-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3 zadatak - visecesticni Hamiltonijan za 2x2 klaster.py
180 lines (149 loc) · 5.43 KB
/
3 zadatak - visecesticni Hamiltonijan za 2x2 klaster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import itertools
t = -1
eps = 2
L = 2
def get_x_of_i(L, i):
# za dati indeks chvora nadji koordinate
return i
def get_i_of_x(L, x):
# za date periodichne koordinate nadji indeks
x = x % L # vrati x na opseg [0, L)
return x
def draw(L):
# nacrtaj klaster sa vezama
print("---", end="")
for x in range(-1, L+1):
print(get_i_of_x(L, x), "\t---", end=" ")
print()
def single_particle_hamiltonian(L, t, eps):
# vrati hamiltonijan
H = np.zeros((L, L))
for i in range(L):
H[i, i] = eps
for d in [-1, 1]: # najblizhi susedi...
for a in [i+d]: # po x i y osi
j = get_i_of_x(L, a) # nadji indeks suseda
H[i, j] = H[j, i] = t # popuni chlan
return H
singleHamiltonian = single_particle_hamiltonian(L, -1, 2)
print(singleHamiltonian)
def get_fock_states(max_occupancy, Norb):
fock_states = list(itertools.product(range(max_occupancy+1), repeat=Norb))
# sortiraj stanja po ukupnom broju chestica
fock_states = sorted(fock_states, key=lambda x: sum(x))
# pretvorimo u numpy.array
for fsi, fs in enumerate(fock_states):
fock_states[fsi] = np.array(list(fs))
return np.array(fock_states)
return fock_states
fokova_stanja = get_fock_states(2, L)
print(fokova_stanja)
def many_body_hamiltonian(fock_states, spH):
N = len(fock_states)
H = np.zeros((N, N))
# dijagonalni element je suma potencijala svih popunjenih orbitala
for fsi, fs in enumerate(fock_states):
for i, n in enumerate(fs):
H[fsi, fsi] += spH[i, i]*n
# sada popunimo vandijagonalne elemente
for fs1i, fs1 in enumerate(fock_states):
ntot1 = np.sum(fs1)
for fs2i, fs2 in enumerate(fock_states):
# gledamo samo gornji trougao, donji popunjavamo po simetriji
if fs1i <= fs2i:
continue
ntot2 = np.sum(fs2)
# ako dva stanja nemaju isti broj chestica, nisu u vezi
if ntot1 != ntot2:
continue
diff = fs1-fs2
nzdiff = np.nonzero(diff)[0]
# ako se pomerilo vishe od jedne chestice, to nas ne interesuje
if nzdiff.size > 2:
continue
if np.sum(np.abs(diff)) > 2:
continue
pref = np.sqrt(fs2[nzdiff[1]])*np.sqrt(fs1[nzdiff[0]])
# nadjeno hoping amplitudu izmedju
# dva stanja izmedju kojih se mrdnula chestica
H[fs1i, fs2i] = H[fs2i, fs1i] = pref*spH[tuple(nzdiff)]
return H
print('Visecesticni Hamiltonijan')
visecesticniH = many_body_hamiltonian(fokova_stanja, singleHamiltonian)
print(np.around(visecesticniH, 2))
'''
def get_ac_operator(i, fock_states, a_or_c='c', ):
# napravi operator kreacije/anihilacije na chvoru i
if a_or_c = ='a': # izaberi c za kreacioni ili a za anihilacioni operator
p = -1
elif a_or_c = ='c':
p = 1
# N je broj mogucih stanja, Norb je broj orbitala tj. broj cvorova
N, Norb = fock_states.shape
# kreacioni/anihilacioni operator u zavisnosti od izbora a ili c
op = np.zeros((N, N))
for fs1i, fs1 in enumerate(fock_states):
for fs2i, fs2 in enumerate(fock_states):
diff = fs1-fs2
nzdiff = np.nonzero(diff)[0]
if nzdiff.size! = 1:
continue
if diff[nzdiff[0]]! = p:
continue
if nzdiff[0]! = i:
continue # nas interesuje samo stanje na cvoru i
op[fs1i, fs2i] = 1 # popunjavanje operatora
return op
'''
def get_ac_operator(i, fock_states, max_occupancy, a_or_c='c'):
# napravi operator kreacije/anihilacije na chvoru i
if a_or_c = ='c':
p = 1
elif a_or_c = ='a':
p = -1
else:
assert False, "unknown type of operator"
N, Norb = fock_states.shape
op = np.zeros((N, N))
for fs1i, fs1 in enumerate(fock_states):
if fs1[i]+p not in range(max_occupancy+1):
continue # preskachemo ako ispadne iz opsega
fs2 = np.array(fs1)
fs2[i] += p
fs2i = np.nonzero((fock_states == fs2).all(axis=1))[0][0]
if a_or_c = ='c':
term = np.sqrt(fs2[i])
elif a_or_c = ='a':
term = np.sqrt(fs1[i])
else:
assert False, "unknown type of operator"
op[fs2i, fs1i] = term
return op
operatorC = get_ac_operator(0, fokova_stanja, 2, 'c')
# print(operatorC)
operatorA = get_ac_operator(0, fokova_stanja, 2, 'a')
# print(operatorA)
def get_tight_binding_many_body_hamiltonian_from_operators(
L, max_occupancy, t, eps
):
# napravi many-body hamiltonian koristecci operatore kreacije i anihilacije
fock_states = get_fock_states(max_occupancy, L)
N = len(fock_states)
H = np.zeros((N, N))
for i in range(L):
H += eps*np.dot(
get_ac_operator(i, fock_states, max_occupancy, 'c'),
get_ac_operator(i, fock_states, max_occupancy, 'a')
)
for d in ([-1, 1] if L > 2 else [1]):
j = get_i_of_x(L, i+d) # nadji indeks suseda
H += t*np.dot(
get_ac_operator(i, fock_states, max_occupancy, 'c'),
get_ac_operator(j, fock_states, max_occupancy, 'a')
)
return H
print('Hamiltonijan dobijen mnozenjem operatora')
hamiltnojanOdOperatora = \
get_tight_binding_many_body_hamiltonian_from_operators(L, 2, t, eps)
print(np.around(hamiltnojanOdOperatora, 2))