-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmri_power_analysis_comparison_multiple_datasets.py
337 lines (288 loc) · 16.4 KB
/
fmri_power_analysis_comparison_multiple_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import matplotlib
matplotlib.use('Agg')
import argparse
import pickle
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
import shutil
from brainpedia.brainpedia import Brainpedia
from brainpedia.fmri_processing import invert_preprocessor_scaling
from utils.multiple_comparison import bootstrap_rejecting_voxels_mask, fmri_power_calculations
from nilearn import plotting
from utils.sampling import *
# Parse arguments
parser = argparse.ArgumentParser(description="Compare classical two sample t test to non-parametric tests for real and synthetic fMRI brain imaging datasets.")
parser.add_argument('real_dataset_1_dir', help='the directory containing the first real fMRI dataset')
parser.add_argument('real_dataset_1_cache_dir', help='the directory to use as a cache for real dataset 1 preprocessing')
parser.add_argument('syn_dataset_1_dir', help='the directory containing the synthetic fMRI dataset generated from a model trained on real dataset 1')
parser.add_argument('syn_dataset_1_cache_dir', help='the directory to use as a cache for synthetic dataset 1 preprocessing')
parser.add_argument('dataset_1_label', help='the label to use when describing contents of dataset 1')
parser.add_argument('real_dataset_2_dir', help='the directory containing the second real fMRI dataset')
parser.add_argument('real_dataset_2_cache_dir', help='the directory to use as a cache for real dataset 2 preprocessing')
parser.add_argument('syn_dataset_2_dir', help='the directory containing the synthetic fMRI dataset generated from a model trained on real dataset 2')
parser.add_argument('syn_dataset_2_cache_dir', help='the directory to use as a cache for synthetic dataset 2 preprocessing')
parser.add_argument('dataset_2_label', help='the label to use when describing contents of dataset 1')
parser.add_argument('output_dir', help='the directory to save power analysis results')
args = parser.parse_args()
OUTPUT_DATA_DIR = args.output_dir + 'data/'
# Setup output directory
# shutil.rmtree(args.output_dir, ignore_errors=True)
try:
os.makedirs(args.output_dir)
except:
pass
try:
os.makedirs(OUTPUT_DATA_DIR)
except:
pass
# Load datasets
DOWNSAMPLE_SCALE = 0.25
MULTI_TAG_LABEL_ENCODING = False
real_dataset_1_brainpedia = Brainpedia(data_dirs=[args.real_dataset_1_dir],
cache_dir=args.real_dataset_1_cache_dir,
scale=DOWNSAMPLE_SCALE,
multi_tag_label_encoding=MULTI_TAG_LABEL_ENCODING)
syn_dataset_1_brainpedia = Brainpedia(data_dirs=[args.syn_dataset_1_dir],
cache_dir=args.syn_dataset_1_cache_dir,
scale=DOWNSAMPLE_SCALE,
multi_tag_label_encoding=MULTI_TAG_LABEL_ENCODING)
real_dataset_2_brainpedia = Brainpedia(data_dirs=[args.real_dataset_2_dir],
cache_dir=args.real_dataset_2_cache_dir,
scale=DOWNSAMPLE_SCALE,
multi_tag_label_encoding=MULTI_TAG_LABEL_ENCODING)
syn_dataset_2_brainpedia = Brainpedia(data_dirs=[args.syn_dataset_2_dir],
