-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_superglue.py
285 lines (254 loc) · 11.5 KB
/
eval_superglue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from kornia.feature import responses
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision.transforms.transforms import Grayscale
from tqdm import tqdm
from torchvision import transforms
from data import Hyundai, HyundaiTest
from models import NetVLAD
import cv2
import faiss
import kornia
from torch.utils.data import DataLoader
import pickle
from pyquaternion import Quaternion
from SuperGluePretrainedNetwork import models
from utils import pcl_utils
import cupy as cp
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--floor', type=str, help='floor: b1, 1f')
parser.add_argument('--globaldesc', type=str, help='Global descriptor: netvlad, apgem')
parser.add_argument('--rank_knn_num', type=int, default=10,
help='number of nearest neighbor to find per query image on ranking phase')
parser.add_argument('--rerank_knn_num', type=int, default=5,
help='number of nearest neighbor to find per query image on reranking phase')
parser.add_argument('--dataset_path', type=str, help='Path of a dataset', default="../dataset")
args = parser.parse_args()
dimension = {'netvlad': 32768, 'apgem': 2048}
# import pcl
# FLANN_INDEX_LSH = 6
FLANN_INDEX_KDTREE = 0
def resize(img):
w, h = img.size
return transforms.Resize((h//2, w//2))(img)
def tocv(img):
return np.array(img)
def input_transform():
return transforms.Compose([
transforms.Resize((512, 512)),
transforms.Grayscale(),
transforms.ToTensor(),
])
def ranking(query_dict, db_dict):
# query_dict = query_dict.cuda()
# db_dict = db_dict.cuda()
# print(query_dict.shape)
faiss_index = faiss.IndexFlatL2(dimension[args.globaldesc])
res = faiss.StandardGpuResources()
faiss_index = faiss.index_cpu_to_gpu(res, 0, faiss_index)
faiss_index.add(db_dict)
_, indices = faiss_index.search(query_dict, args.rank_knn_num)
return indices
def local_match(neighbor, q_dataset, db_dataset):
# rootsift = RootSIFT()
pbar = tqdm(neighbor)
reranked_neigh = []
total_match = []
print("Start reranking...")
superPointdict=dict()
superPointdict["nms_radius"]=4
superPointdict["keypoint_threshold"]= 0.005
superPointdict["max_keypoints"]=512
superpoint = models.SuperPoint(superPointdict)
superpoint.cuda()
superpoint.eval()
superGluedict=dict()
superGluedict["weights"]="indoor"
superGluedict["sinkhorn_iterations"]= 20
superGluedict["match_threshold"]=0.02
superglue = models.SuperGlue(superGluedict)
superglue.cuda()
superglue.eval()
for q, indices in enumerate(pbar):
q_img = q_dataset[q].cuda()
with torch.no_grad():
featq = superpoint({'image': q_img.unsqueeze(0)})
kpq = featq['keypoints']
descq = featq['descriptors']
scoreq = featq['scores']
q_match = []
db_match = []
num_inlier = []
for ind in indices:
db_img = db_dataset[ind].cuda()
with torch.no_grad():
featdb = superpoint({'image': db_img.unsqueeze(0)})
kpdb = featdb['keypoints']
descdb = featdb['descriptors']
scoredb = featdb['scores']
data = {"image0": q_img.unsqueeze(
0), "image1": db_img.unsqueeze(0)}
