Skip to content

Commit 26e9975

Browse files
committed
equations
1 parent e8053d1 commit 26e9975

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

docs/approach.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -34,31 +34,31 @@ where $\mathbf{F}$ is the matrix of new infections and $\mathbf{V}$ is the matri
3434
The elements of $\mathbf{F}$ are
3535

3636
$$
37-
\mathbf{F}_{ij} = \frac{\beta_{ij} S_j}{N_j}
37+
\mathbf{F}_{ij} = \frac{\beta_{ij} S_{j}}{N_{j}}
3838
$$
3939

4040
while $\mathbf{V}$ is a diagonal matrix with $\mathbf{V}_{ii} = \gamma$ where the recovery rate is shared among all groups $g$.
4141

4242
Since $\mathbf{V}$ is diagonal, its inverse is as well, with $(\mathbf{V}^{-1})_{ij} = 1 / \gamma_i$.
4343

44-
Thus, $\mathbf{R}$ is given by
44+
If all $\gamma_i = \gamma$, $\mathbf{R}$ is given by
4545

4646
$$
47-
\mathbf{R}_{ij} = \frac{\beta_{ij} S_j}{\gamma_j N_j}
47+
\mathbf{R}_{ij} = \frac{\beta_{ij} S_{j}}{\gamma N_{j}}
4848
$$
4949

5050
The basic reproductive number $R_0$ is calculated as the dominant eigenvalue of $R$.
5151

5252
This model incorporates vaccination by recalculating the distribution of susceptible individuals $S_g / N_g$ when $v_g$ vaccinations have been administered to each group $g$ (assuming all or nothing vaccination, with vaccine efficacy given by $ve$):
5353

5454
$$
55-
\mathbf{S_{g}^{vax}} = S_{g}^{initial} - v_g * ve
55+
\mathbf{S_{g}^{vax}} = S_{g}^{initial} - v_{g} * ve
5656
$$
5757

5858
Then $R_ij$ with vaccination factored in is given by
5959

6060
$$
61-
\mathbf{R}_{ij}^{vax} = \frac{\beta_{ij} S_{j}^{vax}}{\gamma_j N_{j}^{vax}}
61+
\mathbf{R}_{ij}^{vax} = \frac{\beta_{ij} S_{j}^{vax}}{\gamma N_{j}^{vax}}
6262
$$
6363

6464

0 commit comments

Comments
 (0)