forked from arthurkorte/GWAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim_Y.r
90 lines (73 loc) · 2.89 KB
/
sim_Y.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
### Function to simulate traits with causative markers for GWAS
# need genomic data . A sample of 22k random SNPs from the Arabidopsis 1001G Project is available as example for Arabidopsis traits
# a file with the Information of all 2029 accessions for which genotype data exist is also provided (lat_long_2029.csv). This information has been downloaded from the AraPheno database
#A<-read.csv('~/git/GWAS/data/lat_long_2029.csv')
#If you use own data ensure that the id should be in a column called 'accession_id'
#load('~/git/GWAS/data/X_Mix.rda')
#rownames(X) needs to be the ids of the accessions
# for models with multiple causative markers, it is recommended to have them ordered by the amount of variance explained (ve)
# the simulation create random, but reproducible (seed) phenotypes.
# to simulate only in specific accession provide an integer of accessions ids in sp_acc (length need to be >1).
# to simulate distinct markers, the script can be modified manually.
sim_Y <-
function(n = 100,
acc = A,
sp_acc = 0,
no_acc = 200,
fix_acc = TRUE,
SNPs = X,
no_snps = 1,
ve = .1,
mac = 5,
h2 = 0.7,
seed = 42,
bk = 1000,
effect_factor = 1) {
stopifnot(no_snps > 0)
stopifnot(length(ve) == no_snps)
set.seed(seed)
Sim <- list()
Caus <- list()
if (length(sp_acc) > 1) {
a <- sp_acc
no_acc = length(a)
} else {
a <- sample(acc$accession_id, no_acc)
}
X_ <- SNPs[rownames(SNPs) %in% a, ]
af <- apply(X_, 2, sum)
X_ok <- X_[, which(af > mac & af < (no_acc - mac))]
for (u in 1:n) {
set.seed(seed + u)
if (u>1 && fix_acc == FALSE) {
a <- sample(A$accession_id, no_acc)
X_ <- subset(X, rownames(X) %in% a)
af <- apply(X_, 2, sum)
X_ok <- X_[, which(af > mac & af < (no_acc - mac))]
}
caus <- X_ok[, sample(1:ncol(X_ok), (no_snps + 1))]
#generating polygenic background
X3 <- X_ok[, !colnames(X_ok) %in% colnames(caus)]
back <- X3[, sample(1:ncol(X3), bk)]
betas <- rnorm(bk, mean = 0, sd = 0.1)
first <- back %*% betas
### adding genetic background to data
sim <-
data.frame(ecot_id = as.integer(rownames(back)), value = first)
### set heritability
dat <- var(sim[, 2])
h_2 <- dat / h2 - dat
fix1 <- rnorm(nrow(back), 0, sqrt(h_2))
sim_ <-
data.frame(ecot_id = as.integer(rownames(back)), value = first + fix1)
for (t in 1:length(ve)) {
beta <-
sqrt((ve[t] / (1 - ve[t])) * (var(sim_[, 2]) / var(caus[, t])))
cand <- effect_factor * beta * caus[, t]
sim_$value <- sim_$value + cand
}
Sim[[u]] <- sim_
Caus[[u]] <- colnames(caus)[1:t]
}
return(list(Y = Sim, Caus = Caus))
}