-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathold_script.R
286 lines (188 loc) · 9.05 KB
/
old_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
library(tidyverse)
library(janitor)
warning("Check the invoice template to make sure that Agency Fees only appear on quarter 1", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE,
domain = NULL)
warning("Download all 6 reports", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE,
domain = NULL)
warning("You will need to enter the billing quarter like 202201", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE,
domain = NULL)
# billing_quarter <- readline("Enter billing year and quarter like 202204:")
billing_quarter <- "202303"
# import reports
agency_admin_address <- read.csv(paste("data/", billing_quarter, "/1_billing_agency_admin_address_table.csv", sep = "")) %>%
clean_names()
agency <- read.csv(paste("data/", billing_quarter, "/2_billing_agency_table.csv", sep = "")) %>%
clean_names()
programs <- read.csv(paste("data/", billing_quarter, "/3_billing_programs_table.csv", sep = "")) %>%
clean_names()
users <- read.csv(paste("data/", billing_quarter, "/4_billing_user_table.csv", sep = "")) %>%
clean_names()
billing_address <- read.csv(paste("data/", billing_quarter, "/5_billing_billing_address_table.csv", sep = "")) %>%
clean_names()
user_course_report <- read.csv(paste("data/", billing_quarter,"/6_hmis-user-licensing-course-report.csv", sep = "")) %>%
clean_names()
# prepare data
users$email <- tolower(users$email)
user_course_report$email <- tolower(user_course_report$email)
# Active HMIS Users not in eLearning
# Add error if list is longer than 1 (hmisdataanalyst account)
emails_hmis_active <- users %>%
filter(status == "Active") %>%
select(email)
emails_course <- user_course_report["email"]
not_in_eLearning <- anti_join(emails_hmis_active, emails_course)
not_in_eLearning
warning("This list of emails are HMIS Users who are in Clarity and not in Litmos.
Confirm that email addresses match in both accounts.")
# # Who is stuck in the eLearning stage? This does not appear to be working correctly, [email protected] should be on this stuck in eLearning list.
#
# emails_course_active_incompliant <- user_course_report[21] %>%
# filter(user_course_report[13] == "True" & user_course_report[10] == "False")
#
# stuck_in_elearning <- anti_join(emails_course_active_incompliant, emails_hmis_active,)
#
# stuck_in_elearning
#
# warning("Above is stuck in eLearning list")
# Not billing specific but adjecent
# HMIS Users Overdue for Renewal
not_compliant <- user_course_report %>%
filter(active == "TRUE", compliant == "FALSE") %>%
select(email)
hmis_users_overdue_for_renewal <- inner_join(users, not_compliant, by = "email") %>%
filter(status == "Active")
write_csv(
hmis_users_overdue_for_renewal,
(paste("data/", billing_quarter, "/hmis_users_overdue_for_renewal.csv", sep = ""))
)
warning("Above list is overdue for renewal. It has also been written to a csv")
# The following agencies have no HMIS Agency Administrator (Property Manager)
# Add an error if list includes anything other than system
# check if the agency admins are active users
all_agencies <- agency[2]
agencies_with_aas <- agency_admin_address[2]
setdiff(all_agencies, agencies_with_aas)
# Create a string of users for each agency.
active_users <- users %>%
filter(
status == "Active")
active_users <- active_users[,c(2,4)]
active_users <- active_users %>%
group_by(assigned_staff_home_agency) %>%
summarise(user_list = paste(full_name, collapse = ", "))
# Join user_list to main table (I should only join certain columns here to avoid dups)
colnames(active_users)[1] <- "agency_name"
billing_data <- left_join(agency, active_users, by = "agency_name")
# Add access role to differentiate payment levels
# Replace NAs in user_list with "No HMIS Users have this agency as their main agency."
billing_data <- mutate_at(billing_data, "user_list", ~replace(., is.na(.), "No HMIS Users have this agency as their main agency."))
