-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathharmonizedDataCreation.py
executable file
·390 lines (313 loc) · 13.5 KB
/
harmonizedDataCreation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
################################################################################
################# METADATA NEAREST NEIGHBOURS ##################
################################################################################
# 1) Load the data including information on zero hop neighbourhoods
# 2) Filter out samples with no internal/external repeat experiment (no replica)
# 3) Run batch correction
# 4) Compare batch correction techniques by:
# 4a) Visualization (tsne)
# 4b) Evaluation metrics
###########################################################################################
# Libraries
###########################################################################################
import reComBat
from scipy.stats import mannwhitneyu
from pathlib import Path
import reComBat
from harmony import harmonize
import scgen
# Additional fucntions
from evaluationMetrics import *
from batchCorrectionMethods import *
from visualization import *
from dataloading import *
###########################################################################################
# Selections - paths etc.
###########################################################################################
output = "output_TEST"
sc._settings.ScanpyConfig.figdir = Path(output)
Path(os.path.join(os.getcwd(), output)).mkdir(parents=True, exist_ok=True)
batch_field = 'gse'
obs_eval = 'ZeroHop'
# Choose batch correction model
# Options: 'Raw', 'Standardised','elMG','elPC', 'reComBat', 'Harmony', 'scGen', 'scGenZH','ComBat'
models = ['reComBat']
# Choose data type. Options: 'MicroArray', 'bulkRNA'
data_use = 'bulkRNA'
data_path = os.path.join(os.getcwd(),'data/')
if data_use == 'MicroArray':
to_color_by = ['strain','GrowthPhase', 'Culture_Coarse', 'Temperature_Coarse','Oxygenation', 'MediumCoarse', 'Antibiotic']
data_filename = 'Data_from_CELs_R_exported_RMAnormalized.txt'#Expression data, preprocessed by RMA normalization
metadata_filename = 'metadata_GPL84_affymetrix_PA_array.csv' #All metadata anotations regarding growth conditions and PA strain
media_filename = 'PA_culture_conditions.csv' # Categorization of the relevant growth media
# Get data
excl2SampleBatches = True
adata, metadata, data, metadata_cat = getArrayData(data_path, excl2SampleBatches, data_filename, metadata_filename)
# Create overview of all ZeroHops
df_meta = getZHoverview(metadata_cat, obs_eval)
# Check if there are some large ZeroHops and subdivide these based on the refined media definintions
metadata, df_meta = checkAndRefineZeroHops(data_path, metadata, metadata_cat, df_meta, obs_eval, media_filename)
elif data_use == 'bulkRNA':
to_color_by = ['strain',
'GrowthPhase',
'Oxygenation',
'Culture_Coarse',
'Temperature_Coarse',
'MediumCoarse']
data_filename = 'pa_bulkRNA_Data.csv'
metadata_filename = 'pa_bulkRNA_Metadata.csv'
metadata, data = getbulkRNAData(data_path, data_filename, metadata_filename)
df_meta = getZHoverview(metadata, obs_eval)
else:
raise('Invalid Data Type')
# Possible Evaluation Metrics:
useDRS = True
useClusterPurity = True
useCrossDistance = True
useMinSep = True
useLDA = True
useShannonEntropy = True
useLR = True
# Define if a gpu should be used for scGen
useGPU = True
# Combine all data
all_names = []
all_adata = []
all_df = []
all_meta = []
if 'Raw' in models:
adata_raw = an.AnnData(X=data, obs=metadata)
name = 'Raw'
all_names.append(name)
all_adata.append(adata_raw)
all_df.append(data)
all_meta.append(metadata)
plot_new(adata_raw,output, name)
# Batch correction methods as presented in paper:
# Standardization
data_standardised = ((data.T - data.T.mean()) / data.T.std()).T
adata_standardised = an.AnnData(X=data_standardised, obs=metadata)
if 'Standardised' in models:
name = 'Standardised'
all_names.append(name)
all_adata.append(adata_standardised)
all_df.append(data_standardised)
all_meta.append(metadata)
plot_new(adata_standardised,output, name)
# Marker gene elimination
if 'elMG' in models:
