|
| 1 | +import librosa |
| 2 | +from librosa.util.exceptions.ParameterError |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +def transform(filename=None, y=None, sr=22050, |
| 7 | + n_fft=256, hop_length=32, frame_length=256, fmin=1000, fmax=10000, |
| 8 | + indices=[average_energy], segment_duration=10, |
| 9 | + verbose=False, n_jobs=-1): |
| 10 | + |
| 11 | + if n_jobs=-1: |
| 12 | + n_jobs = joblib.cpu_count() |
| 13 | + |
| 14 | + if filename is not None: |
| 15 | + if y is not None: |
| 16 | + raise ParameterError( |
| 17 | + 'Either y or filename must be equal to None') |
| 18 | + file_duration = librosa.get_duration(filename=filename) |
| 19 | + orig_sr = librosa.get_samplerate(filename) |
| 20 | + block_length = segment_duration * orig_sr * n_jobs |
| 21 | + y_blocks = librosa.stream(filename, block_length=block_length, |
| 22 | + frame_length=frame_length, hop_length=hop_length) |
| 23 | + if sr is None: |
| 24 | + sr = orig_sr |
| 25 | + else: |
| 26 | + if (y is None) or (sr is None): |
| 27 | + raise ParameterError( |
| 28 | + 'At least one of (y, sr) or filename must be provided') |
| 29 | + librosa.util.valid_audio(y, mono=True) |
| 30 | + block_length = segment_duration * sr * n_jobs |
| 31 | + file_duration = librosa.get_duration(y=y, sr=sr) |
| 32 | + y_blocks = librosa.util.frame(y, |
| 33 | + frame_length=block_length, hop_length=block_length) |
| 34 | + |
| 35 | + if fmin < 0: |
| 36 | + raise ParameterError("fmin={} must be nonnegative".format(fmin)) |
| 37 | + |
| 38 | + if fmax > (sr/2): |
| 39 | + raise ParameterError( |
| 40 | + "fmax={} must be smaller than sample rate sr={}".format(fmax, sr)) |
| 41 | + |
| 42 | + n_indices = len(indices) |
| 43 | + n_blocks = int(np.ceil(file_duration / block_duration)) |
| 44 | + fft_frequencies = librosa.fft_frequencies(sr=sr, n_fft=n_fft) |
| 45 | + bin_start = np.where(fft_frequencies>=fmin)[0][0] |
| 46 | + bin_stop = np.where(fft_frequencies<fmax)[0][-1] |
| 47 | + n_freqs = bin_stop - bin_start |
| 48 | + feature_map = joblib.delayed( |
| 49 | + lambda x: np.stack([feature_lambda(x) for feature_lambda in indices])) |
| 50 | + joblib_parallel = joblib.Parallel(n_jobs=n_jobs) |
| 51 | + X_list = [] |
| 52 | + |
| 53 | + for block_id in tqdm.tqdm(range(n_blocks), disable=not verbose): |
| 54 | + if filename is not None: |
| 55 | + y_block = next(y_blocks) |
| 56 | + librosa.util.valid_audio(y_block, mono=True) |
| 57 | + if sr!=orig_sr: |
| 58 | + y_block = librosa.resample(y_block, orig_sr, sr) |
| 59 | + else: |
| 60 | + y_block = y_blocks[:, block_id] |
| 61 | + S = librosa.stft(y_block, n_fft=n_fft, |
| 62 | + hop_length=hop_length, win_length=frame_length, center=False) |
| 63 | + truncated_length = (S_tensor.shape[1]//segment_length) * segment_length |
| 64 | + if truncated_length == 0: |
| 65 | + continue |
| 66 | + else: |
| 67 | + S = S[bin_start:bin_stop, :truncated_length] |
| 68 | + S_tensor = np.reshape(S.T, (-1, segment_length, n_freqs)).T |
| 69 | + n_segments = S_tensor.shape[2] |
| 70 | + job_generator = (feature_map(S_tensor[:, :, segment_id]) |
| 71 | + for segment_id in range(n_segments)) |
| 72 | + X_list.append(np.stack(joblib_parallel(job_generator), axis=-1)) |
| 73 | + |
| 74 | + X_tensor = np.concatenate(X_list, axis=-1) |
| 75 | + |
| 76 | + return X_tensor |
0 commit comments