat/transformation.py index 9565fc99e05b..5a4c2ff2096a 100644 --- a/litellm/llms/openrouter/chat/transformation.py +++ b/litellm/llms/openrouter/chat/transformation.py @@ -6,10 +6,6 @@ Docs: https://openrouter.ai/docs/parameters """ -from typing import Optional - -from litellm import get_model_info, verbose_logger - from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/perplexity/chat/transformation.py b/litellm/llms/perplexity/chat/transformation.py index 6b709e7fc30b..afa5008b79bc 100644 --- a/litellm/llms/perplexity/chat/transformation.py +++ b/litellm/llms/perplexity/chat/transformation.py @@ -2,16 +2,10 @@ Translate from OpenAI's `/v1/chat/completions` to Perplexity's `/v1/chat/completions` """ -import types -from typing import List, Optional, Tuple, Union +from typing import Optional, Tuple -from pydantic import BaseModel - -import litellm from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage -from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/petals/completion/handler.py b/litellm/llms/petals/completion/handler.py index 108a8a334a3c..ae38baecf222 100644 --- a/litellm/llms/petals/completion/handler.py +++ b/litellm/llms/petals/completion/handler.py @@ -1,8 +1,4 @@ -import json -import os import time -import types -from enum import Enum from typing import Callable, Optional, Union import litellm @@ -92,7 +88,6 @@ def completion( else: try: - import torch from petals import AutoDistributedModelForCausalLM # type: ignore from transformers import AutoTokenizer except Exception: diff --git a/litellm/llms/petals/completion/transformation.py b/litellm/llms/petals/completion/transformation.py index 76b7df72352f..79792c1f6511 100644 --- a/litellm/llms/petals/completion/transformation.py +++ b/litellm/llms/petals/completion/transformation.py @@ -1,4 +1,3 @@ -import types from typing import Any, List, Optional, Union from httpx import Headers, Response diff --git a/litellm/llms/predibase/chat/handler.py b/litellm/llms/predibase/chat/handler.py index a798ed6b3c49..43f4b0674505 100644 --- a/litellm/llms/predibase/chat/handler.py +++ b/litellm/llms/predibase/chat/handler.py @@ -1,22 +1,17 @@ # What is this? ## Controller file for Predibase Integration - https://predibase.com/ -import copy import json import os import time -import traceback -import types -from enum import Enum from functools import partial -from typing import Callable, List, Literal, Optional, Union +from typing import Callable, Optional, Union import httpx # type: ignore import litellm import litellm.litellm_core_utils import litellm.litellm_core_utils.litellm_logging -from litellm import verbose_logger from litellm.litellm_core_utils.core_helpers import map_finish_reason from litellm.litellm_core_utils.prompt_templates.factory import ( custom_prompt, @@ -29,7 +24,6 @@ from litellm.types.utils import LiteLLMLoggingBaseClass from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage -from ...base import BaseLLM from ..common_utils import PredibaseError diff --git a/litellm/llms/predibase/chat/transformation.py b/litellm/llms/predibase/chat/transformation.py index 597f24794b2a..452c6f8cd590 100644 --- a/litellm/llms/predibase/chat/transformation.py +++ b/litellm/llms/predibase/chat/transformation.py @@ -1,4 +1,3 @@ -import types from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union from httpx import Headers, Response diff --git a/litellm/llms/replicate/chat/handler.py b/litellm/llms/replicate/chat/handler.py index 7d1a86fa0082..cd180e4ea6c6 100644 --- a/litellm/llms/replicate/chat/handler.py +++ b/litellm/llms/replicate/chat/handler.py @@ -1,11 +1,7 @@ import asyncio import json -import os import time -import types -from typing import Any, Callable, List, Optional, Tuple, Union - -import httpx # type: ignore +from typing import Callable, List, Union import litellm from litellm.llms.custom_httpx.http_handler import ( @@ -15,7 +11,7 @@ get_async_httpx_client, ) from litellm.types.llms.openai import AllMessageValues -from litellm.utils import CustomStreamWrapper, ModelResponse, Usage +from litellm.utils import CustomStreamWrapper, ModelResponse from ..common_utils import ReplicateError from .transformation import ReplicateConfig diff --git a/litellm/llms/replicate/chat/transformation.py b/litellm/llms/replicate/chat/transformation.py index ea0fbd035f38..0c456b8db7ce 100644 --- a/litellm/llms/replicate/chat/transformation.py +++ b/litellm/llms/replicate/chat/transformation.py @@ -1,4 +1,3 @@ -import types from typing import TYPE_CHECKING, Any, List, Optional, Union import httpx @@ -13,7 +12,7 @@ ) from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException from litellm.types.llms.openai import AllMessageValues -from litellm.types.utils import Choices, Message, ModelResponse, Usage +from litellm.types.utils import ModelResponse, Usage from litellm.utils import token_counter from ..common_utils import ReplicateError diff --git a/litellm/llms/sagemaker/chat/handler.py b/litellm/llms/sagemaker/chat/handler.py index 5daa91277d50..3a90a1509379 100644 --- a/litellm/llms/sagemaker/chat/handler.py +++ b/litellm/llms/sagemaker/chat/handler.py @@ -1,13 +1,12 @@ import json from copy import deepcopy -from typing import Any, Callable, Dict, Optional, Union +from typing import Callable, Optional, Union import httpx +from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM from litellm.utils import ModelResponse, get_secret -from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM -from litellm.litellm_core_utils.prompt_templates.factory import custom_prompt, prompt_factory from ..common_utils import AWSEventStreamDecoder from .transformation import SagemakerChatConfig @@ -79,10 +78,8 @@ def _prepare_request( extra_headers: Optional[dict] = None, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") diff --git a/litellm/llms/sagemaker/completion/handler.py b/litellm/llms/sagemaker/completion/handler.py index a8b68f910bd9..0a403dc484a1 100644 --- a/litellm/llms/sagemaker/completion/handler.py +++ b/litellm/llms/sagemaker/completion/handler.py @@ -1,28 +1,14 @@ -import io import json -import os -import sys -import time -import traceback -import types from copy import deepcopy -from enum import Enum -from functools import partial -from typing import Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Union +from typing import Any, Callable, List, Optional, Union import httpx import litellm from litellm._logging import verbose_logger from litellm.litellm_core_utils.asyncify import asyncify -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - HTTPHandler, _get_httpx_client, get_async_httpx_client, ) @@ -116,10 +102,8 @@ def _prepare_request( extra_headers: Optional[dict] = None, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") diff --git a/litellm/llms/sagemaker/completion/transformation.py b/litellm/llms/sagemaker/completion/transformation.py index e411bea519df..a2d2c34f9bf8 100644 --- a/litellm/llms/sagemaker/completion/transformation.py +++ b/litellm/llms/sagemaker/completion/transformation.py @@ -6,7 +6,6 @@ import json import time -import types from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from httpx._models import Headers, Response diff --git a/litellm/llms/sambanova/chat.py b/litellm/llms/sambanova/chat.py index c5e0de4d9953..4eea1914cebe 100644 --- a/litellm/llms/sambanova/chat.py +++ b/litellm/llms/sambanova/chat.py @@ -4,7 +4,6 @@ this is OpenAI compatible - no translation needed / occurs """ -import types from typing import Optional from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/together_ai/rerank/handler.py b/litellm/llms/together_ai/rerank/handler.py index 3e6d5d6676bd..c5b02731e1eb 100644 --- a/litellm/llms/together_ai/rerank/handler.py +++ b/litellm/llms/together_ai/rerank/handler.py @@ -6,9 +6,6 @@ from typing import Any, Dict, List, Optional, Union -import httpx -from pydantic import BaseModel - import litellm from litellm.llms.base import BaseLLM from litellm.llms.custom_httpx.http_handler import ( @@ -16,13 +13,7 @@ get_async_httpx_client, ) from litellm.llms.together_ai.rerank.transformation import TogetherAIRerankConfig -from litellm.types.rerank import ( - RerankBilledUnits, - RerankRequest, - RerankResponse, - RerankResponseMeta, - RerankTokens, -) +from litellm.types.rerank import RerankRequest, RerankResponse class TogetherAIRerank(BaseLLM): diff --git a/litellm/llms/triton/completion/handler.py b/litellm/llms/triton/completion/handler.py index d7d1d43a3474..f5484142c12c 100644 --- a/litellm/llms/triton/completion/handler.py +++ b/litellm/llms/triton/completion/handler.py @@ -1,32 +1,14 @@ import json -import os -import time -from enum import Enum -from typing import Any, Callable, Dict, List, Optional, Sequence, Union - -import httpx # type: ignore +from typing import Any, List, Optional, Union import litellm -from litellm.litellm_core_utils.prompt_templates.factory import ( - custom_prompt, - prompt_factory, -) from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, HTTPHandler, _get_httpx_client, get_async_httpx_client, ) -from litellm.utils import ( - Choices, - CustomStreamWrapper, - Delta, - EmbeddingResponse, - Message, - ModelResponse, - Usage, - map_finish_reason, -) +from litellm.utils import Choices, EmbeddingResponse, Message, ModelResponse from ...base import BaseLLM from ..common_utils import TritonError diff --git a/litellm/llms/vertex_ai/batches/handler.py b/litellm/llms/vertex_ai/batches/handler.py index 8d4f215dbcbc..06b2fd6f9dbd 100644 --- a/litellm/llms/vertex_ai/batches/handler.py +++ b/litellm/llms/vertex_ai/batches/handler.py @@ -5,26 +5,11 @@ import litellm from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - HTTPHandler, _get_httpx_client, get_async_httpx_client, ) -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - VertexAIError, - VertexLLM, -) -from litellm.types.llms.openai import ( - Batch, - CancelBatchRequest, - CreateBatchRequest, - CreateFileRequest, - FileContentRequest, - FileObject, - FileTypes, - HttpxBinaryResponseContent, - RetrieveBatchRequest, -) +from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM +from litellm.types.llms.openai import Batch, CreateBatchRequest from litellm.types.llms.vertex_ai import VertexAIBatchPredictionJob from .transformation import VertexAIBatchTransformation diff --git a/litellm/llms/vertex_ai/batches/transformation.py b/litellm/llms/vertex_ai/batches/transformation.py index 157f6094ade0..c18bbe4292dd 100644 --- a/litellm/llms/vertex_ai/batches/transformation.py +++ b/litellm/llms/vertex_ai/batches/transformation.py @@ -1,5 +1,5 @@ import uuid -from typing import Any, Dict, Literal +from typing import Dict from litellm.llms.vertex_ai.common_utils import ( _convert_vertex_datetime_to_openai_datetime, diff --git a/litellm/llms/vertex_ai/context_caching/transformation.py b/litellm/llms/vertex_ai/context_caching/transformation.py index 8caa112eaa33..55203196e01b 100644 --- a/litellm/llms/vertex_ai/context_caching/transformation.py +++ b/litellm/llms/vertex_ai/context_caching/transformation.py @@ -7,7 +7,7 @@ from typing import List, Tuple from litellm.types.llms.openai import AllMessageValues -from litellm.types.llms.vertex_ai import CachedContentRequestBody, SystemInstructions +from litellm.types.llms.vertex_ai import CachedContentRequestBody from litellm.utils import is_cached_message from ..common_utils import VertexAIError, get_supports_system_message diff --git a/litellm/llms/vertex_ai/context_caching/vertex_ai_context_caching.py b/litellm/llms/vertex_ai/context_caching/vertex_ai_context_caching.py index 991d29d34047..5cfb9141a55b 100644 --- a/litellm/llms/vertex_ai/context_caching/vertex_ai_context_caching.py +++ b/litellm/llms/vertex_ai/context_caching/vertex_ai_context_caching.py @@ -1,5 +1,4 @@ -import types -from typing import Callable, List, Literal, Optional, Tuple, Union +from typing import List, Literal, Optional, Tuple, Union import httpx @@ -14,10 +13,8 @@ from litellm.llms.openai.openai import AllMessageValues from litellm.types.llms.vertex_ai import ( CachedContentListAllResponseBody, - RequestBody, VertexAICachedContentResponseObject, ) -from litellm.utils import ModelResponse from ..common_utils import VertexAIError from ..vertex_llm_base import VertexBase diff --git a/litellm/llms/vertex_ai/files/handler.py b/litellm/llms/vertex_ai/files/handler.py index 9b2cf9c11d63..dca557a494a3 100644 --- a/litellm/llms/vertex_ai/files/handler.py +++ b/litellm/llms/vertex_ai/files/handler.py @@ -1,35 +1,12 @@ -import json -import uuid -from typing import Any, Coroutine, Dict, Optional, Union +from typing import Any, Coroutine, Optional, Union import httpx -import litellm from litellm.integrations.gcs_bucket.gcs_bucket_base import ( GCSBucketBase, GCSLoggingConfig, ) -from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - HTTPHandler, - _get_httpx_client, - get_async_httpx_client, -) -from litellm.llms.vertex_ai.common_utils import ( - _convert_vertex_datetime_to_openai_datetime, -) -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - VertexAIError, - VertexLLM, -) -from litellm.types.llms.openai import ( - Batch, - CreateFileRequest, - FileContentRequest, - FileObject, - FileTypes, - HttpxBinaryResponseContent, -) +from litellm.types.llms.openai import CreateFileRequest, FileObject from .transformation import VertexAIFilesTransformation diff --git a/litellm/llms/vertex_ai/files/transformation.py b/litellm/llms/vertex_ai/files/transformation.py index 0bffa363cd89..a124e2058387 100644 --- a/litellm/llms/vertex_ai/files/transformation.py +++ b/litellm/llms/vertex_ai/files/transformation.py @@ -5,21 +5,11 @@ from litellm.llms.vertex_ai.common_utils import ( _convert_vertex_datetime_to_openai_datetime, ) -from litellm.llms.vertex_ai.gemini.transformation import ( - _transform_request_body, -) +from litellm.llms.vertex_ai.gemini.transformation import _transform_request_body from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( VertexGeminiConfig, ) -from litellm.types.llms.openai import ( - Batch, - CreateFileRequest, - FileContentRequest, - FileObject, - FileTypes, - HttpxBinaryResponseContent, - PathLike, -) +from litellm.types.llms.openai import CreateFileRequest, FileObject, FileTypes, PathLike class VertexAIFilesTransformation(VertexGeminiConfig): diff --git a/litellm/llms/vertex_ai/fine_tuning/handler.py b/litellm/llms/vertex_ai/fine_tuning/handler.py index 230c9d766fa5..faaf0f58bca7 100644 --- a/litellm/llms/vertex_ai/fine_tuning/handler.py +++ b/litellm/llms/vertex_ai/fine_tuning/handler.py @@ -1,20 +1,14 @@ import traceback from datetime import datetime -from typing import Any, Coroutine, Literal, Optional, Union +from typing import Literal, Optional, Union import httpx from openai.types.fine_tuning.fine_tuning_job import FineTuningJob, Hyperparameters import litellm from litellm._logging import verbose_logger -from litellm.llms.base import BaseLLM -from litellm.llms.custom_httpx.http_handler import ( - HTTPHandler, - get_async_httpx_client, -) -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - VertexLLM, -) +from litellm.llms.custom_httpx.http_handler import HTTPHandler, get_async_httpx_client +from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM from litellm.types.llms.openai import FineTuningJobCreate from litellm.types.llms.vertex_ai import ( FineTuneJobCreate, @@ -131,7 +125,6 @@ async def acreate_fine_tuning_job( headers: dict, request_data: FineTuneJobCreate, ): - from litellm.fine_tuning.main import FineTuningJob try: verbose_logger.debug( diff --git a/litellm/llms/vertex_ai/gemini/transformation.py b/litellm/llms/vertex_ai/gemini/transformation.py