Skip to content

Commit 0c4b58a

Browse files
committed
Added accelerate example
1 parent dc0285c commit 0c4b58a

File tree

4 files changed

+148
-0
lines changed

4 files changed

+148
-0
lines changed

accelerate.sh

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
#!/bin/bash
2+
3+
set -x
4+
accelerate launch --machine_rank=$SLURM_NODEID $*

mnist_accelerate.py

Lines changed: 105 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
from datetime import datetime
2+
import argparse
3+
import os
4+
import torch
5+
import torch.nn as nn
6+
# import torch.distributed as dist
7+
import torchvision.transforms as transforms
8+
from torchvision.datasets import MNIST
9+
# from torch.utils.data.distributed import DistributedSampler
10+
# from torch.nn.parallel import DistributedDataParallel
11+
from torch.utils.data import DataLoader
12+
from accelerate import Accelerator
13+
14+
15+
class ConvNet(nn.Module):
16+
def __init__(self, num_classes=10):
17+
super(ConvNet, self).__init__()
18+
self.layer1 = nn.Sequential(
19+
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
20+
nn.BatchNorm2d(16),
21+
nn.ReLU(),
22+
nn.MaxPool2d(kernel_size=2, stride=2))
23+
self.layer2 = nn.Sequential(
24+
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
25+
nn.BatchNorm2d(32),
26+
nn.ReLU(),
27+
nn.MaxPool2d(kernel_size=2, stride=2))
28+
self.fc = nn.Linear(7*7*32, num_classes)
29+
30+
def forward(self, x):
31+
out = self.layer1(x)
32+
out = self.layer2(out)
33+
out = out.reshape(out.size(0), -1)
34+
out = self.fc(out)
35+
return out
36+
37+
38+
def train(num_epochs):
39+
accelerator = Accelerator()
40+
# dist.init_process_group(backend='nccl')
41+
42+
torch.manual_seed(0)
43+
# local_rank = int(os.environ['LOCAL_RANK'])
44+
# torch.cuda.set_device(local_rank)
45+
46+
#verbose = dist.get_rank() == 0 # print only on global_rank==0
47+
verbose = accelerator.is_main_process # print only in main process
48+
49+
model = ConvNet().cuda()
50+
batch_size = 100
51+
52+
criterion = nn.CrossEntropyLoss().cuda()
53+
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
54+
55+
# model = DistributedDataParallel(model, device_ids=[local_rank])
56+
57+
train_dataset = MNIST(root='./data', train=True,
58+
transform=transforms.ToTensor(), download=True)
59+
# train_sampler = DistributedSampler(train_dataset)
60+
# train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
61+
# shuffle=False, num_workers=0, pin_memory=True,
62+
# sampler=train_sampler)
63+
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
64+
shuffle=False, num_workers=0, pin_memory=True)
65+
66+
train_loader, model, optimizer = accelerator.prepare(train_loader, model,
67+
optimizer)
68+
69+
start = datetime.now()
70+
for epoch in range(num_epochs):
71+
tot_loss = 0
72+
for i, (images, labels) in enumerate(train_loader):
73+
# images = images.cuda(non_blocking=True)
74+
# labels = labels.cuda(non_blocking=True)
75+
76+
outputs = model(images)
77+
loss = criterion(outputs, labels)
78+
79+
accelerator.backward(loss)
80+
optimizer.step()
81+
# loss.backward()
82+
optimizer.zero_grad()
83+
84+
tot_loss += loss.item()
85+
86+
if verbose:
87+
print('Epoch [{}/{}], average loss: {:.4f}'.format(
88+
epoch + 1,
89+
num_epochs,
90+
tot_loss / (i+1)))
91+
if verbose:
92+
print("Training completed in: " + str(datetime.now() - start))
93+
94+
95+
def main():
96+
parser = argparse.ArgumentParser()
97+
parser.add_argument('--epochs', default=2, type=int, metavar='N',
98+
help='number of total epochs to run')
99+
args = parser.parse_args()
100+
101+
train(args.epochs)
102+
103+
104+
if __name__ == '__main__':
105+
main()

run-accelerate-gpu4.sh

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
#!/bin/bash
2+
#SBATCH --account=project_2001659
3+
#SBATCH --partition=gputest
4+
#SBATCH --ntasks=1
5+
#SBATCH --cpus-per-task=40
6+
#SBATCH --mem=0
7+
#SBATCH --time=15
8+
#SBATCH --gres=gpu:v100:4
9+
10+
module purge
11+
module load pytorch
12+
13+
#pip install --user accelerate
14+
15+
srun accelerate launch --multi_gpu --num_processes=4 --num_machines=1 \
16+
--mixed_precision=bf16 --dynamo_backend=no \
17+
mnist_accelerate.py --epochs=100

run-accelerate-gpu8.sh

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
#!/bin/bash
2+
#SBATCH --account=project_2001659
3+
#SBATCH --partition=gputest
4+
#SBATCH --nodes=2
5+
#SBATCH --ntasks-per-node=1
6+
#SBATCH --cpus-per-task=40
7+
#SBATCH --mem=0
8+
#SBATCH --time=15
9+
#SBATCH --gres=gpu:v100:4
10+
11+
module purge
12+
module load pytorch
13+
14+
#pip install --user accelerate
15+
16+
MASTER_IP=$(ip -4 -brief addr show | grep -E 'hsn0|ib0' | grep -oP '([\d]+.[\d.]+)')
17+
MASTER_PORT=29400
18+
19+
srun accelerate.sh --multi_gpu --num_processes=8 --num_machines=2 \
20+
--mixed_precision=no --dynamo_backend=no \
21+
--main_process_ip=$MASTER_IP --main_process_port=$MASTER_PORT \
22+
mnist_accelerate.py --epochs=100

0 commit comments

Comments
 (0)