cache_dir=args.syn_dataset_2_cache_dir,
scale=DOWNSAMPLE_SCALE,
multi_tag_label_encoding=MULTI_TAG_LABEL_ENCODING)
real_dataset_1, _ = real_dataset_1_brainpedia.all_data()
syn_dataset_1, _ = syn_dataset_1_brainpedia.all_data()
real_dataset_2, _ = real_dataset_2_brainpedia.all_data()
syn_dataset_2, _ = syn_dataset_2_brainpedia.all_data()
# Trim real datasets to the same length
real_dataset_length = min(len(real_dataset_1), len(real_dataset_2))
real_dataset_1 = np.array(real_dataset_1[:real_dataset_length])
real_dataset_2 = np.array(real_dataset_2[:real_dataset_length])
# Trim synthetic datasets to the same length
syn_dataset_length = min(len(syn_dataset_1), len(syn_dataset_2))
syn_dataset_1 = np.array(syn_dataset_1[:syn_dataset_length])
syn_dataset_2 = np.array(syn_dataset_2[:syn_dataset_length])
# Plot examples from datasets
real_dataset_1_img = invert_preprocessor_scaling(
real_dataset_1[0].squeeze(), real_dataset_1_brainpedia.preprocessor)
real_dataset_2_img = invert_preprocessor_scaling(
real_dataset_2[0].squeeze(), real_dataset_2_brainpedia.preprocessor)
syn_dataset_1_img = invert_preprocessor_scaling(
syn_dataset_1[0].squeeze(), syn_dataset_2_brainpedia.preprocessor)
syn_dataset_2_img = invert_preprocessor_scaling(
syn_dataset_2[2].squeeze(), syn_dataset_2_brainpedia.preprocessor)
figure, axes = plt.subplots(nrows=6, ncols=1, figsize=(15, 40))
plotting.plot_glass_brain(real_dataset_1_img, threshold='auto',
title="[REAL {0}]".format(args.dataset_1_label), axes=axes[0])
plotting.plot_glass_brain(syn_dataset_1_img, threshold='auto',
title="[SYN {0}]".format(args.dataset_1_label), axes=axes[1])
plotting.plot_glass_brain(real_dataset_2_img, threshold='auto',
title="[REAL {0}]".format(args.dataset_2_label), axes=axes[2])
plotting.plot_glass_brain(syn_dataset_2_img, threshold='auto',
title="[SYN {0}]".format(args.dataset_2_label), axes=axes[3])
# Compute statistical significance weights of each voxel in non-visual vs
# visual
num_trials = 5
k = 10
real_rejecting_voxels_mask = bootstrap_rejecting_voxels_mask(
real_dataset_1.squeeze(), real_dataset_2.squeeze(), k=k)
# Compute power for various n
n = np.linspace(10, 100, num=18)
fdr_test_p_values_for_n = np.zeros((len(n), num_trials, k))
syn_fdr_test_p_values_for_n = np.zeros((len(n), num_trials, k))
mmd_test_p_values_for_n = np.zeros((len(n), num_trials, k))
syn_mmd_test_p_values_for_n = np.zeros((len(n), num_trials, k))
fdr_test_power_for_n = np.zeros((len(n), num_trials))
syn_fdr_test_power_for_n = np.zeros((len(n), num_trials))
mmd_test_power_for_n = np.zeros((len(n), num_trials))
syn_mmd_test_power_for_n = np.zeros((len(n), num_trials))
percent_rejecting_voxels_syn_for_n = np.zeros((len(n), k))
percent_rejecting_voxels_real_for_n = np.zeros((len(n), k))
wtp_syn_for_n = np.zeros((len(n), k))
wtn_syn_for_n = np.zeros((len(n), k))
wfp_syn_for_n = np.zeros((len(n), k))
wfn_syn_for_n = np.zeros((len(n), k))
wtp_real_for_n = np.zeros((len(n), k))
wtn_real_for_n = np.zeros((len(n), k))
wfp_real_for_n = np.zeros((len(n), k))
wfn_real_for_n = np.zeros((len(n), k))
for i in range(len(n)):