index e6ac6928bd22..eb13dbb8b05d 100644 --- a/litellm/llms/vertex_ai/gemini/transformation.py +++ b/litellm/llms/vertex_ai/gemini/transformation.py @@ -23,7 +23,6 @@ get_file_mime_type_for_file_type, get_file_type_from_extension, is_gemini_1_5_accepted_file_type, - is_video_file_type, ) from litellm.types.llms.openai import ( AllMessageValues, @@ -41,7 +40,6 @@ ToolConfig, Tools, ) -from litellm.utils import CustomStreamWrapper, ModelResponse, Usage from ..common_utils import ( _check_text_in_content, diff --git a/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py b/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py index c75cff1430f4..1a08de934237 100644 --- a/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py +++ b/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py @@ -1,14 +1,10 @@ # What is this? ## httpx client for vertex ai calls ## Initial implementation - covers gemini + image gen calls -import inspect import json -import os -import time import types import uuid from copy import deepcopy -from enum import Enum from functools import partial from typing import ( TYPE_CHECKING, @@ -54,13 +50,9 @@ FunctionCallingConfig, FunctionDeclaration, GenerateContentResponseBody, - GenerationConfig, HttpxPartType, LogprobsResult, PartType, - RequestBody, - SafetSettingsConfig, - SystemInstructions, ToolConfig, Tools, ) @@ -70,22 +62,13 @@ GenericStreamingChunk, TopLogprob, ) -from litellm.utils import CustomStreamWrapper, ModelResponse, Usage +from litellm.utils import CustomStreamWrapper, ModelResponse from ....utils import _remove_additional_properties, _remove_strict_from_schema -from ...base import BaseLLM -from ..common_utils import ( - VertexAIError, - _build_vertex_schema, - _get_gemini_url, - _get_vertex_url, - all_gemini_url_modes, - get_supports_system_message, -) +from ..common_utils import VertexAIError, _build_vertex_schema from ..vertex_llm_base import VertexBase from .transformation import ( _gemini_convert_messages_with_history, - _process_gemini_image, async_transform_request_body, sync_transform_request_body, ) diff --git a/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_handler.py b/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_handler.py index 8e2d1f39a04e..0fe5145a1443 100644 --- a/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_handler.py +++ b/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_handler.py @@ -3,7 +3,7 @@ """ import json -from typing import Any, List, Literal, Optional, Union +from typing import Any, Literal, Optional, Union import httpx diff --git a/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_transformation.py b/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_transformation.py index f1785e58f1b5..592dac584616 100644 --- a/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_transformation.py +++ b/litellm/llms/vertex_ai/gemini_embeddings/batch_embed_content_transformation.py @@ -18,8 +18,6 @@ from litellm.types.utils import Embedding, Usage from litellm.utils import get_formatted_prompt, token_counter -from ..common_utils import VertexAIError - def transform_openai_input_gemini_content( input: EmbeddingInput, model: str, optional_params: dict diff --git a/litellm/llms/vertex_ai/image_generation/cost_calculator.py b/litellm/llms/vertex_ai/image_generation/cost_calculator.py index 2d7fa37f73fa..2ba18c095bdd 100644 --- a/litellm/llms/vertex_ai/image_generation/cost_calculator.py +++ b/litellm/llms/vertex_ai/image_generation/cost_calculator.py @@ -2,8 +2,6 @@ Vertex AI Image Generation Cost Calculator """ -from typing import Optional - import litellm from litellm.types.utils import ImageResponse diff --git a/litellm/llms/vertex_ai/multimodal_embeddings/embedding_handler.py b/litellm/llms/vertex_ai/multimodal_embeddings/embedding_handler.py index eaffbd38eedf..f63d1ce11e78 100644 --- a/litellm/llms/vertex_ai/multimodal_embeddings/embedding_handler.py +++ b/litellm/llms/vertex_ai/multimodal_embeddings/embedding_handler.py @@ -1,5 +1,5 @@ import json -from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union +from typing import List, Literal, Optional, Union import httpx @@ -18,7 +18,6 @@ Instance, InstanceImage, InstanceVideo, - MultimodalPrediction, MultimodalPredictions, VertexMultimodalEmbeddingRequest, ) diff --git a/litellm/llms/vertex_ai/text_to_speech/text_to_speech_handler.py b/litellm/llms/vertex_ai/text_to_speech/text_to_speech_handler.py index 18ebaee1eda8..10c73e815c69 100644 --- a/litellm/llms/vertex_ai/text_to_speech/text_to_speech_handler.py +++ b/litellm/llms/vertex_ai/text_to_speech/text_to_speech_handler.py @@ -1,22 +1,14 @@ -import traceback -from datetime import datetime -from typing import Any, Coroutine, Literal, Optional, TypedDict, Union +from typing import Optional, TypedDict, Union import httpx import litellm -from litellm._logging import verbose_logger -from litellm.llms.base import BaseLLM from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - HTTPHandler, _get_httpx_client, get_async_httpx_client, ) from litellm.llms.openai.openai import HttpxBinaryResponseContent -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - VertexLLM, -) +from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM class VertexInput(TypedDict, total=False): diff --git a/litellm/llms/vertex_ai/vertex_ai_non_gemini.py b/litellm/llms/vertex_ai/vertex_ai_non_gemini.py index 8908ccc9f905..418d8813dc1a 100644 --- a/litellm/llms/vertex_ai/vertex_ai_non_gemini.py +++ b/litellm/llms/vertex_ai/vertex_ai_non_gemini.py @@ -1,41 +1,16 @@ -import inspect import json import os import time -import types -import uuid -from enum import Enum -from typing import Any, Callable, List, Literal, Optional, Union, cast +from typing import Any, Callable, Optional, cast import httpx -from pydantic import BaseModel import litellm -from litellm._logging import verbose_logger from litellm.litellm_core_utils.core_helpers import map_finish_reason -from litellm.litellm_core_utils.prompt_templates.factory import ( - convert_to_anthropic_image_obj, - convert_to_gemini_tool_call_invoke, - convert_to_gemini_tool_call_result, -) from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS -from litellm.types.files import ( - get_file_mime_type_for_file_type, - get_file_type_from_extension, - is_gemini_1_5_accepted_file_type, - is_video_file_type, -) -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionAssistantMessage, - ChatCompletionImageObject, - ChatCompletionTextObject, -) from litellm.types.llms.vertex_ai import * from litellm.utils import CustomStreamWrapper, ModelResponse, Usage -from .common_utils import _check_text_in_content - class VertexAIError(Exception): def __init__(self, status_code, message): @@ -50,9 +25,6 @@ def __init__(self, status_code, message): ) # Call the base class constructor with the parameters it needs -import asyncio - - class TextStreamer: """ Fake streaming iterator for Vertex AI Model Garden calls @@ -144,7 +116,6 @@ def completion( # noqa: PLR0915 ) try: import google.auth # type: ignore - import proto # type: ignore from google.cloud import aiplatform # type: ignore from google.cloud.aiplatform_v1beta1.types import ( content as gapic_content_types, # type: ignore @@ -152,16 +123,8 @@ def completion( # noqa: PLR0915 from google.protobuf import json_format # type: ignore from google.protobuf.struct_pb2 import Value # type: ignore from vertexai.language_models import CodeGenerationModel, TextGenerationModel - from vertexai.preview.generative_models import ( - GenerationConfig, - GenerativeModel, - Part, - ) - from vertexai.preview.language_models import ( - ChatModel, - CodeChatModel, - InputOutputTextPair, - ) + from vertexai.preview.generative_models import GenerativeModel + from vertexai.preview.language_models import ChatModel, CodeChatModel ## Load credentials with the correct quota project ref: https://github.com/googleapis/python-aiplatform/issues/2557#issuecomment-1709284744 print_verbose( @@ -533,7 +496,6 @@ async def async_completion( # noqa: PLR0915 Add support for acompletion calls for gemini-pro """ try: - import proto # type: ignore response_obj = None completion_response = None diff --git a/litellm/llms/vertex_ai/vertex_ai_partner_models/ai21/transformation.py b/litellm/llms/vertex_ai/vertex_ai_partner_models/ai21/transformation.py index cb3364445fdf..7ddd1cf89f4c 100644 --- a/litellm/llms/vertex_ai/vertex_ai_partner_models/ai21/transformation.py +++ b/litellm/llms/vertex_ai/vertex_ai_partner_models/ai21/transformation.py @@ -1,5 +1,5 @@ import types -from typing import Callable, Literal, Optional, Union +from typing import Optional import litellm diff --git a/litellm/llms/vertex_ai/vertex_ai_partner_models/anthropic/transformation.py b/litellm/llms/vertex_ai/vertex_ai_partner_models/anthropic/transformation.py index 01f0e5c27b7a..048cb3f0f1aa 100644 --- a/litellm/llms/vertex_ai/vertex_ai_partner_models/anthropic/transformation.py +++ b/litellm/llms/vertex_ai/vertex_ai_partner_models/anthropic/transformation.py @@ -1,35 +1,11 @@ # What is this? ## Handler file for calling claude-3 on vertex ai -import copy -import json -import os -import time -import types -import uuid -from enum import Enum -from typing import Any, Callable, List, Optional, Tuple, Union +from typing import List, Optional import httpx import litellm -from litellm.litellm_core_utils.core_helpers import map_finish_reason -from litellm.litellm_core_utils.prompt_templates.factory import ( - construct_tool_use_system_prompt, - contains_tag, - custom_prompt, - extract_between_tags, - parse_xml_params, - prompt_factory, - response_schema_prompt, -) -from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler -from litellm.types.llms.openai import ( - AllMessageValues, - ChatCompletionToolParam, - ChatCompletionToolParamFunctionChunk, -) -from litellm.types.utils import ResponseFormatChunk -from litellm.utils import CustomStreamWrapper, ModelResponse, Usage +from litellm.types.llms.openai import AllMessageValues from ....anthropic.chat.transformation import AnthropicConfig diff --git a/litellm/llms/vertex_ai/vertex_ai_partner_models/llama3/transformation.py b/litellm/llms/vertex_ai/vertex_ai_partner_models/llama3/transformation.py index 2170a92418c2..331d378c84d1 100644 --- a/litellm/llms/vertex_ai/vertex_ai_partner_models/llama3/transformation.py +++ b/litellm/llms/vertex_ai/vertex_ai_partner_models/llama3/transformation.py @@ -1,5 +1,5 @@ import types -from typing import Callable, Literal, Optional, Union +from typing import Optional import litellm diff --git a/litellm/llms/vertex_ai/vertex_ai_partner_models/main.py b/litellm/llms/vertex_ai/vertex_ai_partner_models/main.py index 656277169dd6..344f66682f19 100644 --- a/litellm/llms/vertex_ai/vertex_ai_partner_models/main.py +++ b/litellm/llms/vertex_ai/vertex_ai_partner_models/main.py @@ -1,8 +1,7 @@ # What is this? ## API Handler for calling Vertex AI Partner Models -import types from enum import Enum -from typing import Callable, Literal, Optional, Union +from typing import Callable, Optional, Union import httpx # type: ignore @@ -88,13 +87,11 @@ def completion( ): try: import vertexai - from google.cloud import aiplatform from litellm.llms.anthropic.chat import AnthropicChatCompletion from litellm.llms.codestral.completion.handler import ( CodestralTextCompletion, ) - from litellm.llms.openai.openai import OpenAIChatCompletion from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( VertexLLM, diff --git a/litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py b/litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py index d1634f11089d..0f73db30a0ac 100644 --- a/litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py +++ b/litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py @@ -1,13 +1,8 @@ -import json -import os -import types -from typing import Any, Literal, Optional, Union, cast +from typing import Literal, Optional, Union import httpx -from pydantic import BaseModel import litellm -from litellm._logging import verbose_logger from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObject from litellm.llms.custom_httpx.http_handler import ( AsyncHTTPHandler, @@ -18,9 +13,8 @@ from litellm.llms.vertex_ai.vertex_ai_non_gemini import VertexAIError from litellm.llms.vertex_ai.vertex_llm_base import VertexBase from litellm.types.llms.vertex_ai import * -from litellm.types.utils import EmbeddingResponse, Usage +from litellm.types.utils import EmbeddingResponse -from .transformation import VertexAITextEmbeddingConfig from .types import * diff --git a/litellm/llms/vertex_ai/vertex_embeddings/transformation.py b/litellm/llms/vertex_ai/vertex_embeddings/transformation.py index 00f384c32c23..41eb65be6970 100644 --- a/litellm/llms/vertex_ai/vertex_embeddings/transformation.py +++ b/litellm/llms/vertex_ai/vertex_embeddings/transformation.py @@ -3,7 +3,6 @@ from pydantic import BaseModel -import litellm from litellm.types.utils import EmbeddingResponse, Usage from .types import * diff --git a/litellm/llms/vertex_ai/vertex_embeddings/types.py b/litellm/llms/vertex_ai/vertex_embeddings/types.py index 43330551682b..c0c53b170c45 100644 --- a/litellm/llms/vertex_ai/vertex_embeddings/types.py +++ b/litellm/llms/vertex_ai/vertex_embeddings/types.py @@ -3,7 +3,7 @@ """ from enum import Enum -from typing import List, Literal, Optional, TypedDict, Union +from typing import List, Optional, TypedDict, Union class TaskType(str, Enum): diff --git a/litellm/llms/vertex_ai/vertex_llm_base.py b/litellm/llms/vertex_ai/vertex_llm_base.py index cf130bb1427b..71346a2e0198 100644 --- a/litellm/llms/vertex_ai/vertex_llm_base.py +++ b/litellm/llms/vertex_ai/vertex_llm_base.py @@ -6,20 +6,14 @@ import json import os -from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Tuple +from typing import TYPE_CHECKING, Any, Literal, Optional, Tuple from litellm._logging import verbose_logger from litellm.litellm_core_utils.asyncify import asyncify from litellm.llms.base import BaseLLM from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler -from .common_utils import ( - VertexAIError, - _get_gemini_url, - _get_vertex_url, - all_gemini_url_modes, - get_supports_system_message, -) +from .common_utils import _get_gemini_url, _get_vertex_url, all_gemini_url_modes if TYPE_CHECKING: from google.auth.credentials import Credentials as GoogleCredentialsObject @@ -44,7 +38,6 @@ def load_auth( ) -> Tuple[Any, str]: import google.auth as google_auth from google.auth import identity_pool - from google.auth.credentials import Credentials # type: ignore[import-untyped] from google.auth.transport.requests import ( Request, # type: ignore[import-untyped] ) diff --git a/litellm/llms/vertex_ai/vertex_model_garden/main.py b/litellm/llms/vertex_ai/vertex_model_garden/main.py index 8d1e0c9db2fa..20ee38e97916 100644 --- a/litellm/llms/vertex_ai/vertex_model_garden/main.py +++ b/litellm/llms/vertex_ai/vertex_model_garden/main.py @@ -16,13 +16,10 @@ Vertex Documentation for using the OpenAI /chat/completions endpoint: https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama3_deployment.ipynb """ -import types -from enum import Enum -from typing import Callable, Literal, Optional, Union +from typing import Callable, Optional, Union import httpx # type: ignore -import litellm from litellm.utils import ModelResponse from ..common_utils import VertexAIError @@ -73,7 +70,6 @@ def completion( """ try: import vertexai - from google.cloud import aiplatform from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( diff --git a/litellm/llms/vllm/completion/handler.py b/litellm/llms/vllm/completion/handler.py