-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathloop_removeProofScript.sml
1976 lines (1910 loc) · 69.6 KB
/
loop_removeProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Correctness proof for loop_remove
*)
open preamble loopLangTheory loopSemTheory
loopPropsTheory loop_removeTheory
local open wordSemTheory in end
val _ = new_theory"loop_removeProof";
Definition has_code_def:
has_code (n,funs) code =
EVERY (\(n,p,b). lookup n code = SOME (p,b)) funs
End
Definition state_rel_def:
state_rel s t <=>
∃c. t = s with code := c ∧
∀n params body.
lookup n s.code = SOME (params, body) ⇒
syntax_ok body ∧
∃init. has_code (comp (n,params,body) init) t.code
End
Definition break_ok_def:
break_ok Fail = T ∧
break_ok (Call _ _ _ (SOME (_,p,q,_))) = (break_ok p ∧ break_ok q) ∧
break_ok (Call NONE _ _ _) = T ∧
break_ok (Seq p q) =
(break_ok q ∧ every_prog (\r. r ≠ Break ∧ r ≠ Continue) p) ∧
break_ok (If _ _ _ p q _) = (break_ok p ∧ break_ok q) ∧
break_ok _ = F
End
Definition breaks_ok_def:
breaks_ok (p:'a loopLang$prog,q:'a loopLang$prog) <=> break_ok p ∧ break_ok q
End
val goal =
``λ(prog, s). ∀res s1 t p.
evaluate (prog,s) = (res,s1) ∧ state_rel s t ∧ res ≠ SOME Error ∧
breaks_ok p ⇒
(syntax_ok prog ⇒
∀cont s q s'.
comp_with_loop p prog cont s = (q,s') ∧
has_code s' t.code ∧ break_ok cont ⇒
∃t1.
(let result = evaluate (q,t) in
state_rel s1 t1 ∧ t1.code = t.code ∧
case res of
| NONE => result = evaluate (cont,t1)
| SOME Break => result = evaluate (FST p,t1)
| SOME Continue => result = evaluate (SND p,t1)
| _ => result = (res,t1))) ∧
(no_Loop prog ⇒
∃t1.
(let result = evaluate (comp_no_loop p prog,t) in
state_rel s1 t1 ∧ t1.code = t.code ∧
case res of
| SOME Continue => result = evaluate (SND p,t1)
| SOME Break => result = evaluate (FST p,t1)
| _ => result = (res,t1)))``
local
val ind_thm = loopSemTheory.evaluate_ind
|> ISPEC goal
|> CONV_RULE (DEPTH_CONV PairRules.PBETA_CONV) |> REWRITE_RULE [];
fun list_dest_conj tm = if not (is_conj tm) then [tm] else let
val (c1,c2) = dest_conj tm in list_dest_conj c1 @ list_dest_conj c2 end
val ind_goals = ind_thm |> concl |> dest_imp |> fst |> list_dest_conj
in
fun get_goal s = first (can (find_term (can (match_term (Term [QUOTE s]))))) ind_goals
fun compile_correct_tm () = ind_thm |> concl |> rand
fun the_ind_thm () = ind_thm
end
Theorem compile_Skip:
^(get_goal "loopLang$Skip") ∧
^(get_goal "loopLang$Fail") ∧
^(get_goal "loopLang$Tick")
Proof
fs [syntax_ok_def,comp_no_loop_def,evaluate_def]
\\ rw [] \\ fs []
\\ fs [state_rel_def,call_env_def,dec_clock_def]
\\ rveq \\ fs [state_component_equality]
\\ rw [] \\ res_tac
QED
Theorem compile_Continue:
^(get_goal "loopLang$Continue") ∧
^(get_goal "loopLang$Break")
Proof
fs [syntax_ok_def,comp_no_loop_def,evaluate_def]
\\ rw [] \\ fs []
\\ asm_exists_tac \\ fs []
QED
Theorem evaluate_break_ok:
∀p t res t1. evaluate (p,t) = (res,t1) ∧ break_ok p ⇒ res ≠ NONE
Proof
ho_match_mp_tac break_ok_ind \\ rw [] \\ fs [break_ok_def]
\\ fs [evaluate_def] \\ rveq \\ fs []
\\ fs [CaseEq"option",pair_case_eq,CaseEq"bool",CaseEq"word_loc"] \\ rveq \\ fs []
\\ rpt (pairarg_tac \\ fs []) \\ rw [] \\ fs []
\\ CCONTR_TAC \\ fs []
\\ every_case_tac \\ gvs []
\\ rename [‘cut_res _ (evaluate (pp,t))’]
\\ Cases_on ‘evaluate (pp,t)’ \\ fs [cut_res_def,cut_state_def]
\\ fs [CaseEq"option",pair_case_eq,CaseEq"bool",CaseEq"word_loc"] \\ rveq \\ fs []
\\ gvs []
QED
Theorem compile_Mark:
^(get_goal "syntax_ok (Mark _)")
Proof
simp_tac std_ss [evaluate_def,syntax_ok_def]
\\ full_simp_tac std_ss [no_Loop_def,every_prog_def]
\\ full_simp_tac std_ss [GSYM no_Loop_def,comp_with_loop_def]
\\ rw [] \\ fs []
\\ first_x_assum drule
\\ disch_then drule \\ strip_tac
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘res’ \\ fs [evaluate_def,comp_no_loop_def]
\\ Cases_on ‘x’ \\ fs [evaluate_def,comp_no_loop_def]
\\ Cases_on ‘p'’ \\ fs []
\\ rename [‘_ = evaluate (qq,_)’]
\\ fs [breaks_ok_def]
\\ Cases_on ‘evaluate (qq,t1)’ \\ fs [] \\ rw []
\\ imp_res_tac evaluate_break_ok \\ fs []
QED
Theorem compile_Return:
^(get_goal "loopLang$Return") ∧
^(get_goal "loopLang$Raise")
Proof
fs [syntax_ok_def,comp_no_loop_def,evaluate_def]
\\ rw [] \\ fs [CaseEq"option"] \\ rveq \\ fs []
\\ fs [state_rel_def,call_env_def,state_component_equality]
\\ metis_tac []
QED
Theorem comp_with_loop_has_code:
∀p prog cont s0 q s1 code.
comp_with_loop p prog cont s0 = (q,s1) ∧ has_code s1 code ⇒ has_code s0 code
Proof
ho_match_mp_tac comp_with_loop_ind \\ rpt strip_tac
\\ fs [comp_with_loop_def] \\ fs []
\\ rpt (pairarg_tac \\ fs []) \\ rveq \\ fs []
\\ res_tac \\ fs []
\\ res_tac \\ fs []
\\ Cases_on ‘s0’
\\ fs [store_cont_def]
\\ rveq \\ fs [] \\ fs [has_code_def]
\\ fs [CaseEq"option"]
\\ rveq \\ fs []
\\ fs [has_code_def]
\\ PairCases_on ‘v’ \\ fs []
\\ rpt (pairarg_tac \\ fs [])
QED
Theorem helper_call_lemma:
∀t live_in:num_set.