# Determine sample sizes to draw from synthetic and real datasets
# Note: there is limited real data. When there is none left, simply use the
# max available amount of data.
syn_n = int(n[i])
real_n = min(real_dataset_1.shape[0], int(n[i]))
for t in range(num_trials):
fdr_real_p_val, mmd_p_val, fdr_real_power, mmd_power, percent_rejecting_voxels_real, wtp_real, wtn_real, wfp_real, wfn_real = fmri_power_calculations(
real_dataset_1, real_dataset_2, real_n, real_n, real_rejecting_voxels_mask, k=k)
fdr_syn_p_val, mmd_syn_p_val, fdr_syn_power, mmd_syn_power, percent_rejecting_voxels_syn, wtp_syn, wtn_syn, wfp_syn, wfn_syn = fmri_power_calculations(
syn_dataset_1, syn_dataset_2, syn_n, syn_n, real_rejecting_voxels_mask, k=k)
fdr_test_p_values_for_n[i][t][:] = fdr_real_p_val[:]
syn_fdr_test_p_values_for_n[i][t][:] = fdr_syn_p_val[:]
mmd_test_p_values_for_n[i][t][:] = mmd_p_val[:]
syn_mmd_test_p_values_for_n[i][t][:] = mmd_syn_p_val[:]
fdr_test_power_for_n[i][t] = fdr_real_power
syn_fdr_test_power_for_n[i][t] = fdr_syn_power
mmd_test_power_for_n[i][t] = mmd_power
syn_mmd_test_power_for_n[i][t] = mmd_syn_power
percent_rejecting_voxels_syn_for_n[i][:] = percent_rejecting_voxels_syn
percent_rejecting_voxels_real_for_n[i][:] = percent_rejecting_voxels_real
wtp_syn_for_n[i][:] = wtp_syn[:]
wtn_syn_for_n[i][:] = wtn_syn[:]
wfp_syn_for_n[i][:] = wfp_syn[:]
wfn_syn_for_n[i][:] = wfn_syn[:]
wtp_real_for_n[i][:] = wtp_real[:]
wtn_real_for_n[i][:] = wtn_real[:]
wfp_real_for_n[i][:] = wfp_real[:]
wfn_real_for_n[i][:] = wfn_real[:]
print("PERCENT COMPLETE: {0:.2f}%\r".format(
100 * float(i + 1) / float(len(n))), end='')
# Calculate Beta value for every trial and every sample size
def compute_beta(real_pvals, syn_pvals, alpha=0.05, k=50):
l = 0.0
h = 1.0
for _ in range(k):
beta = (l + h) / 2.0
syn_reject_too_often = False
for n in range(real_pvals.shape[0]):
for trial in range(real_pvals.shape[1]):
avg_real_rejection = np.mean(real_pvals[n][trial] < alpha)
avg_syn_rejection = np.mean(syn_pvals[n][trial] + beta < alpha)
if avg_syn_rejection > avg_real_rejection:
syn_reject_too_often = True
if syn_reject_too_often:
l = beta
else:
h = beta
return beta
computed_fdr_beta = compute_beta(fdr_test_p_values_for_n, syn_fdr_test_p_values_for_n)
computed_mmd_beta = compute_beta(mmd_test_p_values_for_n, syn_mmd_test_p_values_for_n)
fdr_beta = 0.049997 # avg = 0.0443541875
mmd_beta = 0.0277111875
#((len(n), num_trials, k))
conservative_syn_fdr_test_p_values_for_n = np.copy(
syn_fdr_test_p_values_for_n) + fdr_beta
conservative_syn_fdr_test_power = np.mean(
conservative_syn_fdr_test_p_values_for_n < 0.05, axis=2)
conservative_syn_mmd_test_p_values_for_n = np.copy(
syn_mmd_test_p_values_for_n) + mmd_beta
conservative_syn_mmd_test_power = np.mean(
conservative_syn_mmd_test_p_values_for_n < 0.05, axis=2)
# Save p-values
pickle.dump(fdr_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_real.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
pickle.dump(syn_fdr_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_syn.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
pickle.dump(conservative_syn_fdr_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_syncon.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
pickle.dump(mmd_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_real.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
pickle.dump(syn_mmd_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syn.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
pickle.dump(conservative_syn_mmd_test_p_values_for_n, open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syncon.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "wb"))
fdr_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_real.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
syn_fdr_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_syn.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
conservative_syn_fdr_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_p_vals_syncon.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
mmd_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_real.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
syn_mmd_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syn.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
conservative_syn_mmd_test_p_values_for_n = pickle.load( open('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syncon.pkl'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), "rb") )
