-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
170 lines (128 loc) · 5.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import json
from collections import OrderedDict
import torch
from torch import nn, optim
from torchvision import datasets, transforms, models
def arg_parser():
parser = argparse.ArgumentParser(description="Train.py")
parser.add_argument('--arch', dest="arch", action="store", default="vgg16", type=str)
parser.add_argument('--save', dest="save", action="store", default="./checkpoint.pth")
parser.add_argument('--learning_rate', dest="learning_rate", action="store", default=0.001)
parser.add_argument('--hidden_units', type=int, dest="hidden_units", action="store", default=120)
parser.add_argument('--epochs', dest="epochs", action="store", type=int, default=18)
parser.add_argument('--gpu', dest="gpu", action="store", default="gpu")
args = parser.parse_args()
return args
def main():
args = arg_parser()
data_dir = 'flowers'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(size=224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
}
image_datasets = {
'train': datasets.ImageFolder(train_dir, transform=data_transforms['train']),
'valid': datasets.ImageFolder(valid_dir, transform=data_transforms['valid']),
'test': datasets.ImageFolder(test_dir, transform=data_transforms['test'])
}
train_loader = torch.utils.data.DataLoader(image_datasets['train'], batch_size=64, shuffle=True)
validation_loader = torch.utils.data.DataLoader(image_datasets['valid'], batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(image_datasets['test'], batch_size=64, shuffle=True)
train_Loader_size = len(train_loader)
valid_Loader_size = len(validation_loader)
test_loader_size = len(test_loader)
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
if args.arch == "vgg16":
model = models.vgg16(pretrained=True)
elif args.arch == "vgg19":
model = models.vgg19(pretrained=True)
else:
model = models.vgg13(pretrained=True)
for param in model.parameters():
param.requires_grad = False
classifier = nn.Sequential(OrderedDict([
('inputs', nn.Linear(25088, args.hidden_units)),
('relu1', nn.ReLU()),
('dropout', nn.Dropout(0.5)),
('hidden_layer1', nn.Linear(args.hidden_units, args.hidden_units - 30)),
('relu2', nn.ReLU()),
('hidden_layer2', nn.Linear(args.hidden_units - 30, args.hidden_units - 50)),
('relu3', nn.ReLU()),
('hidden_layer3', nn.Linear(args.hidden_units - 50, train_Loader_size - 1)),
('output', nn.LogSoftmax(dim=1))]))
model.classifier = classifier
if torch.cuda.is_available() and args.gpu:
model.cuda()
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=args.learning_rate)
epochs = args.epochs
for epoch in range(epochs):
print("Epoch: {}/{}".format(epoch + 1, epochs))
model.train()
train_loss = 0.0
train_acc = 0.0
valid_loss = 0.0
valid_acc = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to('cuda')
labels = labels.to('cuda')
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
train_acc += acc.item() * inputs.size(0)
print("Batch no: {:03d}, Loss on training: {:.4f}, Accuracy: {:.4f}".format(i, loss.item(), acc.item()))
with torch.no_grad():
model.eval()
for j, (inputs, labels) in enumerate(validation_loader):
inputs = inputs.to('cuda')
labels = labels.to('cuda')
outputs = model(inputs)
loss = criterion(outputs, labels)
valid_loss += loss.item() * inputs.size(0)
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
valid_acc += acc.item() * inputs.size(0)
print("Validation Batch number: {:03d}, Validation: Loss: {:.4f}, Accuracy: {:.4f}".format(j, loss.item(),
acc.item()))
model.class_to_idx = image_datasets['train'].class_to_idx
torch.save({'structure': 'alexnet',
'hidden_layer1': args.hidden_units,
'dropout': 0.5,
'epochs': args.epochs,
'state_dict': model.state_dict(),
'class_to_idx': model.class_to_idx,
'optimizer_dict': optimizer.state_dict()},
args.save)
if __name__ == "__main__":
main()