index a64ed8974a2d..1f13082917f6 100644 --- a/litellm/llms/vllm/completion/handler.py +++ b/litellm/llms/vllm/completion/handler.py @@ -1,8 +1,5 @@ -import json -import os import time # type: ignore -from enum import Enum -from typing import Any, Callable +from typing import Callable import httpx @@ -30,7 +27,7 @@ def __init__(self, status_code, message): def validate_environment(model: str): global llm try: - from vllm import LLM, SamplingParams # type: ignore + from vllm import LLM, SamplingParams # type: ignore if llm is None: llm = LLM(model=model) diff --git a/litellm/llms/vllm/completion/transformation.py b/litellm/llms/vllm/completion/transformation.py index 022812b769ec..ec4c07e95d8d 100644 --- a/litellm/llms/vllm/completion/transformation.py +++ b/litellm/llms/vllm/completion/transformation.py @@ -4,10 +4,6 @@ NOT RECOMMENDED FOR PRODUCTION USE. Use `hosted_vllm/` instead. """ -from typing import List - -from litellm.types.llms.openai import AllMessageValues - from ...hosted_vllm.chat.transformation import HostedVLLMChatConfig diff --git a/litellm/llms/volcengine.py b/litellm/llms/volcengine.py index a8ecb676637f..e4a78104f482 100644 --- a/litellm/llms/volcengine.py +++ b/litellm/llms/volcengine.py @@ -1,7 +1,5 @@ -import types -from typing import Literal, Optional, Union +from typing import Optional, Union -import litellm from litellm.llms.openai_like.chat.transformation import OpenAILikeChatConfig diff --git a/litellm/llms/voyage/embedding/transformation.py b/litellm/llms/voyage/embedding/transformation.py index 6d4fb89ddc5f..2a51bdde1417 100644 --- a/litellm/llms/voyage/embedding/transformation.py +++ b/litellm/llms/voyage/embedding/transformation.py @@ -1,16 +1,13 @@ -import json -from typing import Any, List, Optional, Tuple, Union +from typing import List, Optional, Union import httpx -import litellm -from litellm._logging import verbose_logger from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.llms.base_llm.chat.transformation import BaseLLMException from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig from litellm.secret_managers.main import get_secret_str from litellm.types.llms.openai import AllMessageValues -from litellm.types.utils import EmbeddingResponse, ModelResponse, Usage +from litellm.types.utils import EmbeddingResponse, Usage class VoyageError(BaseLLMException): diff --git a/litellm/llms/watsonx/chat/transformation.py b/litellm/llms/watsonx/chat/transformation.py index 6e9dbe733c16..5df943005715 100644 --- a/litellm/llms/watsonx/chat/transformation.py +++ b/litellm/llms/watsonx/chat/transformation.py @@ -4,14 +4,9 @@ Docs: https://cloud.ibm.com/apidocs/watsonx-ai#text-chat """ -import types from typing import List, Optional, Tuple, Union -from pydantic import BaseModel - -import litellm from litellm.secret_managers.main import get_secret_str -from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage from ....utils import _remove_additional_properties, _remove_strict_from_schema from ...openai.chat.gpt_transformation import OpenAIGPTConfig diff --git a/litellm/llms/watsonx/completion/handler.py b/litellm/llms/watsonx/completion/handler.py index df8600e99d81..2d3760e8814f 100644 --- a/litellm/llms/watsonx/completion/handler.py +++ b/litellm/llms/watsonx/completion/handler.py @@ -1,18 +1,13 @@ import asyncio import json # noqa: E401 import time -import types from contextlib import asynccontextmanager, contextmanager from datetime import datetime -from enum import Enum from typing import ( Any, - AsyncContextManager, AsyncGenerator, AsyncIterator, Callable, - ContextManager, - Dict, Generator, Iterator, List, @@ -26,17 +21,13 @@ import litellm from litellm.litellm_core_utils.prompt_templates import factory as ptf from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper -from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - get_async_httpx_client, -) -from litellm.secret_managers.main import get_secret_str +from litellm.llms.custom_httpx.http_handler import get_async_httpx_client from litellm.types.llms.openai import AllMessageValues from litellm.types.llms.watsonx import WatsonXAIEndpoint from litellm.utils import EmbeddingResponse, ModelResponse, Usage, map_finish_reason from ...base import BaseLLM -from ..common_utils import WatsonXAIError, _get_api_params, generate_iam_token +from ..common_utils import WatsonXAIError, _get_api_params from .transformation import IBMWatsonXAIConfig diff --git a/litellm/llms/watsonx/completion/transformation.py b/litellm/llms/watsonx/completion/transformation.py index dd5657763308..e1706291d5a8 100644 --- a/litellm/llms/watsonx/completion/transformation.py +++ b/litellm/llms/watsonx/completion/transformation.py @@ -1,43 +1,13 @@ -import asyncio -import json # noqa: E401 -import time -import types -from contextlib import asynccontextmanager, contextmanager -from datetime import datetime -from enum import Enum -from typing import ( - TYPE_CHECKING, - Any, - AsyncContextManager, - AsyncGenerator, - AsyncIterator, - Callable, - ContextManager, - Dict, - Generator, - Iterator, - List, - Optional, - Union, -) +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union import httpx -import litellm -from litellm.litellm_core_utils.prompt_templates import factory as ptf from litellm.llms.base_llm.chat.transformation import BaseLLMException -from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, - get_async_httpx_client, -) -from litellm.secret_managers.main import get_secret_str from litellm.types.llms.openai import AllMessageValues -from litellm.types.llms.watsonx import WatsonXAIEndpoint -from litellm.utils import EmbeddingResponse, ModelResponse, Usage, map_finish_reason +from litellm.utils import ModelResponse -from ...base import BaseLLM from ...base_llm.chat.transformation import BaseConfig -from ..common_utils import WatsonXAIError, _get_api_params, generate_iam_token +from ..common_utils import WatsonXAIError if TYPE_CHECKING: from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj diff --git a/litellm/llms/xai/chat/transformation.py b/litellm/llms/xai/chat/transformation.py index 64dd52bd11fa..734c6eb2e08f 100644 --- a/litellm/llms/xai/chat/transformation.py +++ b/litellm/llms/xai/chat/transformation.py @@ -1,5 +1,4 @@ -import types -from typing import Literal, Optional, Tuple, Union +from typing import Optional, Tuple from litellm.secret_managers.main import get_secret_str diff --git a/litellm/proxy/_types.py b/litellm/proxy/_types.py index 2c2fee5dbc2e..592adb2c640b 100644 --- a/litellm/proxy/_types.py +++ b/litellm/proxy/_types.py @@ -1,16 +1,12 @@ import enum import json -import os -import sys -import traceback import uuid -from dataclasses import fields from datetime import datetime from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union import httpx -from pydantic import BaseModel, ConfigDict, Extra, Field, Json, model_validator -from typing_extensions import Annotated, TypedDict +from pydantic import BaseModel, ConfigDict, Field, Json, model_validator +from typing_extensions import TypedDict from litellm.types.integrations.slack_alerting import AlertType from litellm.types.router import RouterErrors, UpdateRouterConfig diff --git a/litellm/proxy/analytics_endpoints/analytics_endpoints.py b/litellm/proxy/analytics_endpoints/analytics_endpoints.py index e7e87979c77e..f929cb74e400 100644 --- a/litellm/proxy/analytics_endpoints/analytics_endpoints.py +++ b/litellm/proxy/analytics_endpoints/analytics_endpoints.py @@ -1,12 +1,10 @@ #### Analytics Endpoints ##### -from datetime import datetime, timedelta, timezone +from datetime import datetime from typing import List, Optional import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Request, status +from fastapi import APIRouter, Depends, HTTPException, status -import litellm -from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth @@ -53,7 +51,6 @@ async def get_global_activity( "sum_llm_api_calls": 2012 } """ - from collections import defaultdict if start_date is None or end_date is None: raise HTTPException( @@ -64,7 +61,7 @@ async def get_global_activity( start_date_obj = datetime.strptime(start_date, "%Y-%m-%d") end_date_obj = datetime.strptime(end_date, "%Y-%m-%d") - from litellm.proxy.proxy_server import llm_router, prisma_client + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: diff --git a/litellm/proxy/auth/auth_checks.py b/litellm/proxy/auth/auth_checks.py index 2127dfb50906..c01081abebf9 100644 --- a/litellm/proxy/auth/auth_checks.py +++ b/litellm/proxy/auth/auth_checks.py @@ -11,10 +11,8 @@ import time import traceback -from datetime import datetime from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional -import httpx from pydantic import BaseModel import litellm @@ -36,7 +34,7 @@ from litellm.proxy.auth.route_checks import RouteChecks from litellm.proxy.utils import PrismaClient, ProxyLogging, log_db_metrics from litellm.router import Router -from litellm.types.services import ServiceLoggerPayload, ServiceTypes +from litellm.types.services import ServiceTypes from .auth_checks_organization import organization_role_based_access_check diff --git a/litellm/proxy/auth/auth_utils.py b/litellm/proxy/auth/auth_utils.py index 046f94325f63..f73e045075bd 100644 --- a/litellm/proxy/auth/auth_utils.py +++ b/litellm/proxy/auth/auth_utils.py @@ -1,6 +1,6 @@ +import os import re import sys -import traceback from typing import Any, List, Optional, Tuple from fastapi import HTTPException, Request, status @@ -8,10 +8,7 @@ from litellm import Router, provider_list from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * -from litellm.types.router import ( - CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS, - ConfigurableClientsideParamsCustomAuth, -) +from litellm.types.router import CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS def _get_request_ip_address( @@ -266,7 +263,6 @@ def route_in_additonal_public_routes(current_route: str): """ # check if user is premium_user - if not do nothing - from litellm.proxy._types import LiteLLMRoutes from litellm.proxy.proxy_server import general_settings, premium_user try: diff --git a/litellm/proxy/auth/litellm_license.py b/litellm/proxy/auth/litellm_license.py index a736a1f5e819..67ec91f51af7 100644 --- a/litellm/proxy/auth/litellm_license.py +++ b/litellm/proxy/auth/litellm_license.py @@ -3,7 +3,6 @@ import base64 import json import os -import traceback from datetime import datetime from typing import Optional @@ -30,8 +29,7 @@ def __init__(self) -> None: def read_public_key(self): try: - from cryptography.hazmat.primitives import hashes, serialization - from cryptography.hazmat.primitives.asymmetric import padding, rsa + from cryptography.hazmat.primitives import serialization # current dir current_dir = os.path.dirname(os.path.realpath(__file__)) @@ -129,8 +127,8 @@ def is_premium(self) -> bool: def verify_license_without_api_request(self, public_key, license_key): try: - from cryptography.hazmat.primitives import hashes, serialization - from cryptography.hazmat.primitives.asymmetric import padding, rsa + from cryptography.hazmat.primitives import hashes + from cryptography.hazmat.primitives.asymmetric import padding # Decode the license key decoded = base64.b64decode(license_key) diff --git a/litellm/proxy/auth/oauth2_check.py b/litellm/proxy/auth/oauth2_check.py index 85a112ef1fae..4851c27012b7 100644 --- a/litellm/proxy/auth/oauth2_check.py +++ b/litellm/proxy/auth/oauth2_check.py @@ -15,7 +15,6 @@ async def check_oauth2_token(token: str) -> UserAPIKeyAuth: ValueError: If the token is invalid, the request fails, or the token info endpoint is not set. """ import os - from typing import Literal import httpx diff --git a/litellm/proxy/auth/rds_iam_token.py b/litellm/proxy/auth/rds_iam_token.py index 474a9cac26a3..053cdb91f178 100644 --- a/litellm/proxy/auth/rds_iam_token.py +++ b/litellm/proxy/auth/rds_iam_token.py @@ -164,8 +164,6 @@ def generate_iam_auth_token( ) -> str: from urllib.parse import quote - import boto3 - if client is None: boto_client = init_rds_client( aws_region_name=os.getenv("AWS_REGION_NAME"), diff --git a/litellm/proxy/auth/route_checks.py b/litellm/proxy/auth/route_checks.py index 4deb4468e066..0524a1d8f721 100644 --- a/litellm/proxy/auth/route_checks.py +++ b/litellm/proxy/auth/route_checks.py @@ -11,10 +11,8 @@ LitellmUserRoles, UserAPIKeyAuth, ) -from litellm.proxy.utils import hash_token from .auth_checks_organization import _user_is_org_admin -from .auth_utils import _has_user_setup_sso class RouteChecks: diff --git a/litellm/proxy/auth/user_api_key_auth.py b/litellm/proxy/auth/user_api_key_auth.py index acd7b9ebba1b..8f82cdcf819b 100644 --- a/litellm/proxy/auth/user_api_key_auth.py +++ b/litellm/proxy/auth/user_api_key_auth.py @@ -8,42 +8,13 @@ """ import asyncio -import json import secrets -import time -import traceback -from datetime import datetime, timedelta, timezone -from typing import Optional, Tuple -from uuid import uuid4 +from datetime import datetime, timezone +from typing import Optional import fastapi -from fastapi import ( - Depends, - FastAPI, - File, - Form, - Header, - HTTPException, - Path, - Request, - Response, - UploadFile, - WebSocket, - WebSocketDisconnect, - status, -) -from fastapi.middleware.cors import CORSMiddleware -from fastapi.openapi.utils import get_openapi -from fastapi.responses import ( - FileResponse, - JSONResponse, - ORJSONResponse, - RedirectResponse, - StreamingResponse, -) +from fastapi import HTTPException, Request, WebSocket, status from fastapi.security.api_key import APIKeyHeader -from fastapi.staticfiles import StaticFiles -from pydantic import BaseModel import litellm from litellm._logging import verbose_logger, verbose_proxy_logger @@ -61,11 +32,9 @@ get_org_object, get_team_object, get_user_object, - log_db_metrics, ) from litellm.proxy.auth.auth_utils import ( _get_request_ip_address, - _has_user_setup_sso, get_request_route, is_pass_through_provider_route, pre_db_read_auth_checks, diff --git a/litellm/proxy/caching_routes.py b/litellm/proxy/caching_routes.py index eacd997d3d31..d03c43b6f788 100644 --- a/litellm/proxy/caching_routes.py +++ b/litellm/proxy/caching_routes.py @@ -1,5 +1,4 @@ import copy -from typing import Optional from fastapi import APIRouter, Depends, HTTPException, Request diff --git a/litellm/proxy/common_utils/admin_ui_utils.py b/litellm/proxy/common_utils/admin_ui_utils.py index bd45fc627ed4..204032acb9e0 100644 --- a/litellm/proxy/common_utils/admin_ui_utils.py +++ b/litellm/proxy/common_utils/admin_ui_utils.py @@ -1,5 +1,4 @@ import os -import subprocess def show_missing_vars_in_env(): diff --git a/litellm/proxy/common_utils/callback_utils.py b/litellm/proxy/common_utils/callback_utils.py index fa7208d3c0b7..b8788384a4a1 100644 --- a/litellm/proxy/common_utils/callback_utils.py +++ b/litellm/proxy/common_utils/callback_utils.py @@ -1,8 +1,7 @@ -import sys -from typing import Any, Dict, List, Optional, get_args +from typing import Any, Dict, List, Optional import litellm -from litellm import get_secret, get_secret_str +from litellm import get_secret from litellm._logging import verbose_proxy_logger from litellm.proxy._types import CommonProxyErrors, LiteLLMPromptInjectionParams from litellm.proxy.utils import get_instance_fn diff --git a/litellm/proxy/common_utils/debug_utils.py b/litellm/proxy/common_utils/debug_utils.py index ebbe776e9b7c..fdfbe0cb7c50 100644 --- a/litellm/proxy/common_utils/debug_utils.py +++ b/litellm/proxy/common_utils/debug_utils.py @@ -5,8 +5,7 @@ from fastapi import APIRouter -import litellm -from litellm import