diff --git a/examples/ndarray/jit-expr.py b/examples/ndarray/jit-expr.py new file mode 100644 index 00000000..13b46f73 --- /dev/null +++ b/examples/ndarray/jit-expr.py @@ -0,0 +1,53 @@ +####################################################################### +# Copyright (c) 2019-present, Blosc Development Team +# All rights reserved. +# +# This source code is licensed under a BSD-style license (found in the +# LICENSE file in the root directory of this source tree) +####################################################################### + +# Examples of using the jit decorator with expressions +# You can find benchmarks for this example in the bench/ndarray directory + +import blosc2 +import numpy as np + +# Example 1: Basic usage of the jit decorator +@blosc2.jit +def expr_jit(a, b, c): + # This function computes a boolean array where the condition is met + return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0) + +# Create some sample data +a = blosc2.linspace(0, 1, 10 * 100, dtype="float32", shape=(10, 100)) +b = blosc2.linspace(1, 2, 10 * 100, dtype="float32", shape=(10, 100)) +c = blosc2.linspace(-10, 10, 10, dtype="float32", shape=(100,)) + +# Call the function with the jit decorator +result = expr_jit(a, b, c) +print(result[1,:10]) + +# Example 2: Using the jit decorator with an out parameter +out = blosc2.zeros((10, 100), dtype=np.bool_) + +@blosc2.jit(out=out) +def expr_jit_out(a, b, c): + # This function computes a boolean array and stores the result in the 'out' array + return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0) + +# Call the function with the jit decorator and out parameter +result_out = expr_jit_out(a, b, c) +print(result_out[1,:10]) +print(out[1,:10]) # The 'out' array should now contain the same result + +# Example 3: Using the jit decorator with additional keyword arguments +cparams = blosc2.CParams(clevel=1, codec=blosc2.Codec.LZ4, filters=[blosc2.Filter.BITSHUFFLE]) + +@blosc2.jit(cparams=cparams) +def expr_jit_cparams(a, b, c): + # This function computes a boolean array with custom compression parameters + return ((a ** 3 + np.sin(a * 2)) < c) & (b > 0) + +# Call the function with the jit decorator and custom parameters +result_cparams = expr_jit_cparams(a, b, c) +print(result_cparams[1,:10]) diff --git a/examples/ndarray/jit-reduc.py b/examples/ndarray/jit-reduc.py new file mode 100644 index 00000000..cf211579 --- /dev/null +++ b/examples/ndarray/jit-reduc.py @@ -0,0 +1,55 @@ +####################################################################### +# Copyright (c) 2019-present, Blosc Development Team +# All rights reserved. +# +# This source code is licensed under a BSD-style license (found in the +# LICENSE file in the root directory of this source tree) +####################################################################### + +# Examples of using the jit decorator with reductions +# You can find benchmarks for this example in the bench/ndarray directory + +import blosc2 +import numpy as np + +# Example 1: Basic usage of the jit decorator with reduction +@blosc2.jit +def expr_jit(a, b, c): + # This function computes a sum reduction along axis 1 + return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1) + +# Create some sample data +a = blosc2.linspace(0, 1, 10 * 100, dtype="float32", shape=(10, 100)) +b = blosc2.linspace(1, 2, 10 * 100, dtype="float32", shape=(10, 100)) +c = blosc2.linspace(-10, 10, 10, dtype="float32", shape=(100,)) + +# Call the function with the jit decorator +result = expr_jit(a, b, c) +print("Example 1 result:", result) + +# Example 2: Using the jit decorator with an out parameter for reduction +out = np.zeros((10,), dtype=np.int64) + +@blosc2.jit +def expr_jit_out(a, b, c): + # This function computes a sum reduction along axis 1 and stores the result in the 'out' array + return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1, out=out) + +# Call the function with the jit decorator and out parameter +result_out = expr_jit_out(a, b, c) +print("Example 2 result:", result_out) +print("Example 2 out array:", out) # The 'out' array should now contain the same result + +# Example 3: Using the jit decorator with additional keyword arguments for reduction +cparams = blosc2.CParams(clevel=1, codec=blosc2.Codec.LZ4, filters=[blosc2.Filter.BITSHUFFLE]) +out_cparams = blosc2.zeros((10,), dtype=np.int64, cparams=cparams) + +@blosc2.jit +def expr_jit_cparams(a, b, c): + # This function computes a sum reduction along axis 1 with custom compression parameters + return np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1, out=out_cparams) + +# Call the function with the jit decorator and custom parameters +result_cparams = expr_jit_cparams(a, b, c) +print("Example 3 result:", result_cparams[...]) +print("Example 3 out array:", out_cparams[...]) # The 'out_cparams' array should now contain the same result