domain live_in ⊆ domain t.locals ⇒
∃vals. get_vars (MAP FST (toAList live_in)) t = SOME vals ∧
LENGTH vals = LENGTH (toAList live_in) ∧
fromAList (ZIP (MAP FST (toAList live_in),vals)) =
inter t.locals live_in
Proof
rw []
\\ ‘∀i x. MEM (i,x) (toAList live_in) ⇔ lookup i live_in = SOME x’ by fs [MEM_toAList]
\\ ‘domain live_in = set (MAP FST (toAList live_in))’
by fs [EXTENSION,domain_lookup,MEM_MAP,EXISTS_PROD]
\\ fs [spt_eq_thm,wf_inter,wf_fromAList,lookup_fromAList,lookup_inter_alt]
\\ pop_assum kall_tac \\ pop_assum kall_tac
\\ rewrite_tac [GSYM sptreeTheory.LENGTH_toAList]
\\ rename [‘MAP FST xs’]
\\ Induct_on ‘xs’ \\ fs [get_vars_def,FORALL_PROD]
\\ rw [] \\ fs [domain_lookup] \\ rw [] \\ fs []
QED
Theorem break_ok_no_Break_Continue:
∀p. break_ok p ⇒ every_prog (\r. r ≠ Break ∧ r ≠ Continue) p
Proof
ho_match_mp_tac break_ok_ind
\\ fs [break_ok_def,every_prog_def]
QED
Theorem compile_Loop:
^(get_goal "loopLang$Loop")
Proof
fs [no_Loop_def,every_prog_def]
\\ fs [GSYM no_Loop_def]
\\ rpt strip_tac
\\ qpat_x_assum ‘evaluate _ = _’ mp_tac
\\ once_rewrite_tac [evaluate_def]
\\ reverse TOP_CASE_TAC
\\ reverse TOP_CASE_TAC
THEN1
(strip_tac \\ rveq \\ fs []
\\ fs [comp_with_loop_def]
\\ fs [cut_res_def,CaseEq"option",CaseEq"bool",cut_state_def] \\ rveq \\ fs []
\\ rpt (pairarg_tac \\ fs [])
\\ rveq \\ fs [evaluate_def]
\\ ‘s.clock = t.clock’ by fs [state_rel_def] \\ fs []
\\ ‘s.locals = t.locals’ by fs [state_rel_def] \\ fs []
\\ drule helper_call_lemma \\ strip_tac \\ fs [find_code_def]
\\ fs [has_code_def] \\ fs [state_rel_def,state_component_equality]
\\ rw [] \\ res_tac)
\\ TOP_CASE_TAC \\ fs [syntax_ok_def] \\ rfs []
\\ rename [‘evaluate _ = (res1,_)’]
\\ Cases_on ‘res1’ \\ fs []
\\ Cases_on ‘x = Error’ \\ fs []
\\ fs [cut_res_def,CaseEq"option",CaseEq"bool",cut_state_def] \\ rveq \\ fs []
\\ qpat_x_assum ‘x = Contine ⇒ _’ assume_tac
\\ fs [PULL_FORALL,AND_IMP_INTRO]
\\ pop_assum (qpat_assum ‘comp_with_loop _ _ _ _ = _’ o mp_then Any mp_tac)
\\ strip_tac \\ fs [GSYM CONJ_ASSOC]
\\ ‘state_rel (dec_clock (s with locals := inter s.locals live_in))
(dec_clock (t with locals := inter t.locals live_in))’ by
(fs [state_rel_def,dec_clock_def,state_component_equality]
\\ metis_tac [])
\\ first_x_assum drule
\\ simp [dec_clock_def]
\\ fs [comp_with_loop_def]
\\ rpt (pairarg_tac \\ fs [])
\\ qmatch_asmsub_abbrev_tac ‘comp_with_loop (cc,new_cont) body Fail s3’
\\ ‘breaks_ok (cc,new_cont)’ by
(fs [breaks_ok_def,break_ok_def,Abbr‘new_cont’,Abbr‘cc’]
\\ Cases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def])
\\ disch_then drule
\\ strip_tac
\\ rfs [GSYM PULL_FORALL]
\\ qpat_x_assum ‘no_Loop _ ⇒ _’ kall_tac
\\ pop_assum drule
\\ impl_tac
THEN1 (rveq \\ fs [] \\ unabbrev_all_tac \\ fs [break_ok_def] \\ fs [has_code_def])
\\ strip_tac
\\ rveq \\ fs []
\\ fs [Abbr‘new_cont’]
\\ strip_tac
\\ fs [has_code_def]
\\ once_rewrite_tac [evaluate_def]
\\ fs [find_code_def]
\\ ‘s.locals = t.locals ∧ s.clock = t.clock’ by fs [state_rel_def] \\ fs []
\\ drule helper_call_lemma \\ strip_tac \\ fs [dec_clock_def]
\\ Cases_on ‘x’ \\ fs [] \\ rveq \\ fs []
THEN1
(Cases_on ‘domain live_out ⊆ domain r'.locals’ \\ fs []
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rpt (pairarg_tac \\ fs [])
\\ rveq \\ fs []
\\ ‘r'.locals = t1.locals’ by fs [state_rel_def] \\ fs []
\\ drule helper_call_lemma \\ strip_tac
\\ imp_res_tac comp_with_loop_has_code
\\ fs [has_code_def] \\ pop_assum drule
\\ strip_tac \\ fs [Abbr‘s3’,has_code_def]
\\ simp [evaluate_def,find_code_def]
\\ rename [‘state_rel s3 t3’]
\\ ‘s3.clock = t3.clock’ by fs [state_rel_def]
\\ IF_CASES_TAC \\ fs [] \\ rveq \\ fs []
THEN1
(fs [state_rel_def,state_component_equality] \\ rw [] \\ res_tac)
\\ qmatch_goalsub_abbrev_tac ‘evaluate (_,t4)’
\\ qexists_tac ‘t4’ \\ fs [] \\ rw []
THEN1
(fs [Abbr‘t4’,dec_clock_def]
\\ qpat_x_assum ‘state_rel s3 t3’ mp_tac
\\ rpt (pop_assum kall_tac)
\\ fs [state_rel_def] \\ rw [] \\ fs [state_component_equality]
\\ rw[] \\ res_tac)
THEN1 fs [Abbr‘t4’,dec_clock_def]
\\ Cases_on ‘evaluate (cont,t4)’ \\ fs []
\\ drule evaluate_no_Break_Continue
\\ imp_res_tac break_ok_no_Break_Continue \\ fs []
\\ Cases_on ‘q’ \\ fs []
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ Cases_on ‘x’ \\ fs [])
\\ first_x_assum drule
\\ impl_tac THEN1 fs []
\\ strip_tac \\ fs []
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘res’ \\ fs []
THEN1
(fs [breaks_ok_def]
\\ Cases_on ‘evaluate (cont,t1')’ \\ fs [] \\ rw []
\\ drule evaluate_no_Break_Continue
\\ imp_res_tac break_ok_no_Break_Continue \\ fs []
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ every_case_tac \\ fs [])
\\ Cases_on ‘x’ \\ fs []
\\ Cases_on ‘p’ \\ fs []
\\ rename [‘_ = evaluate (qq,_)’]
\\ fs [breaks_ok_def]
\\ Cases_on ‘evaluate (qq,t1')’ \\ fs [] \\ rw []
\\ drule evaluate_no_Break_Continue
\\ imp_res_tac break_ok_no_Break_Continue \\ fs []
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ every_case_tac \\ fs []
QED
Theorem comp_no_loop_no_Break_Continue:
∀p prog.