pred = {}
pred0 = {"keypoints": kpq,
"descriptors": descq,
"scores": scoreq}
pred1 = {"keypoints": kpdb,
"descriptors": descdb,
"scores": scoredb}
pred = {**pred, **{k+'0': v for k, v in pred0.items()}}
pred = {**pred, **{k+'1': v for k, v in pred1.items()}}
data = {**data, **pred}
for k in data:
if isinstance(data[k], (list, tuple)):
data[k] = torch.stack(data[k])
pred = {**pred, **superglue(data)}
pred = {k: v[0].cpu().detach().numpy() for k, v in pred.items()}
matches = pred['matches0']
valid = matches > -1
conf = pred['matching_scores0'][valid]
points_q = kpq[0].cpu().detach().numpy()[valid]
points_db = kpdb[0].cpu().detach().numpy()[matches[valid]]
q_match.append(points_q)
db_match.append(points_db)
num_inlier.append(points_q.shape[0])
num_inlier = np.array(num_inlier)
sort_ind = num_inlier.argsort()[::-1]
reranked_neigh.append(indices[sort_ind][:args.rerank_knn_num])
q_match = [q_match[i] for i in sort_ind[:args.rerank_knn_num]]
db_match = [db_match[i] for i in sort_ind[:args.rerank_knn_num]]
total_match.append((q_match, db_match))
reranked_neigh = np.stack(reranked_neigh)
return reranked_neigh, total_match
def pose_estimation(reranked_neigh, total_match, q_dataset, db_dataset, resized_sh):
pbar = tqdm(reranked_neigh)
print("Start pose estimation")
num_strange = 0
ans = []
for q, db_index in enumerate(pbar):
q_K, q_rot, q_tan, q_sh = q_dataset.get_camera_param(q)
# q_tf_mat =
q_pairs = []
pair_3d =[]
for i, ind in enumerate(db_index):
db_K, db_rot, db_tran, db_sh = db_dataset.get_camera_param(ind)
lidar_pose, lidar_path = db_dataset.lidar_project(ind)
p = db_dataset.get_pose(ind)
pose = cp.eye(4)
pose[:3, 3] = cp.asarray(p[:3])
pose[:3, :3] = cp.asarray(Quaternion(p[3:]).rotation_matrix)
points_3d = []
for lp, lpath in zip(lidar_pose, lidar_path):
lpose = cp.eye(4)
lpose[:3, 3] = cp.asarray(lp[:3])
lpose[:3, :3] = cp.asarray(Quaternion(lp[3:]).rotation_matrix)
points_3d_local = cp.asarray(pcl_utils.load_pointcloud(lpath))
points_3d_local = cp.concatenate([points_3d_local, cp.ones((points_3d_local.shape[0], 1))], axis=1)
points_3d.append(points_3d_local @ lpose.T)
points_3d = cp.concatenate(points_3d)
points_2d = (points_3d @ cp.linalg.inv(pose).T)[:, :3] @ cp.asarray(db_K).T
points_2d = (points_2d / points_2d[:, 2:3])[:, :2]
points_2d = cp.asnumpy(points_2d).astype(np.float32)
faiss_index = faiss.IndexFlatL2(2)
res = faiss.StandardGpuResources()
faiss_index = faiss.index_cpu_to_gpu(res, 0, faiss_index)
faiss_index.add(points_2d)
a = total_match[q][1][i]
if a.shape[0] == 0:
a = np.zeros((0, 2))
a[:, 0] = a[:, 0] * db_sh[1] / resized_sh[1]
a[:, 1] = a[:, 1] * db_sh[0] / resized_sh[0]
vals, indices = faiss_index.search(a.astype(np.float32), 1)
del faiss_index
vals = vals.squeeze(1)
indices = indices.squeeze(1)
indices = indices[vals < 7.5]
points_3d = points_3d[indices]
b = total_match[q][0][i]
if b.shape[0] == 0:
b = np.zeros((0, 2))
b[:, 0] = b[:, 0] * q_sh[1] / resized_sh[1]
b[:, 1] = b[:, 1] * q_sh[0] / resized_sh[0]
q_pairs.append(b[vals < 7.5])
pair_3d.append(points_3d)
q_pairs = np.concatenate(q_pairs)