#Create a string of programs for each agency.
program_list <- programs[,c(2,5)]
program_list <- program_list %>%
group_by(agency_name) %>%
summarise(program_list = paste(name, collapse = ", "))
# Join program_list to main table
billing_data <- left_join(billing_data, program_list, by = "agency_name")
# Join Property Manager and address to table by agency name. This one creates duplicates (not sure why).
agency_admin_address <- agency_admin_address %>%
select(agency_name, agency_admin, address, city, state, zip_code)
billing_data <- left_join(billing_data, agency_admin_address, by = "agency_name")
# Join Agency Admin (Property Manager) name and email address by user id
agency_admin_user_data <- users %>%
dplyr::select(id, email, full_name)
colnames(agency_admin_user_data) <- c("agency_admin", "agency_admin_email", "agency_admin_name")
agency_admin_user_data$agency_admin <- as.character(agency_admin_user_data$agency_admin)
billing_data <- left_join(billing_data, agency_admin_user_data, by = "agency_admin")
# Select columns from HMIS User Licensing Course Report
user_course <- user_course_report %>%
select(user,
email,
completed_date,
company_name)
# change date column to quarter
user_course$completed_date <- lubridate::mdy_hm(user_course$completed_date)
# user_course$completed_date <- lubridate::as_date(user_course$completed_date,
# format = "%m/%d/%Y")
user_course$completed_quarter <- lubridate::quarter(user_course$completed_date, with_year = TRUE)
user_course$completed_quarter <- as.character(user_course$completed_quarter)
user_course$completed_quarter <- str_replace(user_course$completed_quarter, '\\.', "0")
# filter for only this billing quarter
billing_quarter <- "202303"
user_course <- user_course %>%
filter(completed_quarter == billing_quarter)
user_course <- merge(x = user_course, y = users[ , c("assigned_staff_home_agency", "email")], by = "email", all.x=TRUE)
user_course$assigned_staff_home_agency[is.na(user_course$assigned_staff_home_agency)] <- user_course$company_name[is.na(user_course$assigned_staff_home_agency)]
# From user course, make a summary for users that completed licensing course
# in the last quarter
quarter_user_count <- user_course %>%
filter(completed_quarter == billing_quarter)%>%
count(assigned_staff_home_agency)
quarter_user_list <- user_course %>%
filter(completed_quarter == billing_quarter)%>%
group_by(assigned_staff_home_agency) %>%
summarise(quarter_user_list = paste(user, collapse = ", "))
colnames(quarter_user_count)[1] ="agency_name"
colnames(quarter_user_list)[1] ="agency_name"
quarter <- left_join(quarter_user_count, quarter_user_list, by = "agency_name")
colnames(quarter)[2] ="quarter_user_count"
# Make a new rule that every Colleen agency gets her address and agency billing name
# full join with billing data
billing_data <- full_join(billing_data, quarter, by = "agency_name")
# replace NAs in billing data
billing_data <- mutate_at(billing_data, "quarter_user_count", ~replace(., is.na(.), 0))
billing_data <- mutate_at(billing_data, "quarter_user_list", ~replace(., is.na(.), "No HMIS Users renewed or were trained in this quarter"))
# Do math for quarter totals and invoice totals
warning("Update invoice date", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE,
domain = NULL)
# billing_data <- billing_data %>%
# mutate(quarter_total = quarter_user_count*175,
# invoice_total = quarter_total,
# invoice_date = lubridate::today(),
# invoice_number = paste(billing_quarter,"-",agency_id, sep ="")
# )
billing_data <- billing_data %>%
mutate(quarter_total = quarter_user_count*175,
agency_fee = 0,
invoice_total = quarter_total+agency_fee,
invoice_date = lubridate::today()+4,
invoice_number = paste(billing_quarter,"-",agency_id, sep ="")
)
# Eliminate Invoices with $0
billing_data <- billing_data %>%
filter(invoice_total != 0)
# Overwrite address with billing addresses.
warning("This is not appearing in Looker, CH put in a ticket and update by hand", call. = TRUE, immediate. = FALSE, noBreaks. = FALSE,
domain = NULL)
# billing_data <- rows_update(
# billing_data,
# select(billing_address, agency_name, address, city, state, zip_code),
# by = "agency_name", unmatched = "ignore")
# Create CSV for billing
billing_data['paid'] <- ""
billing_data['note'] <- ""
billing_data['agency_billing_name'] <- billing_data$agency_name
col_order <- c("paid",
"invoice_number",
"note",
"invoice_date",
"invoice_total",
"agency_name",
"agency_billing_name",
"address",
"city",
"state",
"zip_code",
"quarter_user_count",
"quarter_user_list",
"quarter_total",
"agency_id",
"agency_admin",
"agency_admin_email",
"agency_admin_name",
"user_list",
"program_list")
billing_data <- billing_data[, col_order]
write_csv(
billing_data,
(paste("data-raw/", billing_quarter, "_billing_data.csv", sep = ""))
)