every_prog (λr. r ≠ Break ∧ r ≠ Continue) (FST p) ∧
every_prog (λr. r ≠ Break ∧ r ≠ Continue) (SND p) ⇒
every_prog (λr. r ≠ Break ∧ r ≠ Continue) (comp_no_loop p prog)
Proof
ho_match_mp_tac comp_no_loop_ind \\ rw [] \\ fs []
\\ fs [comp_no_loop_def,every_prog_def]
\\ every_case_tac \\ fs []
QED
Theorem comp_with_loop_break_ok:
∀p prog cont s q s1.
comp_with_loop p prog cont s = (q,s1) ∧ break_ok cont ∧ breaks_ok p ⇒ break_ok q
Proof
ho_match_mp_tac comp_with_loop_ind \\ rw []
\\ fs [comp_with_loop_def] \\ rveq \\ fs [break_ok_def]
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ rpt (pairarg_tac \\ fs []) \\ rveq \\ fs [break_ok_def]
\\ TRY (match_mp_tac comp_no_loop_no_Break_Continue \\ fs []
\\ imp_res_tac break_ok_no_Break_Continue \\ fs [])
\\ Cases_on ‘s’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def]
\\ every_case_tac \\ fs [] \\ rveq \\ fs [break_ok_def]
\\ rpt (pairarg_tac \\ fs []) \\ rveq \\ fs [break_ok_def]
\\ Cases_on ‘ret’ \\ fs [break_ok_def,every_prog_def]
QED
Theorem state_rel_IMP_get_vars:
∀s t args vs. state_rel s t ∧ get_vars args s = SOME vs ⇒ get_vars args t = SOME vs
Proof
strip_tac \\ strip_tac
\\ Induct_on ‘args’ \\ fs [get_vars_def] \\ rw [] \\ fs []
\\ ‘t.locals = s.locals’ by fs [state_rel_def] \\ fs []
\\ fs [CaseEq"option"] \\ rveq \\ fs []
QED
Triviality case_cut_res:
cut_res x y = (res,s) ⇒
∃part1 part2. cut_res x (part1, part2) = (res,s) ∧ y = (part1, part2)
Proof
Cases_on ‘y’ \\ fs []
QED
Triviality state_rel_IMP_locals:
state_rel s t ⇒ s.locals = t.locals
Proof
fs [state_rel_def] \\ rw [] \\ rveq \\ fs []
QED
Triviality state_rel_IMP_clock:
state_rel s t ⇒ s.clock = t.clock
Proof
fs [state_rel_def] \\ rw [] \\ rveq \\ fs []
QED
Theorem compile_Call:
^(get_goal "syntax_ok (loopLang$Call _ _ _ _)")
Proof
fs [no_Loop_def,every_prog_def]
\\ fs [GSYM no_Loop_def]
\\ reverse (rpt strip_tac)
THEN1
(fs [evaluate_def]
\\ Cases_on ‘get_vars argvars s’ \\ fs []
\\ Cases_on ‘find_code dest x s.code’ \\ fs []
\\ rename [‘_ = SOME tt’] \\ PairCases_on ‘tt’ \\ fs []
\\ drule state_rel_IMP_get_vars
\\ disch_then drule \\ strip_tac \\ fs []
\\ rename [‘_ = SOME (new_env,new_prog)’]
\\ ‘∃s body n funs.
find_code dest x t.code = SOME (new_env,body) ∧ syntax_ok new_prog ∧
comp_with_loop (Fail,Fail) new_prog Fail s = (body,n,funs) ∧
has_code (n,funs) t.code’ by
(Cases_on ‘dest’ \\ fs [find_code_def]
\\ qpat_x_assum ‘_ = (_,_)’ kall_tac
\\ fs [CaseEq"word_loc",CaseEq"num",CaseEq"option",CaseEq"bool",CaseEq"prod"]
\\ rveq \\ fs [] \\ fs [state_rel_def] \\ rveq \\ fs []
\\ first_x_assum drule
\\ strip_tac \\ fs []
\\ fs [comp_def] \\ pairarg_tac \\ fs []
\\ qexists_tac ‘init’ \\ fs [has_code_def])
\\ simp [comp_no_loop_def,evaluate_def]
\\ Cases_on ‘ret’ \\ fs []
THEN1
(Cases_on ‘handler’ \\ fs []
\\ ‘t.clock = s.clock’ by fs [state_rel_def] \\ fs []
\\ IF_CASES_TAC \\ fs [] \\ rveq \\ fs []
THEN1
(fs [state_rel_def,state_component_equality] \\ rw [] \\ res_tac)
\\ ‘state_rel (dec_clock s with locals := new_env)
(dec_clock t with locals := new_env)’ by
(qpat_x_assum ‘state_rel s t’ mp_tac \\ rpt (pop_assum kall_tac)
\\ fs [state_rel_def,state_component_equality,dec_clock_def]
\\ rw [] \\ res_tac)
\\ ‘breaks_ok (Fail:'a loopLang$prog,Fail:'a loopLang$prog) ∧
break_ok (Fail:'a loopLang$prog)’ by EVAL_TAC
\\ fs [CaseEq"prod",CaseEq"result",CaseEq"option"] \\ rveq \\ fs []
\\ first_x_assum drule \\ disch_then drule \\ rewrite_tac [GSYM AND_IMP_INTRO]
\\ disch_then drule \\ fs [dec_clock_def] \\ fs [])
\\ PairCases_on ‘x'’ \\ fs []
\\ rename [‘cut_res live_in (NONE,_)’]
\\ qpat_x_assum ‘_ = (res,s1)’ mp_tac
\\ TOP_CASE_TAC \\ fs []
\\ reverse TOP_CASE_TAC THEN1
(strip_tac \\ rveq \\ fs []
\\ fs [cut_res_def,CaseEq"option",CaseEq"prod",cut_state_def] \\ rveq \\ fs []
\\ fs [CaseEq"bool"] \\ rveq \\ fs []
\\ ‘s.clock = t.clock ∧ t.locals = s.locals’ by fs [state_rel_def]
\\ qexists_tac ‘t with locals := LN’ \\ fs []
\\ fs [state_rel_def,state_component_equality]
\\ rw [] \\ res_tac \\ fs [])
\\ fs []
\\ rename [‘cut_res live_in (NONE,s) = (NONE,r)’]
\\ qpat_abbrev_tac ‘ttt = _ live_in (NONE,_)’
\\ ‘∃tr. ttt = (NONE,tr) ∧ state_rel r tr ∧ tr.code = t.code’ by
(fs [cut_res_def,cut_state_def,CaseEq"option",CaseEq"bool",CaseEq"prod",Abbr‘ttt’]
\\ rveq \\ fs [state_rel_def,dec_clock_def]
\\ fs [state_component_equality]
\\ rpt strip_tac \\ first_x_assum drule \\ simp_tac std_ss [] \\ metis_tac [])
\\ fs [Abbr‘ttt’]
\\ TOP_CASE_TAC \\ fs []
\\ strip_tac