get_secret, get_secret_str +from litellm import get_secret_str from litellm._logging import verbose_proxy_logger router = APIRouter() @@ -116,7 +115,6 @@ async def memory_usage_in_mem_cache_items(): @router.get("/otel-spans", include_in_schema=False) async def get_otel_spans(): - from litellm.integrations.opentelemetry import OpenTelemetry from litellm.proxy.proxy_server import open_telemetry_logger if open_telemetry_logger is None: diff --git a/litellm/proxy/common_utils/encrypt_decrypt_utils.py b/litellm/proxy/common_utils/encrypt_decrypt_utils.py index 4c04942d0287..ac2caa9a010b 100644 --- a/litellm/proxy/common_utils/encrypt_decrypt_utils.py +++ b/litellm/proxy/common_utils/encrypt_decrypt_utils.py @@ -40,7 +40,6 @@ def encrypt_value_helper(value: str): def decrypt_value_helper(value: str): - from litellm.proxy.proxy_server import master_key signing_key = _get_salt_key() diff --git a/litellm/proxy/common_utils/http_parsing_utils.py b/litellm/proxy/common_utils/http_parsing_utils.py index 36056d316d02..16220a418b95 100644 --- a/litellm/proxy/common_utils/http_parsing_utils.py +++ b/litellm/proxy/common_utils/http_parsing_utils.py @@ -1,4 +1,3 @@ -import ast import json from typing import Dict, List, Optional diff --git a/litellm/proxy/common_utils/load_config_utils.py b/litellm/proxy/common_utils/load_config_utils.py index f262837d9226..38e7b3f33b26 100644 --- a/litellm/proxy/common_utils/load_config_utils.py +++ b/litellm/proxy/common_utils/load_config_utils.py @@ -9,7 +9,6 @@ def get_file_contents_from_s3(bucket_name, object_key): import tempfile import boto3 - from botocore.config import Config from botocore.credentials import Credentials from litellm.main import bedrock_converse_chat_completion diff --git a/litellm/proxy/config_management_endpoints/pass_through_endpoints.py b/litellm/proxy/config_management_endpoints/pass_through_endpoints.py index 237f1b74b2a2..5ff02b8bce0b 100644 --- a/litellm/proxy/config_management_endpoints/pass_through_endpoints.py +++ b/litellm/proxy/config_management_endpoints/pass_through_endpoints.py @@ -4,29 +4,8 @@ CRUD endpoints for managing pass-through endpoints """ -import asyncio -import traceback -from datetime import datetime, timedelta, timezone -from typing import List, Optional +from fastapi import APIRouter, Depends, Request, Response -import fastapi -import httpx -from fastapi import ( - APIRouter, - Depends, - File, - Form, - Header, - HTTPException, - Request, - Response, - UploadFile, - status, -) - -import litellm -from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth diff --git a/litellm/proxy/custom_sso.py b/litellm/proxy/custom_sso.py index 3db459f9da09..210e9eea3dcb 100644 --- a/litellm/proxy/custom_sso.py +++ b/litellm/proxy/custom_sso.py @@ -12,15 +12,10 @@ - User signed in to UI """ -from fastapi import Request from fastapi_sso.sso.base import OpenID from litellm.proxy._types import LitellmUserRoles, SSOUserDefinedValues -from litellm.proxy.management_endpoints.internal_user_endpoints import ( - new_user, - user_info, -) -from litellm.proxy.management_endpoints.team_endpoints import add_new_member +from litellm.proxy.management_endpoints.internal_user_endpoints import user_info async def custom_sso_handler(userIDPInfo: OpenID) -> SSOUserDefinedValues: diff --git a/litellm/proxy/db/dynamo_db.py b/litellm/proxy/db/dynamo_db.py index 848133bf39b8..628509d9c361 100644 --- a/litellm/proxy/db/dynamo_db.py +++ b/litellm/proxy/db/dynamo_db.py @@ -2,20 +2,9 @@ Deprecated. Only PostgresSQL is supported. """ -import json -from datetime import datetime -from typing import Any, List, Literal, Optional, Union - from litellm._logging import verbose_proxy_logger -from litellm.proxy._types import ( - DynamoDBArgs, - LiteLLM_Config, - LiteLLM_UserTable, - LiteLLM_VerificationToken, -) +from litellm.proxy._types import DynamoDBArgs from litellm.proxy.db.base_client import CustomDB -from litellm.proxy.utils import hash_token -from litellm.secret_managers.main import get_secret class DynamoDBWrapper(CustomDB): @@ -24,21 +13,7 @@ class DynamoDBWrapper(CustomDB): credentials: Credentials def __init__(self, database_arguments: DynamoDBArgs): - from aiodynamo.client import Client - from aiodynamo.credentials import Credentials - from aiodynamo.expressions import F, UpdateExpression, Value - from aiodynamo.http.aiohttp import AIOHTTP - from aiodynamo.http.httpx import HTTPX - from aiodynamo.models import ( - KeySchema, - KeySpec, - KeyType, - PayPerRequest, - ReturnValues, - Throughput, - ) - from aiohttp import ClientSession - from yarl import URL + from aiodynamo.models import PayPerRequest, Throughput self.throughput_type = None if database_arguments.billing_mode == "PAY_PER_REQUEST": diff --git a/litellm/proxy/db/log_db_metrics.py b/litellm/proxy/db/log_db_metrics.py index e8040ae60529..cead4dc681fd 100644 --- a/litellm/proxy/db/log_db_metrics.py +++ b/litellm/proxy/db/log_db_metrics.py @@ -35,7 +35,6 @@ def log_db_metrics(func): @wraps(func) async def wrapper(*args, **kwargs): - from prisma.errors import PrismaError start_time: datetime = datetime.now() diff --git a/litellm/proxy/db/prisma_client.py b/litellm/proxy/db/prisma_client.py index 76e425bf2cb9..54d59bd34700 100644 --- a/litellm/proxy/db/prisma_client.py +++ b/litellm/proxy/db/prisma_client.py @@ -7,7 +7,7 @@ import urllib import urllib.parse from datetime import datetime, timedelta -from typing import Any, Callable, Optional +from typing import Any, Optional from litellm.secret_managers.main import str_to_bool diff --git a/litellm/proxy/fine_tuning_endpoints/endpoints.py b/litellm/proxy/fine_tuning_endpoints/endpoints.py index 02110458e70f..b7b31c8408e3 100644 --- a/litellm/proxy/fine_tuning_endpoints/endpoints.py +++ b/litellm/proxy/fine_tuning_endpoints/endpoints.py @@ -7,27 +7,12 @@ import asyncio import traceback -from datetime import datetime, timedelta, timezone -from typing import List, Optional - -import fastapi -import httpx -from fastapi import ( - APIRouter, - Depends, - File, - Form, - Header, - HTTPException, - Request, - Response, - UploadFile, - status, -) +from typing import Optional + +from fastapi import APIRouter, Depends, HTTPException, Request, Response, status import litellm from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth diff --git a/litellm/proxy/guardrails/guardrail_hooks/aporia_ai.py b/litellm/proxy/guardrails/guardrail_hooks/aporia_ai.py index 3795155b4105..6ead4f0d022b 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/aporia_ai.py +++ b/litellm/proxy/guardrails/guardrail_hooks/aporia_ai.py @@ -11,27 +11,19 @@ sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import asyncio import json import sys -import traceback -import uuid -from datetime import datetime -from typing import Any, List, Literal, Optional, Union +from typing import Any, List, Literal, Optional -import aiohttp -import httpx from fastapi import HTTPException import litellm from litellm._logging import verbose_proxy_logger -from litellm.caching.caching import DualCache from litellm.integrations.custom_guardrail import CustomGuardrail from litellm.litellm_core_utils.logging_utils import ( convert_litellm_response_object_to_str, ) from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) diff --git a/litellm/proxy/guardrails/guardrail_hooks/bedrock_guardrails.py b/litellm/proxy/guardrails/guardrail_hooks/bedrock_guardrails.py index 7a238176552f..4668b1728449 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/bedrock_guardrails.py +++ b/litellm/proxy/guardrails/guardrail_hooks/bedrock_guardrails.py @@ -11,33 +11,21 @@ sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path -import asyncio import json import sys -import traceback -import uuid -from datetime import datetime from typing import Any, Dict, List, Literal, Optional, Union -import aiohttp -import httpx from fastapi import HTTPException import litellm from litellm._logging import verbose_proxy_logger -from litellm.caching.caching import DualCache from litellm.integrations.custom_guardrail import CustomGuardrail -from litellm.litellm_core_utils.logging_utils import ( - convert_litellm_response_object_to_str, -) from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) from litellm.proxy._types import UserAPIKeyAuth -from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata from litellm.secret_managers.main import get_secret from litellm.types.guardrails import ( BedrockContentItem, @@ -167,10 +155,8 @@ def _prepare_request( extra_headers: Optional[dict] = None, ): try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") diff --git a/litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py b/litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py index d00586b294c1..4e6bab635242 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py +++ b/litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py @@ -1,12 +1,10 @@ -from typing import Any, Dict, List, Literal, Optional, Union +from typing import Literal, Optional, Union import litellm from litellm._logging import verbose_proxy_logger from litellm.caching.caching import DualCache from litellm.integrations.custom_guardrail import CustomGuardrail from litellm.proxy._types import UserAPIKeyAuth -from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata -from litellm.types.guardrails import GuardrailEventHooks class myCustomGuardrail(CustomGuardrail): diff --git a/litellm/proxy/guardrails/guardrail_hooks/guardrails_ai.py b/litellm/proxy/guardrails/guardrail_hooks/guardrails_ai.py index 2dd08432a74d..092fbe8ea5f7 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/guardrails_ai.py +++ b/litellm/proxy/guardrails/guardrail_hooks/guardrails_ai.py @@ -6,25 +6,21 @@ # Thank you for using Litellm! - Krrish & Ishaan import json -from typing import Any, Dict, List, Literal, Optional, TypedDict, Union +from typing import Optional, TypedDict from fastapi import HTTPException import litellm from litellm._logging import verbose_proxy_logger -from litellm.caching.caching import DualCache from litellm.integrations.custom_guardrail import CustomGuardrail from litellm.litellm_core_utils.prompt_templates.common_utils import ( - convert_openai_message_to_only_content_messages, get_content_from_model_response, ) from litellm.proxy._types import UserAPIKeyAuth from litellm.proxy.common_utils.callback_utils import ( add_guardrail_to_applied_guardrails_header, ) -from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata from litellm.types.guardrails import GuardrailEventHooks -from litellm.types.llms.openai import AllMessageValues class GuardrailsAIResponse(TypedDict): diff --git a/litellm/proxy/guardrails/guardrail_hooks/lakera_ai.py b/litellm/proxy/guardrails/guardrail_hooks/lakera_ai.py index 7eab3588af8c..14e0a7eee69b 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/lakera_ai.py +++ b/litellm/proxy/guardrails/guardrail_hooks/lakera_ai.py @@ -13,7 +13,7 @@ ) # Adds the parent directory to the system path import json import sys -from typing import Dict, List, Literal, Optional, TypedDict, Union +from typing import Dict, List, Literal, Optional, Union import httpx from fastapi import HTTPException @@ -22,7 +22,6 @@ from litellm._logging import verbose_proxy_logger from litellm.integrations.custom_guardrail import CustomGuardrail from litellm.llms.custom_httpx.http_handler import ( - AsyncHTTPHandler, get_async_httpx_client, httpxSpecialProvider, ) diff --git a/litellm/proxy/guardrails/guardrail_hooks/presidio.py b/litellm/proxy/guardrails/guardrail_hooks/presidio.py index 384b2cb9999b..a585d43e6d6a 100644 --- a/litellm/proxy/guardrails/guardrail_hooks/presidio.py +++ b/litellm/proxy/guardrails/guardrail_hooks/presidio.py @@ -10,12 +10,10 @@ import asyncio import json -import traceback import uuid from typing import Any, List, Optional, Tuple, Union import aiohttp -from fastapi import HTTPException from pydantic import BaseModel import litellm # noqa: E401 @@ -30,7 +28,6 @@ ImageResponse, ModelResponse, StreamingChoices, - get_formatted_prompt, ) @@ -257,7 +254,6 @@ async def async_pre_call_hook( def logging_hook( self, kwargs: dict, result: Any, call_type: str ) -> Tuple[dict, Any]: - import threading from concurrent.futures import ThreadPoolExecutor def run_in_new_loop(): diff --git a/litellm/proxy/guardrails/init_guardrails.py b/litellm/proxy/guardrails/init_guardrails.py index baec7a6407fb..59c9f0c335b7 100644 --- a/litellm/proxy/guardrails/init_guardrails.py +++ b/litellm/proxy/guardrails/init_guardrails.py @@ -1,8 +1,5 @@ import importlib -import traceback -from typing import Dict, List, Literal, Optional - -from pydantic import BaseModel, RootModel +from typing import Dict, List, Optional import litellm from litellm import get_secret @@ -239,8 +236,6 @@ def init_guardrails_v2( # noqa: PLR0915 ) import os - from litellm.proxy.utils import get_instance_fn - # Custom guardrail _guardrail = litellm_params["guardrail"] _file_name, _class_name = _guardrail.split(".") diff --git a/litellm/proxy/health_check.py b/litellm/proxy/health_check.py index 596648638cd3..78973434c676 100644 --- a/litellm/proxy/health_check.py +++ b/litellm/proxy/health_check.py @@ -6,7 +6,6 @@ from typing import List, Optional import litellm -from litellm._logging import print_verbose logger = logging.getLogger(__name__) diff --git a/litellm/proxy/health_endpoints/_health_endpoints.py b/litellm/proxy/health_endpoints/_health_endpoints.py index e12e836de12d..95801f2be691 100644 --- a/litellm/proxy/health_endpoints/_health_endpoints.py +++ b/litellm/proxy/health_endpoints/_health_endpoints.py @@ -6,7 +6,7 @@ from typing import Literal, Optional, Union import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Request, Response, status +from fastapi import APIRouter, Depends, HTTPException, Request, Response, status import litellm from litellm._logging import verbose_proxy_logger @@ -473,7 +473,7 @@ async def health_readiness(): """ Unprotected endpoint for checking if worker can receive requests """ - from litellm.proxy.proxy_server import prisma_client, proxy_logging_obj, version + from litellm.proxy.proxy_server import prisma_client, version try: # get success callback diff --git a/litellm/proxy/hooks/azure_content_safety.py b/litellm/proxy/hooks/azure_content_safety.py index 4a5db3b204aa..b35d671117b8 100644 --- a/litellm/proxy/hooks/azure_content_safety.py +++ b/litellm/proxy/hooks/azure_content_safety.py @@ -1,6 +1,4 @@ -import sys import traceback -import uuid from typing import Optional from fastapi import HTTPException diff --git a/litellm/proxy/hooks/batch_redis_get.py b/litellm/proxy/hooks/batch_redis_get.py index a6b69e99f6d6..c608317f4ebe 100644 --- a/litellm/proxy/hooks/batch_redis_get.py +++ b/litellm/proxy/hooks/batch_redis_get.py @@ -3,7 +3,6 @@ ## This reduces the number of REDIS GET requests made during high-traffic by the proxy. ### [BETA] this is in Beta. And might change. -import json import traceback from typing import Literal, Optional diff --git a/litellm/proxy/hooks/cache_control_check.py b/litellm/proxy/hooks/cache_control_check.py index a5e53fc2f3d7..4cf1668c2204 100644 --- a/litellm/proxy/hooks/cache_control_check.py +++ b/litellm/proxy/hooks/cache_control_check.py @@ -1,7 +1,6 @@ # What this does? ## Checks if key is allowed to use the cache controls passed in to the completion() call -import traceback from fastapi import HTTPException diff --git a/litellm/proxy/hooks/dynamic_rate_limiter.py b/litellm/proxy/hooks/dynamic_rate_limiter.py index f0b8113c4b91..15a9bc1ba81a 100644 --- a/litellm/proxy/hooks/dynamic_rate_limiter.py +++ b/litellm/proxy/hooks/dynamic_rate_limiter.py @@ -4,9 +4,6 @@ import asyncio import os -import sys -import traceback -from datetime import datetime from typing import List, Literal, Optional, Tuple, Union from fastapi import HTTPException diff --git a/litellm/proxy/hooks/key_management_event_hooks.py b/litellm/proxy/hooks/key_management_event_hooks.py index 7becd32600db..0a55f364c7a0 100644 --- a/litellm/proxy/hooks/key_management_event_hooks.py +++ b/litellm/proxy/hooks/key_management_event_hooks.py @@ -2,7 +2,6 @@ import json import uuid from datetime import datetime, timezone -from re import A from typing import Any, List, Optional from fastapi import status @@ -26,6 +25,7 @@ # NOTE: This is the prefix for all virtual keys stored in AWS Secrets Manager LITELLM_PREFIX_STORED_VIRTUAL_KEYS = "litellm/" + class KeyManagementEventHooks: @staticmethod @@ -46,11 +46,7 @@ async def async_key_generated_hook( from litellm.proxy.management_helpers.audit_logs import ( create_audit_log_for_update, ) - from litellm.proxy.proxy_server import ( - general_settings, - litellm_proxy_admin_name, - proxy_logging_obj, - ) + from litellm.proxy.proxy_server import litellm_proxy_admin_name if data.send_invite_email is True: await KeyManagementEventHooks._send_key_created_email(response) diff --git a/litellm/proxy/hooks/max_budget_limiter.py b/litellm/proxy/hooks/max_budget_limiter.py index c1c5b4b8019f..9697efff7b8e 100644 --- a/litellm/proxy/hooks/max_budget_limiter.py +++ b/litellm/proxy/hooks/max_budget_limiter.py @@ -1,5 +1,3 @@ -import traceback - from fastapi import HTTPException import litellm diff --git a/litellm/proxy/hooks/model_max_budget_limiter.py b/litellm/proxy/hooks/model_max_budget_limiter.py index 8ce6da8d19fa..5d5e56e014fd 100644 --- a/litellm/proxy/hooks/model_max_budget_limiter.py +++ b/litellm/proxy/hooks/model_max_budget_limiter.py @@ -1,14 +1,10 @@ import json -import traceback from typing import List, Optional -from fastapi import HTTPException - import litellm -from litellm import verbose_logger from litellm._logging import verbose_proxy_logger from litellm.caching.caching import DualCache -from litellm.integrations.custom_logger import CustomLogger, Span +from litellm.integrations.custom_logger import Span from litellm.proxy._types import UserAPIKeyAuth from litellm.router_strategy.budget_limiter import RouterBudgetLimiting from litellm.types.llms.openai import AllMessageValues diff --git a/litellm/proxy/hooks/parallel_request_limiter.py b/litellm/proxy/hooks/parallel_request_limiter.py index eea7eaf91dab..b1a2716a4e84 100644 --- a/litellm/proxy/hooks/parallel_request_limiter.py +++ b/litellm/proxy/hooks/parallel_request_limiter.py @@ -1,6 +1,5 @@ import asyncio import sys -import traceback from datetime import datetime, timedelta from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, TypedDict, Union diff --git a/litellm/proxy/hooks/prompt_injection_detection.py b/litellm/proxy/hooks/prompt_injection_detection.py index 19e152c2c5a1..b1b2bbee5c43 100644 --- a/litellm/proxy/hooks/prompt_injection_detection.py +++ b/litellm/proxy/hooks/prompt_injection_detection.py @@ -7,14 +7,10 @@ ## Reject a call if it contains a prompt injection attack. -import json -import re -import traceback from difflib import SequenceMatcher from typing import List, Literal, Optional from fastapi import HTTPException -from typing_extensions import overload import litellm from litellm._logging import verbose_proxy_logger diff --git a/litellm/proxy/litellm_pre_call_utils.py b/litellm/proxy/litellm_pre_call_utils.py index 325aff881db4..b361eeeeab0b 100644 --- a/litellm/proxy/litellm_pre_call_utils.py +++ b/litellm/proxy/litellm_pre_call_utils.py @@ -12,12 +12,10 @@ AddTeamCallback, CommonProxyErrors, LitellmDataForBackendLLMCall, - LiteLLMRoutes, SpecialHeaders, TeamCallbackMetadata, UserAPIKeyAuth, ) -from litellm.proxy.auth.auth_utils import get_request_route from litellm.types.services import ServiceTypes from litellm.types.utils import ( StandardLoggingUserAPIKeyMetadata, @@ -214,9 +212,6 @@ def add_headers_to_llm_call( - Checks request headers for forwardable headers - Checks if user information should be added to the headers """ - from litellm.litellm_core_utils.litellm_logging import ( - get_standard_logging_metadata, - ) returned_headers = LiteLLMProxyRequestSetup._get_forwardable_headers(headers) diff --git a/litellm/proxy/management_endpoints/customer_endpoints.py b/litellm/proxy/management_endpoints/customer_endpoints.py index d02acaf4a7aa..47bc7f61653c 100644 --- a/litellm/proxy/management_endpoints/customer_endpoints.py +++ b/litellm/proxy/management_endpoints/customer_endpoints.py @@ -10,25 +10,16 @@ """ #### END-USER/CUSTOMER MANAGEMENT #### -import asyncio -import copy -import json -import re -import secrets -import time import traceback -import uuid -from datetime import datetime, timedelta, timezone from typing import List, Optional import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Request, status +from fastapi import APIRouter, Depends, HTTPException, Request, status import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth -from litellm.proxy.utils import handle_exception_on_proxy router = APIRouter() @@ -597,7 +588,7 @@ async def list_end_user( ``` """ - from litellm.proxy.proxy_server import litellm_proxy_admin_name, prisma_client + from litellm.proxy.proxy_server import prisma_client if ( user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN diff --git a/litellm/proxy/management_endpoints/internal_user_endpoints.py b/litellm/proxy/management_endpoints/internal_user_endpoints.py index 0f846a06e033..1c6031da6d55 100644 --- a/litellm/proxy/management_endpoints/internal_user_endpoints.py +++ b/litellm/proxy/management_endpoints/internal_user_endpoints.py @@ -12,11 +12,6 @@ """ import asyncio -import copy -import json -import re -import secrets -import time import traceback import uuid from datetime import datetime, timedelta, timezone @@ -34,10 +29,7 @@ generate_key_helper_fn, prepare_metadata_fields, ) -from litellm.proxy.management_helpers.utils import ( - add_new_member, - management_endpoint_wrapper, -) +from litellm.proxy.management_helpers.utils import management_endpoint_wrapper from litellm.proxy.utils import handle_exception_on_proxy router = APIRouter() @@ -290,11 +282,7 @@ async def user_info( --header 'Authorization: Bearer sk-1234' ``` """ - from litellm.proxy.proxy_server import ( - general_settings, - litellm_master_key_hash, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -810,10 +798,8 @@ async def delete_user( """ from litellm.proxy.proxy_server import ( create_audit_log_for_update, - duration_in_seconds, litellm_proxy_admin_name, prisma_client, - user_api_key_cache, ) if prisma_client is None: diff --git a/litellm/proxy/management_endpoints/key_management_endpoints.py b/litellm/proxy/management_endpoints/key_management_endpoints.py index 93613c4bc23c..57db5758bec2 100644 --- a/litellm/proxy/management_endpoints/key_management_endpoints.py +++ b/litellm/proxy/management_endpoints/key_management_endpoints.py @@ -12,7 +12,6 @@ import asyncio import copy import json -import re import secrets import traceback import uuid @@ -281,11 +280,8 @@ async def generate_key_fn( # noqa: PLR0915 """ try: from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - general_settings, litellm_proxy_admin_name, prisma_client, - proxy_logging_obj, user_api_key_cache, user_custom_key_generate, ) @@ -590,8 +586,6 @@ async def update_key_fn( ``` """ from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - litellm_proxy_admin_name, prisma_client, proxy_logging_obj, user_api_key_cache, @@ -709,15 +703,7 @@ async def delete_key_fn( HTTPException: If an error occurs during key deletion. """ try: - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - general_settings, - litellm_proxy_admin_name, - prisma_client, - proxy_logging_obj, - user_api_key_cache, - user_custom_key_generate, - ) + from litellm.proxy.proxy_server import prisma_client, user_api_key_cache if prisma_client is None: raise Exception("Not connected to DB!") @@ -818,14 +804,7 @@ async def info_key_fn_v2( -d {"keys": ["sk-1", "sk-2", "sk-3"]} ``` """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - general_settings, - litellm_proxy_admin_name, - prisma_client, - proxy_logging_obj, - user_custom_key_generate, - ) + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -889,14 +868,7 @@ async def info_key_fn( -H "Authorization: Bearer sk-02Wr4IAlN3NvPXvL5JVvDA" ``` """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - general_settings, - litellm_proxy_admin_name, - prisma_client, - proxy_logging_obj, - user_custom_key_generate, - ) + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: diff --git a/litellm/proxy/management_endpoints/organization_endpoints.py b/litellm/proxy/management_endpoints/organization_endpoints.py index 363384375272..62e4bed83cc8 100644 --- a/litellm/proxy/management_endpoints/organization_endpoints.py +++ b/litellm/proxy/management_endpoints/organization_endpoints.py @@ -10,21 +10,11 @@ #### ORGANIZATION MANAGEMENT #### -import asyncio -import copy -import json -import re -import secrets -import traceback import uuid -from datetime import datetime, timedelta, timezone from typing import List, Optional, Tuple -import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Query, Request, status +from fastapi import APIRouter, Depends, HTTPException, Request, status -import litellm -from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.management_helpers.utils import ( @@ -32,7 +22,6 @@ management_endpoint_wrapper, ) from litellm.proxy.utils import PrismaClient -from litellm.secret_managers.main import get_secret router = APIRouter() @@ -328,12 +317,7 @@ async def organization_member_add( 3. Add Internal User to the `LiteLLM_OrganizationMembership` table """ try: - from litellm.proxy.proxy_server import ( - litellm_proxy_admin_name, - prisma_client, - proxy_logging_obj, - user_api_key_cache, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise HTTPException(status_code=500, detail={"error": "No db connected"}) diff --git a/litellm/proxy/management_endpoints/sso_helper_utils.py b/litellm/proxy/management_endpoints/sso_helper_utils.py index 14b370c944a9..45906b2fce05 100644 --- a/litellm/proxy/management_endpoints/sso_helper_utils.py +++ b/litellm/proxy/management_endpoints/sso_helper_utils.py @@ -1,5 +1,3 @@ -from fastapi import HTTPException - from litellm.proxy._types import LitellmUserRoles diff --git a/litellm/proxy/management_endpoints/team_callback_endpoints.py b/litellm/proxy/management_endpoints/team_callback_endpoints.py index 6c5fa80a2844..93d338a40d8c 100644 --- a/litellm/proxy/management_endpoints/team_callback_endpoints.py +++ b/litellm/proxy/management_endpoints/team_callback_endpoints.py @@ -4,32 +4,22 @@ Use this when each team should control its own callbacks """ -import asyncio -import copy import json import traceback -import uuid -from datetime import datetime, timedelta, timezone -from typing import List, Optional +from typing import Optional -import fastapi from fastapi import APIRouter, Depends, Header, HTTPException, Request, status -import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy._types import ( AddTeamCallback, - LiteLLM_TeamTable, ProxyErrorTypes, ProxyException, TeamCallbackMetadata, UserAPIKeyAuth, ) from litellm.proxy.auth.user_api_key_auth import user_api_key_auth -from litellm.proxy.management_helpers.utils import ( - add_new_member, - management_endpoint_wrapper, -) +from litellm.proxy.management_helpers.utils import management_endpoint_wrapper router = APIRouter() @@ -89,12 +79,7 @@ async def add_team_callbacks( """ try: - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise HTTPException(status_code=500, detail={"error": "No db connected"}) diff --git a/litellm/proxy/management_endpoints/team_endpoints.py b/litellm/proxy/management_endpoints/team_endpoints.py index 1744c3853ab0..2a46e15198e1 100644 --- a/litellm/proxy/management_endpoints/team_endpoints.py +++ b/litellm/proxy/management_endpoints/team_endpoints.py @@ -10,7 +10,6 @@ """ import asyncio -import copy import json import traceback import uuid @@ -40,7 +39,6 @@ ProxyErrorTypes, ProxyException, TeamAddMemberResponse, - TeamBase, TeamInfoResponseObject, TeamListResponseObject, TeamMemberAddRequest, @@ -54,7 +52,7 @@ allowed_route_check_inside_route, get_team_object, ) -from litellm.proxy.auth.user_api_key_auth import _is_user_proxy_admin, user_api_key_auth +from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.management_helpers.utils import ( add_new_member, management_endpoint_wrapper, @@ -765,12 +763,7 @@ async def team_member_delete( }' ``` """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise HTTPException(status_code=500, detail={"error": "No db connected"}) @@ -885,12 +878,7 @@ async def team_member_update( Update team member budgets """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise HTTPException(status_code=500, detail={"error": "No db connected"}) @@ -1023,7 +1011,6 @@ async def delete_team( """ from litellm.proxy.proxy_server import ( create_audit_log_for_update, - duration_in_seconds, litellm_proxy_admin_name, prisma_client, ) @@ -1110,12 +1097,7 @@ async def team_info( --header 'Authorization: Bearer your_api_key_here' ``` """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -1259,12 +1241,7 @@ async def block_team( """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise Exception("No DB Connected.") @@ -1307,12 +1284,7 @@ async def unblock_team( }' ``` """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if prisma_client is None: raise Exception("No DB Connected.") @@ -1350,12 +1322,7 @@ async def list_team( Parameters: - user_id: str - Optional. If passed will only return teams that the user_id is a member of. """ - from litellm.proxy.proxy_server import ( - create_audit_log_for_update, - duration_in_seconds, - litellm_proxy_admin_name, - prisma_client, - ) + from litellm.proxy.proxy_server import prisma_client if not allowed_route_check_inside_route( user_api_key_dict=user_api_key_dict, requested_user_id=user_id diff --git a/litellm/proxy/management_endpoints/ui_sso.py b/litellm/proxy/management_endpoints/ui_sso.py index cec08ddcaadc..d6b2aafcbc74 100644 --- a/litellm/proxy/management_endpoints/ui_sso.py +++ b/litellm/proxy/management_endpoints/ui_sso.py @@ -8,7 +8,7 @@ import asyncio import os import uuid -from typing import TYPE_CHECKING, Any, List, Optional +from typing import TYPE_CHECKING, List, Optional from fastapi import APIRouter, Depends, HTTPException, Request, status from fastapi.responses import RedirectResponse @@ -53,7 +53,7 @@ async def google_login(request: Request): # noqa: PLR0915 PROXY_BASE_URL should be the your deployed proxy endpoint, e.g. PROXY_BASE_URL="https://litellm-production-7002.up.railway.app/" Example: """ - from litellm.proxy.proxy_server import master_key, premium_user, prisma_client + from litellm.proxy.proxy_server import premium_user microsoft_client_id = os.getenv("MICROSOFT_CLIENT_ID", None) google_client_id = os.getenv("GOOGLE_CLIENT_ID", None) diff --git a/litellm/proxy/management_helpers/utils.py b/litellm/proxy/management_helpers/utils.py index 7da90c615368..69a5cf914198 100644 --- a/litellm/proxy/management_helpers/utils.py +++ b/litellm/proxy/management_helpers/utils.py @@ -15,7 +15,6 @@ DeleteUserRequest, KeyRequest, LiteLLM_TeamMembership, - LiteLLM_TeamTable, LiteLLM_UserTable, ManagementEndpointLoggingPayload, Member, diff --git a/litellm/proxy/openai_files_endpoints/files_endpoints.py b/litellm/proxy/openai_files_endpoints/files_endpoints.py