-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOPT.m
271 lines (227 loc) · 7.12 KB
/
OPT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
function J=OPT(u)
close all
global J_min
global Q_min
global Motion_Time
global T_ac T_dc Td Step_Time
global SCR
global V Ds
global N Tc
%% Variables
kJ=1;
if SCR==3
Sc=u(1);
Rse=u(2);
% Rd=u(3);
% Rm=u(4);
R_zp=u(3);
R_Td=u(4);
run main_key_parameters
run main_time
elseif SCR==4
Rac_1=u(1);
Rac_2=u(2);
Rac_3=u(3);
Rac_4=u(4);
Rac_5=u(5);
% Rac_6=u(6);
% Rac_7=u(7);
% Rac_8=u(8);
ini1=u(6);
ini2=u(7);
run start_key_parameters
run start_time
k=floor(T_ac_a_a/Step_Time)+1;
i=floor(T_ac/Step_Time)+1;
% if 0>=T_ac_p_ax
% J=100*kJ;
% kJ=kJ+1;
% % display('Y Pelvis Time!')
% end
% if 0>=T_ac_p_ay || T_ac_p_ay>=T_ac_p_by || T_ac_p_by>=T_ac_p_cy || T_ac_p_cy>=T_ac
% J=100*kJ;
% kJ=kJ+1;
% % display('Y Pelvis Time!')
% end
if 0>=T_ac_p_az || T_ac_p_az>=T_ac_p_bz || T_ac_p_bz>=T_ac
J=100*kJ;
kJ=kJ+1;
% display('Z Pelvis Time!')
end
if 0>=T_ac_a_a || T_ac_a_a>=T_ac_a_b || T_ac_a_b>=T_ac
J=100*kJ;
kJ=kJ+1;
% display('st Ankle Time!')
end
elseif SCR==5
Rdc_1=u(1);
Rdc_2=u(2);
Rdc_3=u(3);
Rdc_4=u(4);
Rdc_5=u(5);
Rdc_6=u(6);
Rdc_7=u(7);
Rdc_8=u(8);
run end_key_parameters
run end_time
j=floor((T_ac+2*N*Tc+T_dc_a_a)/Step_Time)+1;
f=floor((T_ac+2*N*Tc+T_dc_a_c)/Step_Time)+1;
if Td>=T_dc_p_ax || T_dc_p_ax>=T_dc
J=100*kJ;
kJ=kJ+1;
% display('Y Pelvis Time!')
end
if Td>=T_dc_p_ay || T_dc_p_ay>=T_dc_p_by || T_dc_p_by>=T_dc_p_cy || T_dc_p_cy>=T_dc
J=100*kJ;
kJ=kJ+1;
% display('Y Pelvis Time!')
end
if Td/2>=T_dc_p_az || T_dc_p_az>=T_dc_p_bz || T_dc_p_bz>=T_dc
J=100*kJ;
kJ=kJ+1;
% display('Z Pelvis Time!')
end
if 0>=T_dc_a_a || T_dc_a_a>=T_dc_a_b || T_dc_a_b>=T_dc_a_c || T_dc_a_c>=T_dc
J=100*kJ;
kJ=kJ+1;
% display('end Ankle Time!')
end
end
if kJ==1
run Coeff_array
% Tarjectory
clear q p dq dp ddq r dr ddr
sim('test_trajectories',Motion_Time)
p=simout.signals.values; % task-space trajectory
dp=simout7.signals.values; % task-space trajectory
r=simout1.signals.values; %trajectories
q=simout4.signals.values;
dq=simout5.signals.values;
% ddq=simout6.signals.values;
r_p = p(:,1:3); % pelvis position
x_p = r_p(:,1);
y_p = r_p(:,2);
z_p = r_p(:,3);
q_p = p(:,4:6); % pelvis rotation
alpha_p = q_p(:,1);
beta_p = q_p(:,2);
gamma_p = q_p(:,3);
dr_p = dp(:,1:3); % pelvis velocity
dx_p = dr_p(:,1);
dy_p = dr_p(:,2);
dz_p = dr_p(:,3);
dq_p = dp(:,4:6); % pelvis angular velocity
dalpha_p = dq_p(:,1);
dbeta_p = dq_p(:,2);
dgamma_p = dq_p(:,3);
q_fr = q(:,1:3);
q_fl = q(:,4:6);
q_hr = q(:,7:10);
q_hl = q(:,11:14);
dq_fr = dq(:,1:3);
dq_fl = dq(:,4:6);
dq_hr = dq(:,7:10);
dq_hl = dq(:,11:14);
% r_knee_fr = r(:,28:30);
% r_knee_fl = r(:,31:33);
clear simout simout1 simout2 simout3 simout4 simout5 simout6 simout7
% Constraints
if SCR==3
dxp_min=min(dx_p(5:end-5));
if dxp_min<0
J=100*kJ;
kJ=kJ+1;
% display('dxp < 0 !')