\\ last_x_assum (qspecl_then [‘tr with locals := new_env’,‘(Fail,Fail)’] mp_tac)
\\ impl_tac THEN1
(fs [breaks_ok_def,break_ok_def]
\\ reverse conj_tac
THEN1 (CCONTR_TAC \\ fs [])
\\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ rpt strip_tac \\ first_x_assum drule \\ simp_tac std_ss [] \\ metis_tac [])
\\ rewrite_tac [GSYM AND_IMP_INTRO]
\\ disch_then drule
\\ impl_tac THEN1 fs [break_ok_def]
\\ strip_tac \\ disch_then kall_tac
\\ Cases_on ‘q’ \\ fs []
\\ Cases_on ‘x' = TimeOut’ \\ fs [] THEN1 (rveq \\ fs [])
\\ Cases_on ‘∃ff. x' = FinalFFI ff’ \\ fs [] THEN1 (rveq \\ fs [] \\ rveq \\ fs [])
\\ Cases_on ‘handler’ \\ fs [] THEN1
(Cases_on ‘∃retv. x' = Result retv’ \\ fs [] THEN1
(rveq \\ fs [] \\ rveq \\ fs [] \\ fs [set_var_def] \\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ rpt strip_tac \\ first_x_assum drule \\ simp_tac std_ss [] \\ metis_tac [])
\\ Cases_on ‘∃exn. x' = Exception exn’ \\ fs [] THEN1
(rveq \\ fs [] \\ rveq \\ fs [] \\ fs [set_var_def] \\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ rpt strip_tac \\ first_x_assum drule \\ simp_tac std_ss [] \\ metis_tac [])
\\ Cases_on ‘x'’ \\ fs [])
\\ qabbrev_tac ‘h = x''’ \\ pop_assum kall_tac \\ PairCases_on ‘h’ \\ fs []
\\ Cases_on ‘∃vret. x' = Result vret’ \\ fs []
THEN1
(rveq \\ fs [] \\ drule case_cut_res \\ strip_tac \\ fs []
\\ rename [‘state_rel r2 t1’]
\\ qpat_x_assum ‘∀x. _’ mp_tac
\\ disch_then (qspecl_then [‘set_var x'0 vret (t1 with locals := r.locals)’,‘p’] mp_tac)
\\ impl_tac THEN1
(fs [] \\ reverse conj_tac
THEN1 (CCONTR_TAC \\ fs [cut_res_def])
\\ fs [set_var_def,state_rel_def] \\ fs [state_component_equality]
\\ rw [] \\ fs [] \\ res_tac \\ rfs[] \\ asm_exists_tac \\ fs [])
\\ asm_rewrite_tac [GSYM AND_IMP_INTRO]
\\ disch_then kall_tac \\ strip_tac
\\ fs [cut_res_def]
\\ reverse (Cases_on ‘part1’) \\ fs []
THEN1
(Cases_on ‘x'’ \\ rveq \\ fs []
\\ imp_res_tac state_rel_IMP_locals \\ fs [cut_res_def,set_var_def]
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ rename [‘cut_res _ (evaluate (r5,t5))’]
\\ Cases_on ‘evaluate (r5,t5)’
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ Cases_on ‘q’ \\ fs [cut_res_def])
\\ fs [CaseEq"option"] \\ rveq \\ fs []
\\ fs [cut_state_def,CaseEq"bool"] \\ rveq \\ fs []
\\ imp_res_tac state_rel_IMP_locals
\\ imp_res_tac state_rel_IMP_clock \\ fs []
\\ fs [cut_res_def,cut_state_def]
\\ fs [set_var_def,dec_clock_def]
\\ fs [state_rel_def,state_component_equality] \\ rw [] \\ res_tac \\ fs []
\\ rfs [] \\ asm_exists_tac \\ fs [])
\\ Cases_on ‘∃vexn. x' = Exception vexn’ \\ fs []
THEN1
(rveq \\ fs [] \\ drule case_cut_res \\ strip_tac \\ fs []
\\ rename [‘evaluate _ = (SOME (Exception vexn),r2)’]
\\ rename [‘set_var vname vexn (r3 with locals := r.locals)’]
\\ qpat_x_assum ‘∀x. _’ mp_tac
\\ rename [‘set_var vname vexn (r2 with locals := r.locals)’]
\\ disch_then (qspecl_then
[‘set_var vname vexn (r3 with locals := r.locals)’,‘p’] mp_tac)
\\ impl_tac THEN1
(fs [] \\ reverse conj_tac
THEN1 (CCONTR_TAC \\ fs [cut_res_def])
\\ fs [set_var_def,state_rel_def] \\ fs [state_component_equality]
\\ rw [] \\ fs [] \\ res_tac \\ rfs[] \\ asm_exists_tac \\ fs [])
\\ asm_rewrite_tac [GSYM AND_IMP_INTRO]
\\ disch_then kall_tac \\ strip_tac
\\ fs [cut_res_def]
\\ reverse (Cases_on ‘part1’) \\ fs []
THEN1
(Cases_on ‘x'’ \\ rveq \\ fs []
\\ imp_res_tac state_rel_IMP_locals \\ fs [cut_res_def,set_var_def]
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ rename [‘cut_res _ (evaluate (r5,_))’]
\\ Cases_on ‘evaluate (r5,t1)’
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ Cases_on ‘q’ \\ fs [cut_res_def])
\\ fs [CaseEq"option"] \\ rveq \\ fs []
\\ fs [cut_state_def,CaseEq"bool"] \\ rveq \\ fs []
\\ imp_res_tac state_rel_IMP_locals
\\ imp_res_tac state_rel_IMP_clock \\ fs []
\\ fs [cut_res_def,cut_state_def]
\\ fs [set_var_def,dec_clock_def]
\\ fs [state_rel_def,state_component_equality] \\ rw [] \\ res_tac \\ fs []
\\ rfs [] \\ asm_exists_tac \\ fs [])
\\ Cases_on ‘x'’ \\ fs [])
\\ fs [syntax_ok_def]
\\ Cases_on ‘handler’ \\ fs []
\\ PairCases_on ‘x’ \\ fs []
\\ Cases_on ‘ret’
THEN1 fs [evaluate_def,CaseEq"option",CaseEq"prod"]
\\ PairCases_on ‘x’ \\ fs []
\\ fs [evaluate_def]
\\ Cases_on ‘get_vars argvars s’ \\ fs []
\\ Cases_on ‘find_code dest x s.code’ \\ fs []
\\ rename [‘_ = SOME tt’] \\ PairCases_on ‘tt’ \\ fs []
\\ fs [comp_with_loop_def]
\\ rpt (pairarg_tac \\ fs []) \\ rveq \\ fs []
\\ fs [CaseEq"prod"]
\\ rename [‘cut_res x11 (NONE,s) = (vv,s9)’]
\\ rename [‘_ = SOME (new_env,new_prog)’]
\\ ‘∃s body n funs.
