|
| 1 | +from datetime import datetime |
| 2 | +from torch.utils.data import DataLoader |
| 3 | +from torchvision.datasets import MNIST |
| 4 | +import multiprocessing as mp |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torchvision.transforms as transforms |
| 8 | + |
| 9 | + |
| 10 | +class ConvNet(nn.Module): |
| 11 | + def __init__(self, num_classes=10): |
| 12 | + super(ConvNet, self).__init__() |
| 13 | + self.layer1 = nn.Sequential( |
| 14 | + nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), |
| 15 | + nn.BatchNorm2d(16), |
| 16 | + nn.ReLU(), |
| 17 | + nn.MaxPool2d(kernel_size=2, stride=2)) |
| 18 | + self.layer2 = nn.Sequential( |
| 19 | + nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), |
| 20 | + nn.BatchNorm2d(32), |
| 21 | + nn.ReLU(), |
| 22 | + nn.MaxPool2d(kernel_size=2, stride=2)) |
| 23 | + self.fc = nn.Linear(7*7*32, num_classes) |
| 24 | + |
| 25 | + def forward(self, x): |
| 26 | + out = self.layer1(x) |
| 27 | + out = self.layer2(out) |
| 28 | + out = out.reshape(out.size(0), -1) |
| 29 | + out = self.fc(out) |
| 30 | + return out |
| 31 | + |
| 32 | + |
| 33 | +def train(batch_size): |
| 34 | + num_epochs = 100 |
| 35 | + |
| 36 | + torch.manual_seed(0) |
| 37 | + verbose = True |
| 38 | + |
| 39 | + model = ConvNet().cuda() |
| 40 | + |
| 41 | + criterion = nn.CrossEntropyLoss().cuda() |
| 42 | + optimizer = torch.optim.SGD(model.parameters(), 1e-4) |
| 43 | + |
| 44 | + train_dataset = MNIST(root='./data', train=True, |
| 45 | + transform=transforms.ToTensor(), download=True) |
| 46 | + train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, |
| 47 | + shuffle=False, num_workers=0, pin_memory=True) |
| 48 | + |
| 49 | + start = datetime.now() |
| 50 | + for epoch in range(num_epochs): |
| 51 | + tot_loss = 0 |
| 52 | + for i, (images, labels) in enumerate(train_loader): |
| 53 | + images = images.cuda(non_blocking=True) |
| 54 | + labels = labels.cuda(non_blocking=True) |
| 55 | + |
| 56 | + outputs = model(images) |
| 57 | + loss = criterion(outputs, labels) |
| 58 | + |
| 59 | + optimizer.zero_grad() |
| 60 | + loss.backward() |
| 61 | + optimizer.step() |
| 62 | + |
| 63 | + tot_loss += loss.item() |
| 64 | + |
| 65 | + if verbose: |
| 66 | + print('Epoch [{}/{}], batch_size={} average loss: {:.4f}'.format( |
| 67 | + epoch + 1, |
| 68 | + num_epochs, |
| 69 | + batch_size, |
| 70 | + tot_loss / (i+1))) |
| 71 | + if verbose: |
| 72 | + print("Training completed in: " + str(datetime.now() - start)) |
| 73 | + |
| 74 | + |
| 75 | +if __name__ == '__main__': |
| 76 | + bs_list = [16, 32, 64, 128] |
| 77 | + num_processes = 4 |
| 78 | + |
| 79 | + with mp.Pool(processes=num_processes) as pool: |
| 80 | + pool.map(train, bs_list) |
0 commit comments