data_throw_out_marker = throw_out_marker_genes(data_standardised, metadata, n_throw_out=8)
adata_throw_out_marker = an.AnnData(X=data_throw_out_marker, obs=metadata)
name = 'elMG'
all_names.append('Eliminate\nMarker Genes')
all_adata.append(adata_throw_out_marker)
all_df.append(data_throw_out_marker)
all_meta.append(metadata)
plot_new(adata_throw_out_marker,output, name)
# PC elimination
if 'elPC' in models:
data_PCel = throw_out_pca_zerohops(data_standardised, metadata, df_meta, obs='ZeroHop')
adata_PCel = an.AnnData(X=data_PCel, obs=metadata)
df_PCel = pd.DataFrame(data_PCel, columns=data_standardised.columns, index=data_standardised.index)
name = 'elPC'
all_names.append('Eliminate PCs')
all_adata.append(adata_PCel)
all_df.append(data_PCel)
all_meta.append(metadata)
plot_new(adata_PCel,output, name)
# Harmony
if 'Harmony' in models:
Z = harmonize(data_standardised.values, metadata.drop('ZeroHop', axis = 1), batch_key='gse')
data_harmony = pd.DataFrame(data=Z, columns=data_standardised.columns, index=data_standardised.index)
adata_harmony = an.AnnData(X=data_harmony, obs=metadata)
name = 'Harmony'
all_names.append(name)
all_adata.append(adata_harmony)
all_df.append(data_harmony)
all_meta.append(metadata)
plot_new(adata_harmony,output, name)
# scGen
if 'scGen' in models:
train = scgen.setup_anndata(adata_standardised, batch_key="gse",
categorical_covariate_keys= to_color_by , copy=True)
model = scgen.SCGEN(train)
model.save("../saved_models/model_batch_removal.pt", overwrite=True)
model.train(
max_epochs=200,
batch_size=32,
early_stopping=True,
early_stopping_patience=25,
use_gpu=useGPU
)
corrected_adata = model.batch_removal()
data_scGen = pd.DataFrame(data=corrected_adata.X, columns=data_standardised.columns, index=data_standardised.index)
adata_scGen = an.AnnData(X=data_scGen, obs=metadata)
name = 'scGen'
all_names.append(name)
all_adata.append(adata_scGen)
all_df.append(data_scGen)
all_meta.append(metadata)
#plot_newRNA(adata_scGen,output, name, to_colour_by= to_colour_by)
if 'scGenZH' in models:
# train = scgen.setup_anndata(adata_standardised, batch_key="gse", labels_key="ZeroHop", copy=True)
train = scgen.setup_anndata(adata_standardised, batch_key="gse",labels_key='ZeroHop',
categorical_covariate_keys=['strain',
'GrowthPhase',
'ZeroHop',
'Oxygenation',
'Culture_Coarse',
'Temperature_Coarse',
'MediumCoarse'] , copy=True)
model = scgen.SCGEN(train)
model.save("../saved_models/model_batch_removal.pt", overwrite=True)
model.train(
max_epochs=200,
batch_size=32,
early_stopping=True,
early_stopping_patience=25,
use_gpu=useGPU
)
corrected_adata = model.batch_removal()
data_scGen = pd.DataFrame(data=corrected_adata.X, columns=data_standardised.columns, index=data_standardised.index)
adata_scGen = an.AnnData(X=data_scGen, obs=metadata)
name = 'scGenZH'
all_names.append('scGen\n(Zero-Hop)')
all_adata.append(adata_scGen)
all_df.append(data_scGen)
all_meta.append(metadata)
plot_new(adata_scGen, output, name)
# combat
if 'ComBat' in models:
data_combatorig = pd.read_csv(os.path.join(data_path, 'RNA_combat_linear_20220111.csv'))
data_combatorig.set_index('gsm', inplace=True)
data_combatorig=data_combatorig.loc[metadata.index]
adata_combatorig = an.AnnData(X=data_combatorig, obs=metadata)
name = 'ComBat'
all_names.append(name)
all_adata.append(adata_combatorig)
all_df.append(data_combatorig)
all_meta.append(metadata)
plot_new(adata_combatorig, output, name)
# reComBat
if 'reComBat' in models:
reg = 1e-9
model = reComBat.reComBat(model='ridge', parametric=True, config={'alpha': reg})
data_combat = model.fit_transform(data_standardised, metadata[batch_field],
X=metadata.drop([batch_field, 'ZeroHop'], axis=1))
adata_combat = an.AnnData(X=data_combat, obs=metadata)
name = 'reComBat \n \u03BB\u2081=0, \u03BB\u2082=' + str(reg)
all_names.append(name)
all_adata.append(adata_combat)
all_df.append(data_combat)
all_meta.append(metadata)
plot_new(adata_combat,output, name)
# Crossdistance
if useCrossDistance:
# Get distance of Zero-hop clusters
data_CRO_ZH = []
data_CRO_batch = []
for cor_meth in range(0, len(all_names)):
mean_dists_max_raw, std_dists_max_raw, mean_dists_mean_raw, std_dists_mean_raw, mean_dists_med_raw, \