find_code dest x t.code = SOME (new_env,body) ∧ syntax_ok new_prog ∧
comp_with_loop (Fail,Fail) new_prog Fail s = (body,n,funs) ∧
has_code (n,funs) t.code’ by
(Cases_on ‘dest’ \\ fs [find_code_def]
\\ qpat_x_assum ‘_ = (_,_)’ kall_tac
\\ fs [CaseEq"word_loc",CaseEq"num",CaseEq"option",CaseEq"bool",CaseEq"prod"]
\\ rveq \\ fs [] \\ fs [state_rel_def] \\ rveq \\ fs []
\\ first_x_assum drule
\\ strip_tac \\ fs []
\\ fs [comp_def] \\ pairarg_tac \\ fs []
\\ qexists_tac ‘init’ \\ fs [has_code_def])
\\ reverse (Cases_on ‘vv’) \\ fs [] THEN1
(imp_res_tac state_rel_IMP_clock \\ fs []
\\ imp_res_tac state_rel_IMP_locals \\ fs []
\\ rveq \\ fs [] \\ fs [cut_res_def,cut_state_def,CaseEq"option",CaseEq"bool"]
\\ rveq \\ fs []
\\ fs [evaluate_def,cut_res_def,cut_state_def]
\\ drule state_rel_IMP_get_vars
\\ disch_then drule \\ strip_tac \\ fs []
\\ fs [state_rel_def,state_component_equality]
\\ metis_tac [])
\\ fs [cut_res_def,CaseEq"option",CaseEq"prod",cut_state_def]
\\ rveq \\ fs []
\\ imp_res_tac state_rel_IMP_clock \\ fs []
\\ imp_res_tac state_rel_IMP_locals \\ fs []
\\ fs [CaseEq"bool",dec_clock_def] \\ rveq \\ fs []
\\ Cases_on ‘v11 = Error’ \\ fs []
\\ first_x_assum (qspecl_then
[‘t with <|locals := new_env; clock := t.clock - 1|>’,‘Fail,Fail’] mp_tac)
\\ impl_tac THEN1
(qpat_x_assum ‘state_rel s t’ mp_tac
\\ rpt (pop_assum kall_tac)
\\ fs [breaks_ok_def,break_ok_def,state_rel_def]
\\ strip_tac \\ fs []
\\ qexists_tac ‘c’ \\ fs []
\\ rw [] \\ res_tac)
\\ strip_tac \\ fs []
\\ pop_assum kall_tac
\\ pop_assum drule
\\ impl_tac THEN1 fs [break_ok_def]
\\ strip_tac
\\ qpat_x_assum ‘state_rel s t’ assume_tac
\\ drule state_rel_IMP_get_vars
\\ disch_then drule \\ strip_tac \\ fs []
\\ fs [evaluate_def]
\\ simp [cut_res_def,cut_state_def,dec_clock_def]
\\ Cases_on ‘v11’ \\ fs [] \\ rveq \\ fs []
THEN1
(Cases_on ‘evaluate (x2,set_var x0' w (st with locals := inter t.locals x11))’ \\ fs []
\\ rename [‘set_var vvv’]
\\ Cases_on ‘q = SOME Error’ THEN1 fs [cut_res_def] \\ fs []
\\ first_x_assum (qspecl_then [
‘(set_var vvv w (t1 with locals := inter t.locals x11))’,‘p’] mp_tac)
\\ impl_tac THEN1
(fs [set_var_def] \\ qpat_x_assum ‘state_rel st t1’ mp_tac
\\ rpt (pop_assum kall_tac) \\ fs [state_rel_def] \\ rw [] \\ fs []
\\ fs [state_component_equality] \\ rw[] \\ res_tac)
\\ strip_tac \\ fs [] \\ pop_assum kall_tac
\\ pop_assum drule \\ impl_tac THEN1
(fs [breaks_ok_def,set_var_def]
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def])
\\ strip_tac
\\ reverse (Cases_on ‘q’) \\ fs []
THEN1
(fs [cut_res_def] \\ rveq \\ fs [] \\ asm_exists_tac \\ fs []
\\ conj_tac THEN1 fs [set_var_def]
\\ Cases_on ‘x'’ \\ fs [] \\ rveq \\ fs [cut_res_def]
\\ Cases_on ‘p’ \\ fs []
\\ rename [‘_ = evaluate (qq,_)’]
\\ fs [breaks_ok_def]
\\ Cases_on ‘evaluate (qq,t1')’ \\ fs [] \\ rw []
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ Cases_on ‘q’ \\ fs [cut_res_def])
\\ fs [cut_res_def,cut_state_def,CaseEq"bool",CaseEq"option"]
\\ rveq \\ fs []
THEN1
(qexists_tac ‘t1' with locals := LN’ \\ fs []
\\ simp [set_var_def]
\\ conj_tac THEN1
(qpat_x_assum ‘state_rel _ _’ mp_tac
\\ rpt (pop_assum kall_tac) \\ fs [state_rel_def]
\\ rw [] \\ fs [] \\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs [])
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs []
\\ imp_res_tac comp_with_loop_has_code
\\ fs [set_var_def,has_code_def,evaluate_def]
\\ drule helper_call_lemma
\\ drule state_rel_IMP_get_vars \\ rpt strip_tac
\\ first_x_assum drule \\ strip_tac \\ fs []
\\ imp_res_tac state_rel_IMP_clock
\\ fs [dec_clock_def,find_code_def,cut_res_def])
\\ rveq \\ fs [] \\ fs [dec_clock_def]
\\ qexists_tac ‘(t1' with <|locals := inter r.locals x3; clock := r.clock - 1|>)’
\\ fs [] \\ simp [set_var_def]
\\ conj_tac THEN1
(qpat_x_assum ‘state_rel _ _’ mp_tac \\ rpt (pop_assum kall_tac)
\\ fs [state_rel_def] \\ rw [] \\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs [])
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs []
\\ imp_res_tac comp_with_loop_has_code
\\ fs [set_var_def,has_code_def]
\\ simp [evaluate_def,find_code_def]
\\ drule helper_call_lemma
\\ drule state_rel_IMP_get_vars \\ rpt strip_tac
\\ first_x_assum drule \\ strip_tac \\ fs []
\\ imp_res_tac state_rel_IMP_clock \\ fs [dec_clock_def]