index fa69806502fa..19b176730bd7 100644 --- a/litellm/proxy/openai_files_endpoints/files_endpoints.py +++ b/litellm/proxy/openai_files_endpoints/files_endpoints.py @@ -7,17 +7,14 @@ import asyncio import traceback -from datetime import datetime, timedelta, timezone -from typing import List, Optional +from typing import Optional -import fastapi import httpx from fastapi import ( APIRouter, Depends, File, Form, - Header, HTTPException, Request, Response, @@ -26,9 +23,8 @@ ) import litellm -from litellm import CreateFileRequest, FileContentRequest, get_secret_str +from litellm import CreateFileRequest, get_secret_str from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.router import Router diff --git a/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py index 611a74db9384..0082bf0bff3d 100644 --- a/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py +++ b/litellm/proxy/pass_through_endpoints/llm_passthrough_endpoints.py @@ -6,34 +6,13 @@ Use litellm with Anthropic SDK, Vertex AI SDK, Cohere SDK, etc. """ -import ast -import asyncio -import traceback -from datetime import datetime, timedelta, timezone -from typing import List, Optional -from urllib.parse import urlencode - -import fastapi +from typing import Optional + import httpx -from fastapi import ( - APIRouter, - Depends, - File, - Form, - Header, - HTTPException, - Request, - Response, - UploadFile, - status, -) -from starlette.datastructures import QueryParams +from fastapi import APIRouter, Depends, HTTPException, Request, Response import litellm -from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject from litellm.constants import BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES -from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.pass_through_endpoints.pass_through_endpoints import ( @@ -240,7 +219,6 @@ async def bedrock_proxy_route( create_request_copy(request) try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest from botocore.credentials import Credentials diff --git a/litellm/proxy/pass_through_endpoints/llm_provider_handlers/anthropic_passthrough_logging_handler.py b/litellm/proxy/pass_through_endpoints/llm_provider_handlers/anthropic_passthrough_logging_handler.py index 4799de9eba24..1568c0d3a608 100644 --- a/litellm/proxy/pass_through_endpoints/llm_provider_handlers/anthropic_passthrough_logging_handler.py +++ b/litellm/proxy/pass_through_endpoints/llm_provider_handlers/anthropic_passthrough_logging_handler.py @@ -1,6 +1,6 @@ import json from datetime import datetime -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union +from typing import TYPE_CHECKING, Any, List, Optional, Union import httpx diff --git a/litellm/proxy/pass_through_endpoints/pass_through_endpoints.py b/litellm/proxy/pass_through_endpoints/pass_through_endpoints.py index a7c93feb18e5..5341f0bc15b2 100644 --- a/litellm/proxy/pass_through_endpoints/pass_through_endpoints.py +++ b/litellm/proxy/pass_through_endpoints/pass_through_endpoints.py @@ -1,31 +1,18 @@ import ast import asyncio import json -import traceback from base64 import b64encode from datetime import datetime -from typing import AsyncIterable, List, Optional, Union +from typing import List, Optional import httpx -from fastapi import ( - APIRouter, - Depends, - FastAPI, - HTTPException, - Request, - Response, - status, -) +from fastapi import APIRouter, Depends, HTTPException, Request, Response, status from fastapi.responses import StreamingResponse import litellm from litellm._logging import verbose_proxy_logger from litellm.integrations.custom_logger import CustomLogger -from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.llms.custom_httpx.http_handler import get_async_httpx_client -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - ModelResponseIterator, -) from litellm.proxy._types import ( ConfigFieldInfo, ConfigFieldUpdate, @@ -326,7 +313,6 @@ async def pass_through_request( # noqa: PLR0915 stream: Optional[bool] = None, ): try: - import time import uuid from litellm.litellm_core_utils.litellm_logging import Logging diff --git a/litellm/proxy/pass_through_endpoints/streaming_handler.py b/litellm/proxy/pass_through_endpoints/streaming_handler.py index 285151af6fc4..b022bf1d25b9 100644 --- a/litellm/proxy/pass_through_endpoints/streaming_handler.py +++ b/litellm/proxy/pass_through_endpoints/streaming_handler.py @@ -1,27 +1,14 @@ import asyncio -import json import threading from datetime import datetime -from enum import Enum -from typing import AsyncIterable, Dict, List, Optional, Union +from typing import List, Optional import httpx -import litellm from litellm._logging import verbose_proxy_logger from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj -from litellm.llms.anthropic.chat.handler import ( - ModelResponseIterator as AnthropicIterator, -) -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - ModelResponseIterator as VertexAIIterator, -) from litellm.proxy._types import PassThroughEndpointLoggingResultValues -from litellm.types.utils import ( - GenericStreamingChunk, - ModelResponse, - StandardPassThroughResponseObject, -) +from litellm.types.utils import StandardPassThroughResponseObject from .llm_provider_handlers.anthropic_passthrough_logging_handler import ( AnthropicPassthroughLoggingHandler, diff --git a/litellm/proxy/pass_through_endpoints/success_handler.py b/litellm/proxy/pass_through_endpoints/success_handler.py index ec0fcf378e82..6f112aed1fd4 100644 --- a/litellm/proxy/pass_through_endpoints/success_handler.py +++ b/litellm/proxy/pass_through_endpoints/success_handler.py @@ -1,22 +1,11 @@ import json -import re -import threading from datetime import datetime -from typing import Optional, Union +from typing import Optional import httpx -import litellm -from litellm._logging import verbose_proxy_logger from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj -from litellm.litellm_core_utils.litellm_logging import ( - get_standard_logging_object_payload, -) -from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import ( - VertexLLM, -) from litellm.proxy._types import PassThroughEndpointLoggingResultValues -from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.types.utils import StandardPassThroughResponseObject from litellm.utils import executor as thread_pool_executor diff --git a/litellm/proxy/proxy_cli.py b/litellm/proxy/proxy_cli.py index ba37b3c51774..5c4b04fb701a 100644 --- a/litellm/proxy/proxy_cli.py +++ b/litellm/proxy/proxy_cli.py @@ -4,9 +4,7 @@ import random import subprocess import sys -import traceback import urllib.parse as urlparse -from datetime import datetime import click from dotenv import load_dotenv @@ -18,9 +16,7 @@ litellm_mode = os.getenv("LITELLM_MODE", "DEV") # "PRODUCTION", "DEV" if litellm_mode == "DEV": load_dotenv() -import shutil from enum import Enum -from importlib import resources telemetry = None @@ -512,7 +508,6 @@ def _make_openai_completion(): try: import asyncio - import yaml # type: ignore except Exception: raise ImportError( "yaml needs to be imported. Run - `pip install 'litellm[proxy]'`" diff --git a/litellm/proxy/proxy_load_test/litellm_router_proxy/main.py b/litellm/proxy/proxy_load_test/litellm_router_proxy/main.py index 95e2abc15a14..a81f9a56d6f6 100644 --- a/litellm/proxy/proxy_load_test/litellm_router_proxy/main.py +++ b/litellm/proxy/proxy_load_test/litellm_router_proxy/main.py @@ -2,11 +2,9 @@ # sys.path.insert( # 0, os.path.abspath("../") # ) # Adds the parent directory to the system path -from fastapi import FastAPI, Request, status, HTTPException, Depends -from fastapi.responses import StreamingResponse -from fastapi.security import OAuth2PasswordBearer +from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware -import uuid + import litellm app = FastAPI() diff --git a/litellm/proxy/proxy_load_test/locustfile.py b/litellm/proxy/proxy_load_test/locustfile.py index 8842d5305eca..9e4977b10606 100644 --- a/litellm/proxy/proxy_load_test/locustfile.py +++ b/litellm/proxy/proxy_load_test/locustfile.py @@ -1,8 +1,6 @@ -import json -import time import uuid -from locust import HttpUser, between, events, task +from locust import HttpUser, between, task class MyUser(HttpUser): diff --git a/litellm/proxy/proxy_load_test/openai_endpoint.py b/litellm/proxy/proxy_load_test/openai_endpoint.py index 3394b9c6fe81..ebb9c1ce4ff8 100644 --- a/litellm/proxy/proxy_load_test/openai_endpoint.py +++ b/litellm/proxy/proxy_load_test/openai_endpoint.py @@ -2,12 +2,11 @@ # sys.path.insert( # 0, os.path.abspath("../") # ) # Adds the parent directory to the system path -from fastapi import FastAPI, Request, status, HTTPException, Depends -from fastapi.responses import StreamingResponse -from fastapi.security import OAuth2PasswordBearer -from fastapi.middleware.cors import CORSMiddleware import uuid +from fastapi import FastAPI, Request +from fastapi.middleware.cors import CORSMiddleware + app = FastAPI() app.add_middleware( diff --git a/litellm/proxy/proxy_load_test/simple_litellm_proxy.py b/litellm/proxy/proxy_load_test/simple_litellm_proxy.py index 003c89c777df..fd5d99df4d65 100644 --- a/litellm/proxy/proxy_load_test/simple_litellm_proxy.py +++ b/litellm/proxy/proxy_load_test/simple_litellm_proxy.py @@ -2,15 +2,12 @@ # sys.path.insert( # 0, os.path.abspath("../") # ) # Adds the parent directory to the system path -from fastapi import FastAPI, Request, status, HTTPException, Depends -from fastapi.responses import StreamingResponse -from fastapi.security import OAuth2PasswordBearer +from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware -import uuid -import litellm -import openai from openai import AsyncOpenAI +import litellm + app = FastAPI() app.add_middleware( diff --git a/litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py b/litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py index 95e2abc15a14..a81f9a56d6f6 100644 --- a/litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py +++ b/litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py @@ -2,11 +2,9 @@ # sys.path.insert( # 0, os.path.abspath("../") # ) # Adds the parent directory to the system path -from fastapi import FastAPI, Request, status, HTTPException, Depends -from fastapi.responses import StreamingResponse -from fastapi.security import OAuth2PasswordBearer +from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware -import uuid + import litellm app = FastAPI() diff --git a/litellm/proxy/proxy_load_test/simple_proxy.py b/litellm/proxy/proxy_load_test/simple_proxy.py index 12fb6cffb4c8..cf3fb4148bf1 100644 --- a/litellm/proxy/proxy_load_test/simple_proxy.py +++ b/litellm/proxy/proxy_load_test/simple_proxy.py @@ -2,12 +2,8 @@ # sys.path.insert( # 0, os.path.abspath("../") # ) # Adds the parent directory to the system path -from fastapi import FastAPI, Request, status, HTTPException, Depends -from fastapi.responses import StreamingResponse -from fastapi.security import OAuth2PasswordBearer +from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware -import uuid -import openai from openai import AsyncOpenAI app = FastAPI() diff --git a/litellm/proxy/proxy_server.py b/litellm/proxy/proxy_server.py index 6b0fd8b86548..3c5f2ef4d55e 100644 --- a/litellm/proxy/proxy_server.py +++ b/litellm/proxy/proxy_server.py @@ -256,8 +256,6 @@ def generate_feedback_box(): LiteLLM_Params, ModelGroupInfo, ) -from litellm.router import ModelInfo as RouterModelInfo -from litellm.router import updateDeployment from litellm.scheduler import DefaultPriorities, FlowItem, Scheduler from litellm.secret_managers.aws_secret_manager import load_aws_kms from litellm.secret_managers.google_kms import load_google_kms @@ -275,7 +273,8 @@ def generate_feedback_box(): AnthropicResponseUsageBlock, ) from litellm.types.llms.openai import HttpxBinaryResponseContent -from litellm.types.router import RouterGeneralSettings +from litellm.types.router import ModelInfo as RouterModelInfo +from litellm.types.router import RouterGeneralSettings, updateDeployment from litellm.types.utils import StandardLoggingPayload from litellm.utils import get_end_user_id_for_cost_tracking diff --git a/litellm/proxy/rerank_endpoints/endpoints.py b/litellm/proxy/rerank_endpoints/endpoints.py index bc09d7fc0d07..39b3119304c3 100644 --- a/litellm/proxy/rerank_endpoints/endpoints.py +++ b/litellm/proxy/rerank_endpoints/endpoints.py @@ -1,13 +1,9 @@ #### Rerank Endpoints ##### -from datetime import datetime, timedelta, timezone -from typing import List, Optional -import fastapi import orjson -from fastapi import APIRouter, Depends, Header, HTTPException, Request, Response, status +from fastapi import APIRouter, Depends, HTTPException, Request, Response, status from fastapi.responses import ORJSONResponse -import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth diff --git a/litellm/proxy/route_llm_request.py b/litellm/proxy/route_llm_request.py index ec9850eeb33e..c3cd7521d5cf 100644 --- a/litellm/proxy/route_llm_request.py +++ b/litellm/proxy/route_llm_request.py @@ -1,21 +1,8 @@ -from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union - -from fastapi import ( - Depends, - FastAPI, - File, - Form, - Header, - HTTPException, - Path, - Request, - Response, - UploadFile, - status, -) +from typing import TYPE_CHECKING, Any, Literal, Optional + +from fastapi import HTTPException, status import litellm -from litellm._logging import verbose_logger if TYPE_CHECKING: from litellm.router import Router as _Router diff --git a/litellm/proxy/spend_tracking/spend_management_endpoints.py b/litellm/proxy/spend_tracking/spend_management_endpoints.py index 9db804359b64..4eb78f426183 100644 --- a/litellm/proxy/spend_tracking/spend_management_endpoints.py +++ b/litellm/proxy/spend_tracking/spend_management_endpoints.py @@ -1,9 +1,10 @@ #### SPEND MANAGEMENT ##### -from datetime import datetime, timedelta, timezone +import os +from datetime import datetime, timedelta from typing import List, Optional import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Request, status +from fastapi import APIRouter, Depends, HTTPException, Request, status import litellm from litellm._logging import verbose_proxy_logger @@ -252,7 +253,6 @@ async def get_global_activity( "sum_total_tokens": 2012 } """ - from collections import defaultdict if start_date is None or end_date is None: raise HTTPException( @@ -263,7 +263,7 @@ async def get_global_activity( start_date_obj = datetime.strptime(start_date, "%Y-%m-%d") end_date_obj = datetime.strptime(end_date, "%Y-%m-%d") - from litellm.proxy.proxy_server import llm_router, prisma_client + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -420,7 +420,6 @@ async def get_global_activity_model( }, ] """ - from collections import defaultdict if start_date is None or end_date is None: raise HTTPException( @@ -431,7 +430,7 @@ async def get_global_activity_model( start_date_obj = datetime.strptime(start_date, "%Y-%m-%d") end_date_obj = datetime.strptime(end_date, "%Y-%m-%d") - from litellm.proxy.proxy_server import llm_router, premium_user, prisma_client + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -574,7 +573,6 @@ async def get_global_activity_exceptions_per_deployment( }, ] """ - from collections import defaultdict if start_date is None or end_date is None: raise HTTPException( @@ -585,7 +583,7 @@ async def get_global_activity_exceptions_per_deployment( start_date_obj = datetime.strptime(start_date, "%Y-%m-%d") end_date_obj = datetime.strptime(end_date, "%Y-%m-%d") - from litellm.proxy.proxy_server import llm_router, premium_user, prisma_client + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: @@ -708,7 +706,6 @@ async def get_global_activity_exceptions( "sum_api_exceptions": 20, } """ - from collections import defaultdict if start_date is None or end_date is None: raise HTTPException( @@ -719,7 +716,7 @@ async def get_global_activity_exceptions( start_date_obj = datetime.strptime(start_date, "%Y-%m-%d") end_date_obj = datetime.strptime(end_date, "%Y-%m-%d") - from litellm.proxy.proxy_server import llm_router, prisma_client + from litellm.proxy.proxy_server import prisma_client try: if prisma_client is None: diff --git a/litellm/proxy/spend_tracking/spend_tracking_utils.py b/litellm/proxy/spend_tracking/spend_tracking_utils.py index ca1e1d33e8b1..355a476d47cf 100644 --- a/litellm/proxy/spend_tracking/spend_tracking_utils.py +++ b/litellm/proxy/spend_tracking/spend_tracking_utils.py @@ -1,8 +1,5 @@ -import datetime import json -import os import secrets -import traceback from datetime import datetime as dt from typing import Optional @@ -34,9 +31,7 @@ def _is_master_key(api_key: str, _master_key: Optional[str]) -> bool: def get_logging_payload( kwargs, response_obj, start_time, end_time, end_user_id: Optional[str] ) -> SpendLogsPayload: - from pydantic import Json - from litellm.proxy._types import LiteLLM_SpendLogs from litellm.proxy.proxy_server import general_settings, master_key verbose_proxy_logger.debug( diff --git a/litellm/proxy/ui_crud_endpoints/proxy_setting_endpoints.py b/litellm/proxy/ui_crud_endpoints/proxy_setting_endpoints.py index 44fadd26ae94..8f91f9bbc997 100644 --- a/litellm/proxy/ui_crud_endpoints/proxy_setting_endpoints.py +++ b/litellm/proxy/ui_crud_endpoints/proxy_setting_endpoints.py @@ -1,11 +1,8 @@ #### CRUD ENDPOINTS for UI Settings ##### -from datetime import datetime, timedelta, timezone -from typing import List, Optional +from typing import List -import fastapi -from fastapi import APIRouter, Depends, Header, HTTPException, Request, status +from fastapi import APIRouter, Depends, HTTPException -import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth diff --git a/litellm/proxy/utils.py b/litellm/proxy/utils.py index 9ae26aec09ad..c93652f60c94 100644 --- a/litellm/proxy/utils.py +++ b/litellm/proxy/utils.py @@ -4,33 +4,16 @@ import importlib import json import os -import re import smtplib -import subprocess import threading import time import traceback from datetime import datetime, timedelta from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText -from functools import wraps -from typing import ( - TYPE_CHECKING, - Any, - List, - Literal, - Optional, - Tuple, - Union, - get_args, - overload, -) +from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union, overload -from litellm.litellm_core_utils.duration_parser import ( - _extract_from_regex, - duration_in_seconds, - get_last_day_of_month, -) +from litellm.litellm_core_utils.duration_parser import duration_in_seconds from litellm.proxy._types import ( DB_CONNECTION_ERROR_TYPES, ProxyErrorTypes, @@ -44,20 +27,12 @@ "backoff is not installed. Please install it via 'pip install backoff'" ) -import httpx -from fastapi import HTTPException, Request, status -from pydantic import BaseModel +from fastapi import HTTPException, status import litellm import litellm.litellm_core_utils import litellm.litellm_core_utils.litellm_logging -from litellm import ( - EmbeddingResponse, - ImageResponse, - ModelResponse, - Router, - get_litellm_params, -) +from litellm import EmbeddingResponse, ImageResponse, ModelResponse, Router from litellm._logging import verbose_proxy_logger from litellm._service_logger import ServiceLogging, ServiceTypes from litellm.caching.caching import DualCache, RedisCache @@ -71,13 +46,9 @@ from litellm.proxy._types import ( AlertType, CallInfo, - DynamoDBArgs, LiteLLM_VerificationTokenView, - LitellmUserRoles, Member, ResetTeamBudgetRequest, - SpendLogsMetadata, - SpendLogsPayload, UserAPIKeyAuth, ) from litellm.proxy.db.create_views import ( @@ -2291,7 +2262,6 @@ async def send_email(receiver_email, subject, html): sender_email, """ ## SERVER SETUP ## - from litellm.proxy.proxy_server import CommonProxyErrors, premium_user smtp_host = os.getenv("SMTP_HOST") smtp_port = int(os.getenv("SMTP_PORT", "587")) # default to port 587 diff --git a/litellm/proxy/vertex_ai_endpoints/langfuse_endpoints.py b/litellm/proxy/vertex_ai_endpoints/langfuse_endpoints.py index 8992a73308d4..a288ebc841f6 100644 --- a/litellm/proxy/vertex_ai_endpoints/langfuse_endpoints.py +++ b/litellm/proxy/vertex_ai_endpoints/langfuse_endpoints.py @@ -8,35 +8,15 @@ 1. Create pass-through endpoints for any LITELLM_BASE_URL/langfuse/ map to LANGFUSE_BASE_URL/ """ -import ast -import asyncio import base64 -import traceback +import os from base64 import b64encode -from datetime import datetime, timedelta, timezone -from typing import List, Optional -from urllib.parse import urlencode +from typing import Optional -import fastapi import httpx -from fastapi import ( - APIRouter, - Depends, - File, - Form, - Header, - HTTPException, - Request, - Response, - UploadFile, - status, -) -from starlette.datastructures import QueryParams +from fastapi import APIRouter, Request, Response import litellm -from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject -from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.litellm_pre_call_utils import _get_dynamic_logging_metadata diff --git a/litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py b/litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py index 03f4ac9cd00f..3b58567881e7 100644 --- a/litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py +++ b/litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py @@ -1,27 +1,11 @@ -import ast -import asyncio import traceback -from datetime import datetime, timedelta, timezone -from typing import List, Optional +from typing import Optional -import fastapi import httpx -from fastapi import ( - APIRouter, - Depends, - File, - Form, - Header, - HTTPException, - Request, - Response, - UploadFile, - status, -) +from fastapi import APIRouter, HTTPException, Request, Response, status import litellm from litellm._logging import verbose_proxy_logger -from litellm.batches.main import FileObject from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth diff --git a/litellm/realtime_api/main.py b/litellm/realtime_api/main.py index 3d17c4819a7b..268351874d20 100644 --- a/litellm/realtime_api/main.py +++ b/litellm/realtime_api/main.py @@ -1,6 +1,5 @@ """Abstraction function for OpenAI's realtime API""" -import os from typing import Any, Optional import litellm diff --git a/litellm/rerank_api/main.py b/litellm/rerank_api/main.py index 3b3eaad01620..0acdfb0da37b 100644 --- a/litellm/rerank_api/main.py +++ b/litellm/rerank_api/main.py @@ -12,9 +12,9 @@ from litellm.llms.jina_ai.rerank.handler import JinaAIRerank from litellm.llms.together_ai.rerank.handler import TogetherAIRerank from litellm.secret_managers.main import get_secret -from litellm.types.rerank import RerankRequest, RerankResponse +from litellm.types.rerank import RerankResponse from litellm.types.router import * -from litellm.utils import client, exception_type, supports_httpx_timeout +from litellm.utils import client, exception_type ####### ENVIRONMENT VARIABLES ################### # Initialize any necessary instances or variables here diff --git a/litellm/router.py b/litellm/router.py index 6832ffae94d0..541135a8822a 100644 --- a/litellm/router.py +++ b/litellm/router.py @@ -8,33 +8,26 @@ # Thank you ! We ❤️ you! - Krrish & Ishaan import asyncio -import concurrent import copy -import datetime as datetime_og import enum import hashlib import inspect import json import logging -import random -import re import threading import time import traceback import uuid from collections import defaultdict -from datetime import datetime from typing import ( TYPE_CHECKING, Any, Callable, Dict, - Iterable, List, Literal, Optional, Tuple, - TypedDict, Union, cast, ) @@ -50,12 +43,10 @@ import litellm.litellm_core_utils.exception_mapping_utils from litellm import get_secret_str from litellm._logging import verbose_router_logger -from litellm.assistants.main import AssistantDeleted from litellm.caching.caching import DualCache, InMemoryCache, RedisCache from litellm.integrations.custom_logger import CustomLogger from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging -from litellm.llms.azure.azure import get_azure_ad_token_from_oidc from litellm.router_strategy.budget_limiter import RouterBudgetLimiting from litellm.router_strategy.least_busy import LeastBusyLoggingHandler from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler @@ -70,7 +61,6 @@ ) from litellm.router_utils.client_initalization_utils import InitalizeOpenAISDKClient from litellm.router_utils.cooldown_cache import CooldownCache -from litellm.router_utils.cooldown_callbacks import router_cooldown_event_callback from litellm.router_utils.cooldown_handlers import ( DEFAULT_COOLDOWN_TIME_SECONDS, _async_get_cooldown_deployments, @@ -80,10 +70,7 @@ ) from litellm.router_utils.fallback_event_handlers import ( get_fallback_model_group, - log_failure_fallback_event, - log_success_fallback_event, run_async_fallback, - run_sync_fallback, ) from litellm.router_utils.get_retry_from_policy import ( get_num_retries_from_retry_policy as _get_num_retries_from_retry_policy, @@ -100,25 +87,9 @@ increment_deployment_successes_for_current_minute, ) from litellm.scheduler import FlowItem, Scheduler -from litellm.types.llms.openai import ( - AllMessageValues, - Assistant, - AssistantToolParam, - AsyncCursorPage, - Attachment, - Batch, - CreateFileRequest, - FileContentRequest, - FileObject, - FileTypes, - HttpxBinaryResponseContent, - OpenAIMessage, - Run, - Thread, -) +from litellm.types.llms.openai import AllMessageValues, Batch, FileObject, FileTypes from litellm.types.router import ( CONFIGURABLE_CLIENTSIDE_AUTH_PARAMS, - SPECIAL_MODEL_INFO_PARAMS, VALID_LITELLM_ENVIRONMENTS, AlertingConfig, AllowedFailsPolicy, @@ -128,41 +99,30 @@ DeploymentTypedDict, GenericBudgetConfigType, LiteLLM_Params, - LiteLLMParamsTypedDict, ModelGroupInfo, - ModelInfo, OptionalPreCallChecks, RetryPolicy, RouterCacheEnum, - RouterErrors, RouterGeneralSettings, RouterModelGroupAliasItem, RouterRateLimitError, RouterRateLimitErrorBasic, RoutingStrategy, - updateDeployment, - updateLiteLLMParams, ) -from litellm.types.services import ServiceLoggerPayload, ServiceTypes -from litellm.types.utils import OPENAI_RESPONSE_HEADERS +from litellm.types.services import ServiceTypes from litellm.types.utils import ModelInfo as ModelMapInfo from litellm.types.utils import StandardLoggingPayload from litellm.utils import ( CustomStreamWrapper, EmbeddingResponse, ModelResponse, - _is_region_eu, - calculate_max_parallel_requests, - create_proxy_transport_and_mounts, get_llm_provider, get_secret, get_utc_datetime, - is_prompt_caching_valid_prompt, is_region_allowed, ) from .router_utils.pattern_match_deployments import PatternMatchRouter -from .router_utils.prompt_caching_cache import PromptCachingCache if TYPE_CHECKING: from opentelemetry.trace import Span as _Span @@ -3111,7 +3071,6 @@ def function_with_fallbacks(self, *args, **kwargs): Wrapped to reduce code duplication and prevent bugs. """ - import threading from concurrent.futures import ThreadPoolExecutor def run_in_new_loop(): @@ -3897,7 +3856,6 @@ def set_model_list(self, model_list: list): original_model_list = copy.deepcopy(model_list) self.model_list = [] # we add api_base/api_key each model so load balancing between azure/gpt on api_base1 and api_base2 works - import os for model in original_model_list: _model_name = model.pop("model_name") diff --git a/litellm/router_strategy/budget_limiter.py b/litellm/router_strategy/budget_limiter.py index 0452a174b5c8..2d20e19a8e9b 100644 --- a/litellm/router_strategy/budget_limiter.py +++ b/litellm/router_strategy/budget_limiter.py @@ -20,14 +20,13 @@ import asyncio from datetime import datetime, timedelta, timezone -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypedDict, Union +from typing import Any, Dict, List, Optional, Tuple, Union import litellm from litellm._logging import verbose_router_logger from litellm.caching.caching import DualCache from litellm.caching.redis_cache import RedisPipelineIncrementOperation from litellm.integrations.custom_logger import CustomLogger, Span -from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs from litellm.litellm_core_utils.duration_parser import duration_in_seconds from litellm.router_strategy.tag_based_routing import _get_tags_from_request_kwargs from litellm.router_utils.cooldown_callbacks import ( @@ -611,7 +610,6 @@ def _track_provider_remaining_budget_prometheus( This is helpful for debugging and monitoring provider budget limits. """ - from litellm.integrations.prometheus import PrometheusLogger prometheus_logger = _get_prometheus_logger_from_callbacks() if prometheus_logger: diff --git a/litellm/router_strategy/least_busy.py b/litellm/router_strategy/least_busy.py index 95deb8e6c8cb..12f3f01c838a 100644 --- a/litellm/router_strategy/least_busy.py +++ b/litellm/router_strategy/least_busy.py @@ -6,9 +6,7 @@ # - use litellm.success + failure callbacks to log when a request completed # - in get_available_deployment, for a given model group name -> pick based on traffic -import os import random -import traceback from typing import Optional from litellm.caching.caching import DualCache diff --git a/litellm/router_strategy/lowest_cost.py b/litellm/router_strategy/lowest_cost.py index 009e51cc5514..bd28f6dc5a2a 100644 --- a/litellm/router_strategy/lowest_cost.py +++ b/litellm/router_strategy/lowest_cost.py @@ -1,17 +1,13 @@ #### What this does #### # picks based on response time (for streaming, this is time to first token) -import traceback from datetime import datetime, timedelta from typing import Dict, List, Optional, Union -from pydantic import BaseModel - import litellm from litellm import ModelResponse, token_counter, verbose_logger from litellm._logging import verbose_router_logger from litellm.caching.caching import DualCache from litellm.integrations.custom_logger import CustomLogger -from litellm.types.utils import LiteLLMPydanticObjectBase class LowestCostLoggingHandler(CustomLogger): diff --git a/litellm/router_strategy/lowest_latency.py b/litellm/router_strategy/lowest_latency.py index 9020bb11ba3c..b049c942642f 100644 --- a/litellm/router_strategy/lowest_latency.py +++ b/litellm/router_strategy/lowest_latency.py @@ -1,12 +1,9 @@ #### What this does #### # picks based on response time (for streaming, this is time to first token) import random -import traceback from datetime import datetime, timedelta from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union -from pydantic import BaseModel - import litellm from litellm import ModelResponse, token_counter, verbose_logger from litellm.caching.caching import DualCache diff --git a/litellm/router_strategy/lowest_tpm_rpm.py b/litellm/router_strategy/lowest_tpm_rpm.py index c99dc6a0760b..8658793973c3 100644 --- a/litellm/router_strategy/lowest_tpm_rpm.py +++ b/litellm/router_strategy/lowest_tpm_rpm.py @@ -1,7 +1,5 @@ #### What this does #### # identifies lowest tpm deployment -import os -import random import traceback from datetime import datetime from typing import Dict, List, Optional, Union diff --git a/litellm/router_strategy/lowest_tpm_rpm_v2.py b/litellm/router_strategy/lowest_tpm_rpm_v2.py index 7a28f41c20a8..5dfc182afadf 100644 --- a/litellm/router_strategy/lowest_tpm_rpm_v2.py +++ b/litellm/router_strategy/lowest_tpm_rpm_v2.py @@ -1,11 +1,9 @@ #### What