Skip to content

Commit

Permalink
Examples on how to use the jit decorator (for both expressions and re…
Browse files Browse the repository at this point in the history
…ductions)
  • Loading branch information
FrancescAlted committed Feb 5, 2025
1 parent 77cc75e commit 0ce9c30
Show file tree
Hide file tree
Showing 2 changed files with 108 additions and 0 deletions.
53 changes: 53 additions & 0 deletions examples/ndarray/jit-expr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#######################################################################
# Copyright (c) 2019-present, Blosc Development Team <[email protected]>
# All rights reserved.
#
# This source code is licensed under a BSD-style license (found in the
# LICENSE file in the root directory of this source tree)
#######################################################################

# Examples of using the jit decorator with expressions
# You can find benchmarks for this example in the bench/ndarray directory

import blosc2
import numpy as np

# Example 1: Basic usage of the jit decorator
@blosc2.jit
def expr_jit(a, b, c):
# This function computes a boolean array where the condition is met
return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0)

# Create some sample data
a = blosc2.linspace(0, 1, 10 * 100, dtype="float32", shape=(10, 100))
b = blosc2.linspace(1, 2, 10 * 100, dtype="float32", shape=(10, 100))
c = blosc2.linspace(-10, 10, 10, dtype="float32", shape=(100,))

# Call the function with the jit decorator
result = expr_jit(a, b, c)
print(result[1,:10])

# Example 2: Using the jit decorator with an out parameter
out = blosc2.zeros((10, 100), dtype=np.bool_)

@blosc2.jit(out=out)
def expr_jit_out(a, b, c):
# This function computes a boolean array and stores the result in the 'out' array
return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0)

# Call the function with the jit decorator and out parameter
result_out = expr_jit_out(a, b, c)
print(result_out[1,:10])
print(out[1,:10]) # The 'out' array should now contain the same result

# Example 3: Using the jit decorator with additional keyword arguments
cparams = blosc2.CParams(clevel=1, codec=blosc2.Codec.LZ4, filters=[blosc2.Filter.BITSHUFFLE])

@blosc2.jit(cparams=cparams)
def expr_jit_cparams(a, b, c):
# This function computes a boolean array with custom compression parameters
return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0)

# Call the function with the jit decorator and custom parameters
result_cparams = expr_jit_cparams(a, b, c)
print(result_cparams[1,:10])
55 changes: 55 additions & 0 deletions examples/ndarray/jit-reduc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
#######################################################################
# Copyright (c) 2019-present, Blosc Development Team <[email protected]>
# All rights reserved.
#
# This source code is licensed under a BSD-style license (found in the
# LICENSE file in the root directory of this source tree)
#######################################################################

# Examples of using the jit decorator with reductions
# You can find benchmarks for this example in the bench/ndarray directory

import blosc2
import numpy as np

# Example 1: Basic usage of the jit decorator with reduction
@blosc2.jit
def expr_jit(a, b, c):
# This function computes a sum reduction along axis 1
return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1)

# Create some sample data
a = blosc2.linspace(0, 1, 10 * 100, dtype="float32", shape=(10, 100))
b = blosc2.linspace(1, 2, 10 * 100, dtype="float32", shape=(10, 100))
c = blosc2.linspace(-10, 10, 10, dtype="float32", shape=(100,))

# Call the function with the jit decorator
result = expr_jit(a, b, c)
print("Example 1 result:", result)

# Example 2: Using the jit decorator with an out parameter for reduction
out = np.zeros((10,), dtype=np.int64)

@blosc2.jit
def expr_jit_out(a, b, c):
# This function computes a sum reduction along axis 1 and stores the result in the 'out' array
return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1, out=out)

# Call the function with the jit decorator and out parameter
result_out = expr_jit_out(a, b, c)
print("Example 2 result:", result_out)
print("Example 2 out array:", out) # The 'out' array should now contain the same result

# Example 3: Using the jit decorator with additional keyword arguments for reduction
cparams = blosc2.CParams(clevel=1, codec=blosc2.Codec.LZ4, filters=[blosc2.Filter.BITSHUFFLE])
out_cparams = blosc2.zeros((10,), dtype=np.int64, cparams=cparams)

@blosc2.jit
def expr_jit_cparams(a, b, c):
# This function computes a sum reduction along axis 1 with custom compression parameters
return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1, out=out_cparams)

# Call the function with the jit decorator and custom parameters
result_cparams = expr_jit_cparams(a, b, c)
print("Example 3 result:", result_cparams[...])
print("Example 3 out array:", out_cparams[...]) # The 'out_cparams' array should now contain the same result

0 comments on commit 0ce9c30

Please sign in to comment.