\\ qmatch_goalsub_abbrev_tac ‘_ = xx’ \\ PairCases_on ‘xx’
\\ fs [] \\ pop_assum (assume_tac o REWRITE_RULE [markerTheory.Abbrev_def] o GSYM)
\\ pop_assum (assume_tac o GSYM)
\\ drule evaluate_break_ok \\ fs []
\\ Cases_on ‘xx0’ \\ fs []
\\ imp_res_tac break_ok_no_Break_Continue
\\ imp_res_tac evaluate_no_Break_Continue \\ fs []
\\ TOP_CASE_TAC \\ fs [cut_res_def])
THEN1
(Cases_on ‘evaluate (x1,set_var x0 w (st with locals := inter t.locals x11))’ \\ fs []
\\ rename [‘set_var vvv’]
\\ Cases_on ‘q = SOME Error’ THEN1 fs [cut_res_def] \\ fs []
\\ first_x_assum (qspecl_then [
‘(set_var vvv w (t1 with locals := inter t.locals x11))’,‘p’] mp_tac)
\\ impl_tac THEN1
(fs [set_var_def] \\ qpat_x_assum ‘state_rel st t1’ mp_tac
\\ rpt (pop_assum kall_tac) \\ fs [state_rel_def] \\ rw [] \\ fs []
\\ fs [state_component_equality] \\ rw[] \\ res_tac)
\\ strip_tac \\ fs [] \\ pop_assum kall_tac
\\ pop_assum drule \\ impl_tac THEN1
(fs [breaks_ok_def,set_var_def]
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def]
\\ imp_res_tac comp_with_loop_has_code)
\\ strip_tac
\\ reverse (Cases_on ‘q’) \\ fs []
THEN1
(fs [cut_res_def] \\ rveq \\ fs [] \\ asm_exists_tac \\ fs []
\\ conj_tac THEN1 fs [set_var_def]
\\ Cases_on ‘x'’ \\ fs [] \\ rveq \\ fs [cut_res_def]
\\ Cases_on ‘p’ \\ fs []
\\ rename [‘_ = evaluate (qq,_)’]
\\ fs [breaks_ok_def]
\\ Cases_on ‘evaluate (qq,t1')’ \\ fs [] \\ rw []
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ Cases_on ‘q’ \\ fs [cut_res_def])
\\ fs [cut_res_def,cut_state_def,CaseEq"bool",CaseEq"option"]
\\ rveq \\ fs []
THEN1
(qexists_tac ‘t1' with locals := LN’ \\ fs []
\\ simp [set_var_def]
\\ conj_tac THEN1
(qpat_x_assum ‘state_rel _ _’ mp_tac
\\ rpt (pop_assum kall_tac) \\ fs [state_rel_def]
\\ rw [] \\ fs [] \\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs [])
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs []
\\ imp_res_tac comp_with_loop_has_code
\\ fs [set_var_def,has_code_def,evaluate_def]
\\ drule helper_call_lemma
\\ drule state_rel_IMP_get_vars \\ rpt strip_tac
\\ first_x_assum drule \\ strip_tac \\ fs []
\\ imp_res_tac state_rel_IMP_clock
\\ fs [dec_clock_def,find_code_def,cut_res_def])
\\ rveq \\ fs [] \\ fs [dec_clock_def]
\\ qexists_tac ‘(t1' with <|locals := inter r.locals x3; clock := r.clock - 1|>)’
\\ fs [] \\ simp [set_var_def]
\\ conj_tac THEN1
(qpat_x_assum ‘state_rel _ _’ mp_tac \\ rpt (pop_assum kall_tac)
\\ fs [state_rel_def] \\ rw [] \\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs [])
\\ PairCases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs []
\\ imp_res_tac comp_with_loop_has_code
\\ fs [set_var_def,has_code_def]
\\ simp [evaluate_def,find_code_def]
\\ drule helper_call_lemma
\\ drule state_rel_IMP_get_vars \\ rpt strip_tac
\\ first_x_assum drule \\ strip_tac \\ fs []
\\ imp_res_tac state_rel_IMP_clock \\ fs [dec_clock_def]
\\ qmatch_goalsub_abbrev_tac ‘_ = xx’ \\ PairCases_on ‘xx’
\\ fs [] \\ pop_assum (assume_tac o REWRITE_RULE [markerTheory.Abbrev_def] o GSYM)
\\ pop_assum (assume_tac o GSYM)
\\ drule evaluate_break_ok \\ fs []
\\ Cases_on ‘xx0’ \\ fs []
\\ imp_res_tac break_ok_no_Break_Continue
\\ imp_res_tac evaluate_no_Break_Continue \\ fs []
\\ TOP_CASE_TAC \\ fs [cut_res_def])
QED
Theorem compile_If:
^(get_goal "loopLang$If")
Proof
fs [no_Loop_def,every_prog_def]
\\ fs [GSYM no_Loop_def]
\\ reverse (rpt strip_tac)
\\ qpat_x_assum ‘evaluate _ = _’ mp_tac
\\ once_rewrite_tac [evaluate_def]
THEN1
(fs [CaseEq"option",CaseEq"word_loc"] \\ rw []
\\ ‘t.locals = s.locals’ by fs [state_rel_def]
\\ ‘get_var_imm ri t = SOME (Word y)’ by
(Cases_on ‘ri’ \\ fs [get_var_imm_def])
\\ simp [comp_no_loop_def,evaluate_def]
\\ Cases_on ‘evaluate (if word_cmp cmp x y then c1 else c2,s)’ \\ fs []
\\ Cases_on ‘q = SOME Error’ THEN1 fs [cut_res_def] \\ fs []
\\ first_x_assum drule \\ disch_then drule
\\ strip_tac \\ pop_assum mp_tac \\ pop_assum kall_tac
\\ impl_tac THEN1 (fs [no_Loop_def,every_prog_def] \\ rw [])
\\ strip_tac \\ fs [] \\ IF_CASES_TAC \\ fs []
\\ Cases_on ‘evaluate (comp_no_loop p c1,t)’ \\ fs [cut_res_def]
\\ Cases_on ‘evaluate (comp_no_loop p c2,t)’ \\ fs [cut_res_def]
\\ reverse (Cases_on ‘q’) \\ fs [] \\ rveq
THEN1
(rename [‘_ = (SOME xx,_)’] \\ Cases_on ‘xx’ \\ fs []
\\ asm_exists_tac \\ fs [cut_res_def]