std_dists_med_raw = calc_MeanZeroHopDist(all_df[cor_meth], all_meta[cor_meth],obs_eval)
data_CRO_ZH.append(mean_dists_med_raw)
mean_dists_max_raw, std_dists_max_raw, mean_dists_mean_raw, std_dists_mean_raw, mean_dists_med_raw, \
std_dists_med_raw = calc_MeanZeroHopDist(all_df[cor_meth], all_meta[cor_meth],batch_field)
data_CRO_batch.append(mean_dists_med_raw)
# Plot
label_a = 'Zero-Hop'
label_b = 'Batch'
makeBoxPlot(data_CRO_ZH,data_CRO_batch, all_names, label_a,label_b, output, ylabel='Median Pairwise Distance', title='')
# Cluster purity
if useClusterPurity:
n_cluster = len(np.unique(metadata[obs_eval]))
data_aGi = []
data_bGi = []
for cor_meth in range(0, len(all_names)):
sc_raw_gini = cluster_impurities(all_adata[cor_meth],datafield=obs_eval,n_clusters=n_cluster,measure='gini')
data_aGi.append(sc_raw_gini)
sc_raw_purity = cluster_impurities(all_adata[cor_meth], datafield=obs_eval, n_clusters=n_cluster, measure='purity')
data_bGi.append(sc_raw_purity)
label_a = 'Gini impurity'
label_b = 'Absolute Cluster Purity'
makeBoxPlot(data_aGi, data_bGi, all_names, label_a, label_b, output, ylabel='Cluster (Im)Purity',
title='Cluster (Im)Purity')
#DRS
if useDRS:
# DRS per cluster:
data_aDRS = []
data_bDRS = []
for cor_meth in range(0, len(all_names)):
drs_raw_exp, drs_raw_log = DRSperZH(all_adata[cor_meth])
data_aDRS.append(drs_raw_log)
data_bDRS.append(drs_raw_exp)
label_aDRS = 'DRS Log'
label_bDRS = 'DRS Exp'
makeBoxPlot(data_aDRS, data_bDRS, all_names, label_aDRS, label_bDRS, output, ylabel='DRS',
title='DRS per cluster')
# LDA
if useLDA:
data_aLDA = []
data_bLDA = []
for cor_meth in range(0, len(all_names)):
sc_raw = LDA_score(all_adata[cor_meth],datafield=obs_eval)
data_aLDA.append(sc_raw)
# data_a_std.append(std_LDA)
sc_rawb= LDA_score(all_adata[cor_meth], datafield='gse')
data_bLDA.append(sc_rawb)
label_a = 'Zero-Hop'
label_b = 'Batch'
makeBoxPlot(data_aLDA, data_bLDA, all_names, label_a, label_b,output, ylabel='LDA Score',
title='LDA Score')
u_statistic, p_value = mannwhitneyu(data_aLDA[2], data_aLDA[3])
# Shannon Entropy
if useShannonEntropy:
n = 14 # number of nearest neighbours to be included
data_aSHA = []
data_bSHA = []
for cor_meth in range(0, len(all_names)):
all_entr_zero_raw, all_entr_batch_raw = getnormShannonEntropy(all_df[cor_meth],all_meta[cor_meth],n=n, obs = obs_eval)
data_aSHA.append(all_entr_zero_raw)
data_bSHA.append(all_entr_batch_raw)
label_a = 'Zero-Hop'
label_b = 'Batch'
makeBoxPlot(data_aSHA, data_bSHA, all_names, label_a, label_b, output, ylabel='Shannon Entropy', title='')
from scipy.stats import mannwhitneyu
u_statistic, p_value = mannwhitneyu(data_aSHA[3], data_aSHA[4])
# Minimum Cluster Separation
if useMinSep:
data_aMIN = []
for cor_meth in range(0, len(all_names)):
sc_raw = min_speration_n_cluster(all_adata[cor_meth])
data_aMIN.append(sc_raw)
makeBoxPlotSingle(data_aMIN, all_names, 'Zero-Hop', output, ylabel='Minimum Speration Number', title='')
if useLR:
all_names_LR = ['Raw',
'Standardized',
'Eliminate\nMarker GenesNEW',
'Eliminate PCs',
'reComBat l2(1e-9)',
'reComBat EL(l11e-2 l21e-9)',
'reComBatLASSO(l0.01)',
]
# Calculate LR and RF prediction of batch and metadata subset
data_bal_accs_batch = []
data_bal_accs_zero = []
data_f1_batch = []
data_f1_zero = []
for cor_meth in range(0, len(all_names)):
bal_accs_batch_LR_raw, f1s_batch_LR_raw, \
bal_accs_zeroH_LR_raw, f1s_zeroH_LR_raw = calc_LRtoPredBatch(all_df[cor_meth],all_meta[cor_meth], 'LogisticRegression',
obs_batch = 'gse', obs_meta = obs_eval)
# Save results
save_LRres('LR', all_names[cor_meth], bal_accs_batch_LR_raw, f1s_batch_LR_raw,
bal_accs_zeroH_LR_raw, f1s_zeroH_LR_raw, output)
data_bal_accs_batch.append(bal_accs_batch_LR_raw)
data_bal_accs_zero.append(bal_accs_zeroH_LR_raw)
data_f1_batch.append(f1s_batch_LR_raw)
data_f1_zero.append(f1s_zeroH_LR_raw)
# Plot: f1s and balanced ACC
label_a = 'Zero-Hop'
label_b = 'Batch'
makeBoxPlot(data_bal_accs_zero,data_bal_accs_batch, all_names, label_a, label_b, output, output, ylabel='Balanced Accuracy',
title='')
makeBoxPlot(data_f1_zero,data_f1_batch, all_names, label_a, label_b, output, output, ylabel='F1 Score', title='')