@@ -11,6 +11,32 @@ import matplotlib.pyplot as plt
1111
1212```
1313
14+ # Example calculation with 2 groups
15+
16+ ``` {python}
17+ import numpy as np
18+ n = np.array([200, 800])
19+ beta = np.array([[10, 0.1],[.1, 1]])
20+ n_vax = np.array([100, 0])
21+ ve = 1.0
22+
23+ s_i = n / n.sum()
24+ s_vax = (n - n_vax * ve) / n
25+
26+ R_vax = beta * s_i * s_vax
27+ e = np.linalg.eig(R_vax)
28+ i = np.argmax(np.abs(e.eigenvalues))
29+
30+ value = e.eigenvalues[i]
31+ vector = e.eigenvectors[:, i]
32+ vector /= sum(vector)
33+
34+ value
35+ vector
36+ ```
37+
38+ # 4 group model
39+
1440``` {python}
1541# parameters (core, kids, travelers, general)
1642n = np.array([0.1, 0.45, 0.05, 0.4]) * 1000000
5076``` {python}
5177# test that equal pop sizes result in bigger Re
5278n_equal = np.array([0.25, 0.25, 0.25, 0.25]) * 1000000
53- test3 = ngm.simulate(n_equal, n_vax_0, K , p_severe, ve)
79+ test3 = ngm.simulate(n_equal, n_vax_0, beta , p_severe, ve)
5480test3
5581
5682```
@@ -72,7 +98,7 @@ df_n_vax = pd.DataFrame(n_vax_values, columns=["Core", "Kids", "Travelers", "Gen
7298results = []
7399for index, row in df_n_vax.iterrows():
74100 n_vax = row.values
75- result = ngm.simulate(n, n_vax, K , p_severe, ve)
101+ result = ngm.simulate(n, n_vax, beta , p_severe, ve)
76102 results.append({
77103 "Total Doses": total_doses_range[index],
78104 "Re": result["Re"],
@@ -109,7 +135,7 @@ df_n_vax = pd.DataFrame(n_vax_values, columns=["Core", "Kids", "Travelers", "Gen
109135results = []
110136for index, row in df_n_vax.iterrows():
111137 n_vax = row.values
112- result = ngm.simulate(n, n_vax, K , p_severe, ve)
138+ result = ngm.simulate(n, n_vax, beta , p_severe, ve)
113139 results.append({
114140 "Core Doses": n_vax[0],
115141 "Re": result["Re"],
0 commit comments