\\ TRY (rename [‘(x1,x2) = evaluate _’])
\\ TRY (qpat_x_assum ‘(x1,x2) = evaluate _’ (assume_tac o GSYM)) \\ fs []
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ imp_res_tac evaluate_break_ok \\ fs [])
THEN1
(rename [‘state_rel s5 t5’]
\\ fs [cut_state_def,CaseEq"bool",CaseEq"option"] \\ rveq \\ fs []
\\ fs [dec_clock_def] \\ fs [state_rel_def,state_component_equality]
\\ rw [] \\ res_tac)
THEN1
(rename [‘_ = (SOME xx,_)’] \\ Cases_on ‘xx’ \\ fs []
\\ asm_exists_tac \\ fs [cut_res_def]
\\ TRY (rename [‘(x1,x2) = evaluate _’])
\\ TRY (qpat_x_assum ‘(x1,x2) = evaluate _’ (assume_tac o GSYM)) \\ fs []
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ imp_res_tac evaluate_break_ok \\ fs [])
THEN1
(rename [‘state_rel s5 t5’]
\\ fs [cut_state_def,CaseEq"bool",CaseEq"option"] \\ rveq \\ fs []
\\ fs [dec_clock_def] \\ fs [state_rel_def,state_component_equality]
\\ rw [] \\ res_tac))
\\ ‘syntax_ok c1 ∧ syntax_ok c2’ by fs [syntax_ok_def]
\\ fs [CaseEq"option",CaseEq"word_loc"] \\ rw []
\\ ‘t.locals = s.locals’ by fs [state_rel_def]
\\ ‘get_var_imm ri t = SOME (Word y)’ by
(Cases_on ‘ri’ \\ fs [get_var_imm_def])
\\ fs [comp_with_loop_def] \\ rpt (pairarg_tac \\ fs []) \\ rveq \\ fs []
\\ imp_res_tac comp_with_loop_has_code
\\ Cases_on ‘word_cmp cmp x y’ \\ fs []
\\ rename [‘cut_res live_out (evaluate (cc,s)) = (res,s1)’]
THEN
(Cases_on ‘evaluate (cc,s)’ \\ fs []
\\ first_x_assum drule
\\ Cases_on ‘q = SOME Error’ THEN1 fs [cut_res_def] \\ fs []
\\ disch_then drule \\ simp [GSYM AND_IMP_INTRO]
\\ disch_then drule \\ fs []
\\ impl_tac
THEN1 (Cases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def])
\\ strip_tac \\ disch_then kall_tac
\\ fs [evaluate_def]
\\ rename [‘evaluate (qq,t) = evaluate _’]
\\ Cases_on ‘evaluate (qq,t)’ \\ fs []
\\ fs [cut_res_def] \\ reverse (Cases_on ‘q’) \\ fs [] \\ rveq \\ fs []
THEN1
(Cases_on ‘x'’ \\ fs [] \\ asm_exists_tac \\ fs []
\\ TRY (rename [‘(x1,x2) = evaluate _’])
\\ TRY (qpat_x_assum ‘(x1,x2) = evaluate _’ (assume_tac o GSYM)) \\ fs []
\\ Cases_on ‘p’ \\ fs [breaks_ok_def]
\\ imp_res_tac evaluate_break_ok \\ fs [])
\\ TRY (rename [‘(x1,x2) = evaluate _’])
\\ TRY (qpat_x_assum ‘(x1,x2) = evaluate _’ (assume_tac o GSYM)) \\ fs []
\\ ‘break_ok cont'’ by
(Cases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [break_ok_def])
\\ imp_res_tac evaluate_break_ok \\ fs []
\\ fs [CaseEq"option",CaseEq"bool",cut_state_def] \\ rveq \\ fs []
\\ rename [‘state_rel s1 t1’]
\\ Cases_on ‘s'’ \\ fs [store_cont_def] \\ rveq \\ fs [evaluate_def]
\\ ‘s1.locals = t1.locals ∧ s1.clock = t1.clock’ by fs [state_rel_def] \\ fs []
\\ drule helper_call_lemma \\ strip_tac \\ fs [find_code_def]
\\ rfs [has_code_def] \\ rveq \\ fs [dec_clock_def]
THEN1 (fs [state_rel_def,state_component_equality] \\ rw [] \\ res_tac)
\\ qmatch_asmsub_abbrev_tac ‘evaluate (_,t2)’
\\ qexists_tac ‘t2’ \\ Cases_on ‘evaluate (cont,t2)’
\\ Cases_on ‘q' = NONE’ \\ rveq \\ rfs []
\\ Cases_on ‘q'’ \\ fs [] \\ fs [Abbr‘t2’]
\\ drule evaluate_no_Break_Continue
\\ imp_res_tac break_ok_no_Break_Continue \\ fs []
\\ qpat_x_assum ‘state_rel s1 t1’ mp_tac
\\ Cases_on ‘x'’ \\ fs []
\\ rpt (pop_assum kall_tac) \\ fs [state_rel_def]
\\ rpt strip_tac \\ fs [state_component_equality] \\ rw [] \\ res_tac)
QED
Theorem compile_Seq:
^(get_goal "syntax_ok (loopLang$Seq _ _)")
Proof
reverse (rpt strip_tac)
THEN1
(fs [comp_no_loop_def,no_Loop_def,every_prog_def]
\\ fs [GSYM no_Loop_def]
\\ qpat_x_assum ‘evaluate _ = _’ mp_tac
\\ simp [Once evaluate_def]
\\ pairarg_tac \\ fs []
\\ reverse IF_CASES_TAC
THEN1
(strip_tac \\ fs [] \\ rveq \\ fs []
\\ first_x_assum drule
\\ disch_then drule
\\ strip_tac \\ asm_exists_tac \\ fs []
\\ Cases_on ‘res’ \\ fs []
\\ Cases_on ‘x’ \\ fs [evaluate_def]
\\ Cases_on ‘p’ \\ fs []
\\ rename [‘_ = evaluate (qq,_)’]
\\ fs [breaks_ok_def]
\\ Cases_on ‘evaluate (qq,t1)’ \\ fs [] \\ rw []
\\ imp_res_tac evaluate_break_ok \\ fs [])
\\ rveq \\ fs [] \\ strip_tac \\ fs []
\\ first_x_assum drule
\\ disch_then drule \\ strip_tac
\\ first_x_assum drule
\\ disch_then drule \\ strip_tac
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘res’ \\ fs [evaluate_def])
\\ fs [syntax_ok_def]
\\ qpat_x_assum ‘evaluate _ = _’ mp_tac
\\ simp [Once evaluate_def]
\\ pairarg_tac \\ fs []