this does #### # identifies lowest tpm deployment import random -import traceback from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union import httpx -from pydantic import BaseModel import litellm from litellm import token_counter diff --git a/litellm/router_strategy/tag_based_routing.py b/litellm/router_strategy/tag_based_routing.py index 241f74ec55fb..f15f753e593a 100644 --- a/litellm/router_strategy/tag_based_routing.py +++ b/litellm/router_strategy/tag_based_routing.py @@ -6,10 +6,10 @@ - If no default_deployments are set, return all deployments """ -from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, TypedDict, Union +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from litellm._logging import verbose_logger -from litellm.types.router import DeploymentTypedDict, RouterErrors +from litellm.types.router import RouterErrors if TYPE_CHECKING: from litellm.router import Router as _Router diff --git a/litellm/router_utils/batch_utils.py b/litellm/router_utils/batch_utils.py index 88b614bac32d..51cc164d30bf 100644 --- a/litellm/router_utils/batch_utils.py +++ b/litellm/router_utils/batch_utils.py @@ -1,6 +1,6 @@ import io import json -from typing import IO, Optional, Tuple, Union +from typing import Optional, Tuple, Union class InMemoryFile(io.BytesIO): diff --git a/litellm/router_utils/client_initalization_utils.py b/litellm/router_utils/client_initalization_utils.py index 70b8c71fdc06..31e7083e45b0 100644 --- a/litellm/router_utils/client_initalization_utils.py +++ b/litellm/router_utils/client_initalization_utils.py @@ -1,6 +1,5 @@ import asyncio import os -import traceback from typing import TYPE_CHECKING, Any, Callable, Optional import httpx diff --git a/litellm/router_utils/cooldown_cache.py b/litellm/router_utils/cooldown_cache.py index dbe767214a3e..f096b026c0a2 100644 --- a/litellm/router_utils/cooldown_cache.py +++ b/litellm/router_utils/cooldown_cache.py @@ -2,12 +2,11 @@ Wrapper around router cache. Meant to handle model cooldown logic """ -import json import time from typing import TYPE_CHECKING, Any, List, Optional, Tuple, TypedDict from litellm import verbose_logger -from litellm.caching.caching import Cache, DualCache +from litellm.caching.caching import DualCache from litellm.caching.in_memory_cache import InMemoryCache if TYPE_CHECKING: diff --git a/litellm/router_utils/cooldown_handlers.py b/litellm/router_utils/cooldown_handlers.py index 42864d9869fc..1e1c58a771d4 100644 --- a/litellm/router_utils/cooldown_handlers.py +++ b/litellm/router_utils/cooldown_handlers.py @@ -12,7 +12,6 @@ import litellm from litellm._logging import verbose_router_logger from litellm.router_utils.cooldown_callbacks import router_cooldown_event_callback -from litellm.utils import get_utc_datetime from .router_callbacks.track_deployment_metrics import ( get_deployment_failures_for_current_minute, diff --git a/litellm/router_utils/fallback_event_handlers.py b/litellm/router_utils/fallback_event_handlers.py index 2845ec4769b1..84c3d76285ec 100644 --- a/litellm/router_utils/fallback_event_handlers.py +++ b/litellm/router_utils/fallback_event_handlers.py @@ -1,11 +1,9 @@ from enum import Enum -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple +from typing import TYPE_CHECKING, Any, List, Optional, Tuple import litellm -from litellm import LlmProviders from litellm._logging import verbose_router_logger from litellm.integrations.custom_logger import CustomLogger -from litellm.main import verbose_logger if TYPE_CHECKING: from litellm.router import Router as _Router diff --git a/litellm/router_utils/handle_error.py b/litellm/router_utils/handle_error.py index 321ba5dc5936..e1055a9d0f83 100644 --- a/litellm/router_utils/handle_error.py +++ b/litellm/router_utils/handle_error.py @@ -1,5 +1,3 @@ -import asyncio -import traceback from typing import TYPE_CHECKING, Any, Optional from litellm._logging import verbose_router_logger diff --git a/litellm/router_utils/pattern_match_deployments.py b/litellm/router_utils/pattern_match_deployments.py index a5e54d898eb5..a0d590f23cfe 100644 --- a/litellm/router_utils/pattern_match_deployments.py +++ b/litellm/router_utils/pattern_match_deployments.py @@ -4,7 +4,6 @@ import copy import re -from functools import cached_property from re import Match from typing import Dict, List, Optional, Tuple diff --git a/litellm/router_utils/prompt_caching_cache.py b/litellm/router_utils/prompt_caching_cache.py index 61698ac6bc8d..1bf686d694a2 100644 --- a/litellm/router_utils/prompt_caching_cache.py +++ b/litellm/router_utils/prompt_caching_cache.py @@ -4,12 +4,9 @@ import hashlib import json -import time -from typing import TYPE_CHECKING, Any, List, Optional, Tuple, TypedDict +from typing import TYPE_CHECKING, Any, List, Optional, TypedDict -import litellm -from litellm import verbose_logger -from litellm.caching.caching import Cache, DualCache +from litellm.caching.caching import DualCache from litellm.caching.in_memory_cache import InMemoryCache from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam diff --git a/litellm/router_utils/router_callbacks/track_deployment_metrics.py b/litellm/router_utils/router_callbacks/track_deployment_metrics.py index 5d4440222bef..1f226879d03a 100644 --- a/litellm/router_utils/router_callbacks/track_deployment_metrics.py +++ b/litellm/router_utils/router_callbacks/track_deployment_metrics.py @@ -9,9 +9,7 @@ get_deployment_successes_for_current_minute """ -from typing import TYPE_CHECKING, Any, Callable, Optional - -from litellm.utils import get_utc_datetime +from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from litellm.router import Router as _Router diff --git a/litellm/secret_managers/aws_secret_manager_v2.py b/litellm/secret_managers/aws_secret_manager_v2.py index acee00b929c7..43aa0d52f578 100644 --- a/litellm/secret_managers/aws_secret_manager_v2.py +++ b/litellm/secret_managers/aws_secret_manager_v2.py @@ -13,26 +13,22 @@ * `pip install boto3>=1.28.57` """ -import ast -import asyncio -import base64 import json import os -import re -import sys -from typing import Any, Dict, Optional, Union +from typing import Any, Optional, Union import httpx import litellm from litellm._logging import verbose_logger +from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM from litellm.llms.custom_httpx.http_handler import ( _get_httpx_client, get_async_httpx_client, ) from litellm.proxy._types import KeyManagementSystem from litellm.types.llms.custom_http import httpxSpecialProvider -from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM + class AWSSecretsManagerV2(BaseAWSLLM): @classmethod @@ -48,7 +44,6 @@ def load_aws_secret_manager(cls, use_aws_secret_manager: Optional[bool]): if use_aws_secret_manager is None or use_aws_secret_manager is False: return try: - import boto3 cls.validate_environment() litellm.secret_manager_client = cls() @@ -253,10 +248,8 @@ def _prepare_request( ) -> tuple[str, Any, bytes]: """Prepare the AWS Secrets Manager request""" try: - import boto3 from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest - from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") optional_params = optional_params or {} diff --git a/litellm/secret_managers/main.py b/litellm/secret_managers/main.py index ce6d3075581c..2b89aedadd0f 100644 --- a/litellm/secret_managers/main.py +++ b/litellm/secret_managers/main.py @@ -1,19 +1,16 @@ import ast import base64 import binascii -import json import os -import sys import traceback -from typing import TYPE_CHECKING, Any, Optional, Union +from typing import Any, Optional, Union import httpx -from dotenv import load_dotenv import litellm from litellm._logging import print_verbose, verbose_logger from litellm.caching.caching import DualCache -from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler +from litellm.llms.custom_httpx.http_handler import HTTPHandler from litellm.proxy._types import KeyManagementSystem oidc_cache = DualCache() diff --git a/ruff.toml b/ruff.toml index ba8f51d3c619..a31044667100 100644 --- a/ruff.toml +++ b/ruff.toml @@ -1,4 +1,15 @@ -ignore = ["F405", "E402", "F401", "E501", "F403"] -extend-select = ["E501", "PLR0915", "T20"] +lint.ignore = ["F405", "E402", "E501", "F403"] +lint.extend-select = ["E501", "PLR0915", "T20"] line-length = 120 -exclude = ["litellm/types/*", "litellm/__init__.py", "litellm/proxy/example_config_yaml/*"] \ No newline at end of file +exclude = ["litellm/types/*", "litellm/__init__.py", "litellm/proxy/example_config_yaml/*", "tests/*"] + + +[lint.per-file-ignores] +"litellm/main.py" = ["F401"] +"litellm/utils.py" = ["F401"] +"litellm/proxy/proxy_server.py" = ["F401"] +"litellm/caching/__init__.py" = ["F401"] +"litellm/llms/anthropic/chat/__init__.py" = ["F401"] +"litellm/llms/azure_ai/embed/__init__.py" = ["F401"] +"litellm/llms/azure_ai/rerank/__init__.py" = ["F401"] +"litellm/llms/bedrock/chat/__init__.py" = ["F401"] \ No newline at end of file diff --git a/tests/local_testing/test_add_update_models.py b/tests/local_testing/test_add_update_models.py index a940894ca33a..b3ad1f32f0d7 100644 --- a/tests/local_testing/test_add_update_models.py +++ b/tests/local_testing/test_add_update_models.py @@ -22,11 +22,9 @@ from litellm.caching.caching import DualCache from litellm.router import ( Deployment, - updateDeployment, LiteLLM_Params, - ModelInfo, - updateLiteLLMParams, ) +from litellm.types.router import ModelInfo, updateDeployment, updateLiteLLMParams from litellm.proxy._types import ( UserAPIKeyAuth, diff --git a/tests/local_testing/test_router.py b/tests/local_testing/test_router.py index 7b84f454085a..6a91ee507c0d 100644 --- a/tests/local_testing/test_router.py +++ b/tests/local_testing/test_router.py @@ -27,7 +27,8 @@ import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo from litellm.router_utils.cooldown_handlers import ( _async_get_cooldown_deployments, _get_cooldown_deployments, diff --git a/tests/local_testing/test_router_batch_completion.py b/tests/local_testing/test_router_batch_completion.py index 065730d48ef3..6fedb82a5537 100644 --- a/tests/local_testing/test_router_batch_completion.py +++ b/tests/local_testing/test_router_batch_completion.py @@ -22,7 +22,8 @@ import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo load_dotenv() diff --git a/tests/local_testing/test_router_pattern_matching.py b/tests/local_testing/test_router_pattern_matching.py index a7ef7df2bc5b..5695034c7a59 100644 --- a/tests/local_testing/test_router_pattern_matching.py +++ b/tests/local_testing/test_router_pattern_matching.py @@ -13,7 +13,8 @@ ) # Adds the parent directory to the system path import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from dotenv import load_dotenv diff --git a/tests/local_testing/test_router_utils.py b/tests/local_testing/test_router_utils.py index b3f3437c4f17..27d74c286f91 100644 --- a/tests/local_testing/test_router_utils.py +++ b/tests/local_testing/test_router_utils.py @@ -10,7 +10,8 @@ ) # Adds the parent directory to the system path import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from dotenv import load_dotenv diff --git a/tests/local_testing/test_utils.py b/tests/local_testing/test_utils.py index 7d922e19b632..a14bc57061c3 100644 --- a/tests/local_testing/test_utils.py +++ b/tests/local_testing/test_utils.py @@ -20,8 +20,10 @@ from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, headers from litellm.proxy.utils import ( duration_in_seconds, - _extract_from_regex, +) +from litellm.litellm_core_utils.duration_parser import ( get_last_day_of_month, + _extract_from_regex, ) from litellm.utils import ( check_valid_key, diff --git a/tests/logging_callback_tests/test_spend_logs.py b/tests/logging_callback_tests/test_spend_logs.py index 62f3d6d71506..9e4ceafd7798 100644 --- a/tests/logging_callback_tests/test_spend_logs.py +++ b/tests/logging_callback_tests/test_spend_logs.py @@ -26,7 +26,7 @@ import litellm from litellm.proxy.spend_tracking.spend_tracking_utils import get_logging_payload -from litellm.proxy.utils import SpendLogsMetadata, SpendLogsPayload # noqa: E402 +from litellm.proxy._types import SpendLogsMetadata, SpendLogsPayload @pytest.mark.parametrize( diff --git a/tests/router_unit_tests/test_router_cooldown_utils.py b/tests/router_unit_tests/test_router_cooldown_utils.py index 7ee2e927dc6e..1623808fc198 100644 --- a/tests/router_unit_tests/test_router_cooldown_utils.py +++ b/tests/router_unit_tests/test_router_cooldown_utils.py @@ -7,7 +7,8 @@ ) # Adds the parent directory to the system path import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from dotenv import load_dotenv diff --git a/tests/router_unit_tests/test_router_handle_error.py b/tests/router_unit_tests/test_router_handle_error.py index 37fe72dc2d4e..39b9814ccc80 100644 --- a/tests/router_unit_tests/test_router_handle_error.py +++ b/tests/router_unit_tests/test_router_handle_error.py @@ -7,7 +7,8 @@ ) # Adds the parent directory to the system path import litellm from litellm import Router -from litellm.router import Deployment, LiteLLM_Params, ModelInfo +from litellm.router import Deployment, LiteLLM_Params +from litellm.types.router import ModelInfo from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from dotenv import load_dotenv diff --git a/ui/admin.py b/ui/admin.py index 96da791dfa25..7c3d38d78e4c 100644 --- a/ui/admin.py +++ b/ui/admin.py @@ -1,11 +1,16 @@ """ Admin sets proxy url + allowed email subdomain """ + from dotenv import load_dotenv load_dotenv() import streamlit as st -import base64, os, json, uuid, requests +import base64 +import os +import json +import uuid +import requests import pandas as pd import plotly.express as px import click @@ -26,13 +31,13 @@ def update_config_values(proxy_url, allowed_email_subdomain, admin_emails): st.session_state["allowed_email_subdomain"] = allowed_email_subdomain st.session_state["admin_emails"] = admin_emails if your_base_url.endswith("/"): - st.session_state[ - "user_auth_url" - ] = f"{your_base_url}user?page={encode_config(proxy_url=proxy_url, allowed_email_subdomain=allowed_email_subdomain, admin_emails=admin_emails)}" + st.session_state["user_auth_url"] = ( + f"{your_base_url}user?page={encode_config(proxy_url=proxy_url, allowed_email_subdomain=allowed_email_subdomain, admin_emails=admin_emails)}" + ) else: - st.session_state[ - "user_auth_url" - ] = f"{your_base_url}/user?page={encode_config(proxy_url=proxy_url, allowed_email_subdomain=allowed_email_subdomain, admin_emails=admin_emails)}" + st.session_state["user_auth_url"] = ( + f"{your_base_url}/user?page={encode_config(proxy_url=proxy_url, allowed_email_subdomain=allowed_email_subdomain, admin_emails=admin_emails)}" + ) st.session_state["is_admin"] = True @@ -71,7 +76,7 @@ def proxy_setup(): def add_new_model(): import streamlit as st - import json, requests, uuid + import requests if ( st.session_state.get("api_url", None) is None @@ -295,7 +300,7 @@ def spend_per_user(): def create_key(): import streamlit as st - import json, requests, uuid + import requests if ( st.session_state.get("api_url", None) is None diff --git a/ui/pages/user.py b/ui/pages/user.py index a571c2c73a85..119f49399bea 100644 --- a/ui/pages/user.py +++ b/ui/pages/user.py @@ -8,10 +8,11 @@ import streamlit as st from dotenv import load_dotenv -import requests, base64, binascii +import requests +import base64 +import binascii load_dotenv() -import os def is_base64(sb): @@ -94,7 +95,7 @@ def auth_page(page_param: str): if response.status_code == 200: # Success! - st.success(f"Email sent successfully!") + st.success("Email sent successfully!") def user_page(page_param: str, user_id: str, token: str):