pair_3d = cp.concatenate(pair_3d)[:, :3]
try:
_, solvR, solvt, inlierR = cv2.solvePnPRansac(np.ascontiguousarray(cp.asnumpy(pair_3d)).reshape((-1, 3)),
np.ascontiguousarray(q_pairs).reshape((-1, 2)), \
np.ascontiguousarray(q_K.astype(
np.float32)).reshape((3, 3)),
np.array([q_rot[0], q_rot[1], q_tan[0], q_tan[1], q_rot[2]]).astype(np.float32), \
# np.array([0, 0, 0, 0, 0]).astype(np.float32), \
iterationsCount=100000, \
useExtrinsicGuess = True, \
confidence = 0.999, \
reprojectionError = 8, \
flags = cv2.SOLVEPNP_AP3P)
solvRR,_ = cv2.Rodrigues(solvR)
solvRR_inv = np.linalg.inv(solvRR)
solvtt = -np.matmul(solvRR_inv,solvt)
rot = cv2.Rodrigues(solvRR_inv)[0].squeeze(1)
query_qwxyz = Quaternion(matrix=solvRR_inv).elements
query_xyz = solvtt.squeeze(1)
ans.append({
"floor": q_dataset.get_path(q).split("/")[-5],
"name" : q_dataset.get_path(q).split("/")[-1],
"qw": query_qwxyz[0],
"qx": query_qwxyz[1],
"qy": query_qwxyz[2],
"qz": query_qwxyz[3],
"x": query_xyz[0],
"y": query_xyz[1],
"z": query_xyz[2],
})
except:
ans.append({
"floor": q_dataset.get_path(q).split("/")[-5],
"name" : q_dataset.get_path(q).split("/")[-1],
"qw": 0,
"qx": 0,
"qy": 0,
"qz": 0,
"x": 0,
"y": 0,
"z": 0
})
num_strange += 1
del pair_3d, q_pairs
if q % 100 == 0:
with open("{}_superglue_rank_knn_num_{}_rerank_knn_num_{}_answer_{}_{}.json".format(args.globaldesc, args.rank_knn_num, args.rerank_knn_num, args.floor, q), 'w') as fp:
json.dump(ans, fp)
pbar.set_description("I dont know: {}".format(num_strange))
return ans
def load_pretrained_layers(model, path) :
state_dict = model.state_dict()
param_names = list(state_dict.keys())
# load checkpoint
pretrained_base_state_dict = torch.load(path)['state_dict']
pretrained_base_state_dict_name = list(pretrained_base_state_dict.keys())
# Transfer conv. parameters from pretrained model to current model
for i, param in enumerate(param_names[:]):
state_dict[param] = pretrained_base_state_dict[pretrained_base_state_dict_name[i]]
model.load_state_dict(state_dict)
if __name__=='__main__':
query_dataset = HyundaiTest(args.dataset_path, args.floor, "test", input_transform())
db_dataset = Hyundai(args.dataset_path,
args.floor, "train", input_transform())
query_dict = np.load(
"{}_query_{}_features.npy".format(args.globaldesc, args.floor))
db_dict = np.load("{}_db_{}_features.npy".format(args.globaldesc, args.floor))
ind = ranking(query_dict, db_dict)
neighbor, total_match = local_match(ind, query_dataset, db_dataset)
# neighbor = np.load("netvlad_superglue_reranked_b1_db.npy")
np.save("{}_superglue_reranked_{}_db.npy".format(args.globaldesc, args.floor), neighbor)
# with open("netvlad_superglue_match_b1.pkl", "rb") as fp:
# total_match = pickle.load(fp)
with open("{}_superglue_match_{}.pkl".format(args.globaldesc, args.floor), "wb") as fp:
pickle.dump(total_match, fp)
ans = pose_estimation(neighbor, total_match, query_dataset, db_dataset, (512, 512))
with open("{}_superglue_rank_knn_num_{}_rerank_knn_num_{}_answer_{}.json".format(args.globaldesc, args.rank_knn_num, args.rerank_knn_num, args.floor), 'w') as fp:
json.dump(ans, fp)