end
q1_fl_min = min(q_fl(:,1));q1_fl_max = max(q_fl(:,1));
q1_fr_min = min(q_fr(:,1));q1_fr_max = max(q_fr(:,1));
if or(or(q1_fl_min<(-46*pi/180),q1_fl_max>(46*pi/180)),or(q1_fr_min<(-46*pi/180),q1_fr_max>(46*pi/180)))%,q4_min>(20*pi/180))
J=100*kJ;
kJ=kJ+1;
% display('Singularity at Knee !')
end
q1_hl_min = min(q_hl(:,1));q1_hl_max = max(q_hl(:,1));
q1_hr_min = min(q_hr(:,1));q1_hr_max = max(q_hr(:,1));
if or(or(q1_hl_min<(-46*pi/180),q1_hl_max>(46*pi/180)),or(q1_hr_min<(-46*pi/180),q1_hr_max>(46*pi/180)))%,q4_min>(20*pi/180))
J=100*kJ;
kJ=kJ+1;
% display('Singularity at Hip !')
end
q3_fl_min = min(q_fl(:,3));q3_fl_max = max(q_fl(:,3));
q3_fr_min = min(q_fr(:,3));q3_fr_max = max(q_fr(:,3));
%
if or(or(abs(q_fr(:,3))<(10*pi/180),abs(q_fl(:,3))<(10*pi/180)),or(abs(q_hr(:,4))<(10*pi/180),abs(q_hl(:,4))<(10*pi/180)))%,q4_min>(20*pi/180))
J=100*kJ;
kJ=kJ+1;
% display('Singularity at Knee !')
end
elseif SCR==4
% yp=w(1:i,2);
% if min(yp)<-y_st_max
% J=100*kJ;
% kJ=kJ+1;
% % % display('yp > ye !')
% end
% size(dz_p)
dzp_min=min(dz_p(3:i-2));
if dzp_min>0.01
J=100*kJ;
kJ=kJ+1;
% display('dzp > 0 !')
end
q4_min=min(min(q(k+2:end-3,[3 6])));
if q4_min<(5*pi/180)
J=100*kJ;
kJ=kJ+1;
% display('Singularity at Knee!')
end
elseif SCR==5
% yp=w(:,2);
% figure
% plot(t,yp)
% if max(yp(j:end-3))>y_end_max
% J=100*kJ;
% kJ=kJ+1;
% display('yp > ye!')
% end
dzp_min=min(dz_p(j+3:end-3));
if dzp_min<-0.01
J=100*kJ;
kJ=kJ+1;
% display('dzp < 0 !')
end
q4_min=min(min(q(3:f-2,[4 10])));
if q4_min<(5*pi/180)
J=100*kJ;
kJ=kJ+1;
% display('Singularity at Knee!')
end
end
end
%% Gold Function
if kJ==1
J=Limit_ZMP; % Gold function
end
% J
% pause
%% Output
if J<J_min
J_min=J;
if SCR==3
Q_min=[Sc Rse R_zp R_Td q3_fl_min*(180/pi) q3_fl_max*(180/pi) J];
Q_out=[Q_min V Ds SCR];
save('Q_out.mat', 'Q_out')
fprintf('\n Sc:%6.4f Rse:%6.4f R_zp:%6.4f R_Td:%6.4f q_knee_min:%6.1f q_knee_max:%6.1f J:%6.4f\n', Sc, Rse, R_zp, R_Td, q3_fl_min*(180/pi), q3_fl_max*(180/pi), J);
elseif SCR==4
Q_min=[Rac_1 Rac_2 Rac_3 Rac_4 Rac_5 ini1 ini2 J];
Q_out=[Q_min V Ds SCR];
save('Q_out.mat', 'Q_out')
fprintf('\n Rac_1:%6.4f Rac_2:%6.4f Rac_3:%6.4f Rac_4:%6.4f Rac_5:%6.4f ini1:%6.4f ini2:%6.4f J:%6.4f\n', Rac_1, Rac_2, Rac_3, Rac_4, Rac_5,ini1, ini2, J);
elseif SCR==5
Q_min=[Rdc_1 Rdc_2 Rdc_3 Rdc_4 Rdc_5 Rdc_6 Rdc_7 Rdc_8 0 J];
Q_out=[Q_min V Ds SCR];
save('Q_out.mat', 'Q_out')
fprintf('\n Rdc_1:%6.4f Rdc_2:%6.4f Rdc_3:%6.4f Rdc_4:%6.4f Rdc_5:%6.4f Rdc_6:%6.4f Rdc_7:%6.4f Rdc_8:%6.4f J:%6.4f\n', Rdc_1, Rdc_2, Rdc_3, Rdc_4, Rdc_5, Rdc_6, Rdc_7, Rdc_8, J);
end
end
end