# Save power
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_power_real.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), fdr_test_power_for_n)
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_power_syn.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), syn_fdr_test_power_for_n)
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_fdr_power_syncon.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), conservative_syn_fdr_test_power)
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_real.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), mmd_test_power_for_n)
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syn.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), syn_mmd_test_power_for_n)
np.save('{0}[fmri_power_analysis]_[{1}_VS_{2}]_mmd_power_syncon.npy'.format(
OUTPUT_DATA_DIR, args.dataset_1_label, args.dataset_2_label), conservative_syn_mmd_test_power)
# Plot curve of n vs FDR corrected t test power
sns.tsplot(data=fdr_test_power_for_n.T, time=n, ci=[
68, 95], color='blue', condition='REAL', ax=axes[4])
sns.tsplot(data=syn_fdr_test_power_for_n.T, time=n, ci=[
68, 95], color='orange', condition='SYN', ax=axes[4])
sns.tsplot(data=conservative_syn_fdr_test_power.T, time=n, ci=[
68, 95], color='green', condition='SYN CONSERVATIVE', ax=axes[4])
axes[4].set_title('Sample Size vs FDR Corrected T Test Power')
axes[4].set_xlabel('Sample Size, Applied Beta = %f, Computed Beta = %f' % (fdr_beta, computed_fdr_beta))
axes[4].set_ylabel('Power')
axes[4].set_ylim([-0.1, 1.1])
axes[4].legend(loc="upper right")
# Plot curve of n vs MMD test power
sns.tsplot(data=mmd_test_power_for_n.T, time=n, ci=[
68, 95], color='blue', condition='REAL', ax=axes[5])
sns.tsplot(data=syn_mmd_test_power_for_n.T, time=n, ci=[
68, 95], color='orange', condition='SYN', ax=axes[5])
sns.tsplot(data=conservative_syn_mmd_test_power.T, time=n, ci=[
68, 95], color='green', condition='SYN CONSERVATIVE', ax=axes[5])
axes[5].set_title('Sample Size vs MMD Test Power')
axes[5].set_xlabel('Sample Size, Applied Beta = %f, Computed Beta = %f' % (mmd_beta, computed_mmd_beta))
axes[5].set_ylabel('Power')
axes[5].set_ylim([-0.1, 1.1])
axes[5].legend(loc="upper right")
# # Plot curve of percent rejecting voxels
# sns.tsplot(data=percent_rejecting_voxels_real_for_n.T, time=n, ci=[
# 68, 95], color='blue', condition='REAL', ax=axes[6])
# sns.tsplot(data=percent_rejecting_voxels_syn_for_n.T, time=n, ci=[
# 68, 95], color='orange', condition='SYN', ax=axes[6])
# axes[6].set_title('Sample Size vs Percent Significant Voxels')
# axes[6].set_xlabel('Sample Size')
# axes[6].set_ylabel('% Sig Voxels')
# axes[6].legend(loc="upper right")
# # Plot curve of n vs rejection overlaps
# # True Positive
# sns.tsplot(data=wtp_real_for_n.T, time=n, ci=[
# 68, 95], color='blue', condition='REAL', ax=axes[7])
# sns.tsplot(data=wtp_syn_for_n.T, time=n, ci=[
# 68, 95], color='orange', condition='SYN', ax=axes[7])
# axes[7].set_title('Sample Size vs Weighted True Positive')
# axes[7].set_xlabel('Sample Size')
# axes[7].set_ylabel('W_TP')
# axes[7].legend(loc="upper right")
# # True Negative
# sns.tsplot(data=wtn_real_for_n.T, time=n, ci=[
# 68, 95], color='blue', condition='REAL', ax=axes[8])
# sns.tsplot(data=wtn_syn_for_n.T, time=n, ci=[
# 68, 95], color='orange', condition='SYN', ax=axes[8])
# axes[8].set_title('Sample Size vs Weighted True Negatives')
# axes[8].set_xlabel('Sample Size')
# axes[8].set_ylabel('W_TN')
# axes[8].legend(loc="upper right")
# # False Positive
# sns.tsplot(data=wfp_real_for_n.T, time=n, ci=[
# 68, 95], color='blue', condition='REAL', ax=axes[9])
# sns.tsplot(data=wfp_syn_for_n.T, time=n, ci=[
# 68, 95], color='orange', condition='SYN', ax=axes[9])
# axes[9].set_title('Sample Size vs Weighted False Positives')
# axes[9].set_xlabel('Sample Size')
# axes[9].set_ylabel('W_FP')
# axes[9].legend(loc="upper right")
# # False Negative
# sns.tsplot(data=wfn_real_for_n.T, time=n, ci=[
# 68, 95], color='blue', condition='REAL', ax=axes[10])
# sns.tsplot(data=wfn_syn_for_n.T, time=n, ci=[
# 68, 95], color='orange', condition='SYN', ax=axes[10])
# axes[10].set_title('Sample Size vs Weighted False Negatives')
# axes[10].set_xlabel('Sample Size')
# axes[10].set_ylabel('W_FN')
# axes[10].legend(loc="upper right")
# Save results
figure.subplots_adjust(hspace=0.5)
figure.savefig('{0}[fmri_power_analysis]_[{1}_VS_{2}].pdf'.format(
args.output_dir, args.dataset_1_label, args.dataset_2_label), format='pdf')