\\ reverse IF_CASES_TAC
THEN1
(strip_tac \\ fs [] \\ rveq \\ fs []
\\ first_x_assum drule
\\ disch_then drule
\\ strip_tac \\ pop_assum kall_tac
\\ fs [comp_with_loop_def]
\\ pairarg_tac \\ fs []
\\ first_x_assum drule \\ fs []
\\ impl_tac THEN1 imp_res_tac comp_with_loop_break_ok
\\ strip_tac \\ fs []
\\ asm_exists_tac \\ fs []
\\ Cases_on ‘res’ \\ fs [])
\\ rveq \\ fs [] \\ strip_tac \\ fs []
\\ fs [comp_with_loop_def]
\\ pairarg_tac \\ fs []
\\ first_x_assum drule
\\ disch_then drule
\\ strip_tac \\ pop_assum kall_tac
\\ first_x_assum drule \\ simp []
\\ impl_tac THEN1 imp_res_tac comp_with_loop_break_ok
\\ strip_tac \\ fs []
\\ first_x_assum drule
\\ disch_then drule
\\ strip_tac \\ pop_assum kall_tac
\\ first_x_assum drule
\\ imp_res_tac comp_with_loop_has_code \\ fs []
QED
Theorem eval_lemma:
∀s exp w t.
eval s exp = SOME w ∧ state_rel s t ⇒ eval t exp = SOME w
Proof
ho_match_mp_tac eval_ind \\ rw [] \\ fs [eval_def]
\\ fs [state_rel_def] \\ rveq \\ fs []
\\ fs [CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rveq \\ fs [mem_load_def]
\\ goal_assum (first_assum o mp_then Any mp_tac)
\\ qpat_x_assum ‘_ = SOME z’ kall_tac
\\ rpt (pop_assum mp_tac)
\\ qid_spec_tac ‘wexps’
\\ qid_spec_tac ‘ws’
\\ Induct_on ‘wexps’ \\ fs []
\\ fs [wordSemTheory.the_words_def,CaseEq"option",CaseEq"word_loc"] \\ rw []
QED
Theorem compile_Assign:
^(get_goal "loopLang$Assign") ∧
^(get_goal "loopLang$LocValue")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rw [] \\ fs [comp_no_loop_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ fs [set_var_def]
\\ imp_res_tac eval_lemma \\ fs []
\\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs []
\\ fs [domain_lookup] \\ res_tac
\\ PairCases_on ‘v’ \\ res_tac \\ fs []
\\ fs [comp_def,has_code_def]
\\ rpt (pairarg_tac \\ fs [])
\\ fs [has_code_def]
QED
Theorem compile_Store:
^(get_goal "loopLang$Store") ∧
^(get_goal "loopLang$StoreByte") ∧
^(get_goal "loopLang$LoadByte")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rw [] \\ fs [comp_no_loop_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ imp_res_tac eval_lemma \\ fs []
\\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ fs [mem_store_def]
\\ rveq \\ fs []
\\ rw [] \\ res_tac
\\ fs [set_var_def]
\\ res_tac \\ fs []
QED
Theorem compile_ShMem:
^(get_goal "loopLang$ShMem")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rw [] \\ fs [comp_no_loop_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ imp_res_tac eval_lemma \\ fs []>>
cases_on ‘op’>>fs[sh_mem_op_def,sh_mem_store_def,sh_mem_load_def,set_var_def,call_env_def]>>
fs [CaseEq"bool",CaseEq"option",CaseEq"word_loc",CaseEq"ffi_result",PULL_EXISTS]>>
rpt (CASE_TAC>>fs[])>>
rveq \\ gvs [state_rel_def]>>
irule_at Any EQ_REFL>>
rpt gen_tac>>strip_tac>>
res_tac>>
rfs[state_component_equality]
QED
Theorem compile_SetGlobal:
^(get_goal "loopLang$SetGlobal")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rw [] \\ fs [comp_no_loop_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ fs [set_globals_def]
\\ imp_res_tac eval_lemma \\ fs []
\\ fs [state_rel_def]
\\ fs [state_component_equality]
\\ rw [] \\ res_tac \\ fs []
QED
Theorem compile_FFI:
^(get_goal "loopLang$FFI")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ rw [] \\ fs [comp_no_loop_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ fs [state_rel_def] \\ rveq \\ fs [] \\ fs [PULL_EXISTS]
\\ fs [cut_state_def] \\ rveq \\ fs [] \\ fs [PULL_EXISTS]
\\ fs [evaluate_def,CaseEq"option",CaseEq"word_loc",PULL_EXISTS]
\\ fs [CaseEq"ffi_result"] \\ rveq \\ fs []
\\ fs [call_env_def]
QED
Theorem compile_Arith:
^(get_goal "loopLang$Arith")
Proof
fs [syntax_ok_def,no_Loop_def,every_prog_def] \\ rpt strip_tac
\\ gvs[evaluate_def,AllCaseEqs(),DefnBase.one_line_ify NONE loop_arith_def,
comp_no_loop_def,PULL_EXISTS
]
\\ gvs[state_rel_def,set_var_def,state_component_equality] \\ metis_tac[]
QED
Theorem compile_correct:
^(compile_correct_tm())
Proof
match_mp_tac (the_ind_thm())
\\ EVERY (map strip_assume_tac [compile_Skip, compile_Continue, compile_ShMem,
compile_Mark, compile_Return, compile_Assign, compile_Store,
compile_SetGlobal, compile_Call, compile_Seq, compile_If,
compile_FFI, compile_Loop,compile_Arith])
\\ asm_rewrite_tac [] \\ rw [] \\ rpt (pop_assum kall_tac)
QED