-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_seq_cls.py
246 lines (225 loc) · 10.1 KB
/
run_seq_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
This module runs sequence classification task.
Author: wangning([email protected])
Date : 2022/12/7 7:41 PM
"""
import argparse
import os.path as osp
from functools import partial
import paddle
from paddlenlp.datasets import MapDataset
from paddlenlp.transformers import ErnieForSequenceClassification
from paddlenlp.utils.log import logger
from arg_utils import (
set_seed,
str2bool,
default_logdir,
print_config,
str2list
)
from tokenizer_nuc import NUCTokenizer
from base_classes import IndicatorClassifier, MajorityVoter
from sequence_classification import (
SeqClsDataset,
convert_instance_to_cls,
SeqClsCollator,
SeqClsMetrics,
SeqClsLoss,
SeqClsTrainer,
LongSeqClsCollator,
ErnieForLongSequenceClassification
)
from visualizer import Visualizer
# ========== Define constants
TASKS = ["nRC", "lncRNA_H", "lncRNA_M"]
NUM_CLASSES = {
"nRC": 13,
"lncRNA_H": 2,
"lncRNA_M": 2,
}
LABEL2ID = {
"nRC": {
"5S_rRNA": 0,
"5_8S_rRNA": 1,
"tRNA": 2,
"ribozyme": 3,
"CD-box": 4,
"Intron_gpI": 5,
"Intron_gpII": 6,
"riboswitch": 7,
"IRES": 8,
"HACA-box": 9,
"scaRNA": 10,
"leader": 11,
"miRNA": 12
},
"lncRNA_H": {
"lnc": 0,
"pc": 1
},
"lncRNA_M": {
"lnc": 0,
"pc": 1
},
}
MAX_MODEL_LEN = 512
MAX_CHUNK_NUMBER = 6
MAX_SEQ_LEN = {
"nRC": MAX_MODEL_LEN,
"lncRNA_H": MAX_MODEL_LEN * MAX_CHUNK_NUMBER,
"lncRNA_M": MAX_MODEL_LEN * MAX_CHUNK_NUMBER,
}
# ========== Configuration
logger.debug("Loading configuration.")
parser = argparse.ArgumentParser('Implementation of RNA sequence classification.')
# model args
parser.add_argument('--model_name_or_path',
type=str,
default="./output/BERT,ERNIE,MOTIF,PROMPT/checkpoint_final",
help='The build-in pretrained LM or the path to local model parameters.')
parser.add_argument('--max_seq_len', type=int, default=0,
help='The maximum length for model input, including special tokens.')
parser.add_argument('--num_classes', type=int, default=0, help='The number of classes in task.')
parser.add_argument('--with_pretrain', type=str2bool, default=True, help='Whether use original channels.')
parser.add_argument('--hidden_states_size', type=int, default=768, help='The hidden size of model.')
parser.add_argument('--proj_size', type=int, default=128, help='Project pretrained features to this size.')
parser.add_argument('--model_path', type=str, default="./output_ft/seq_cls/nRC/BERT,ERNIE,MOTIF,PROMPT",
help='Pretrained down-stream task model weight.')
parser.add_argument('--two_stage', type=str2bool, default=False, help='Whether use two-stage pipeline.')
parser.add_argument('--top_k', type=int, default=3, help='Select top k indications for stage two.')
# data args
parser.add_argument('--k_mer', type=int, default=1, help='Number of continuous nucleic acids to form a token.')
parser.add_argument('--vocab_path', type=str, default="./data/vocab/", help='Local path for vocab file.')
parser.add_argument('--vocab_size', type=int, default=39, help='The size of vocobulary.')
parser.add_argument('--dataset', type=str, default="nRC", choices=TASKS, help='The dataset name to use.')
parser.add_argument('--dataset_dir', type=str, default="./data/ft/seq_cls", help='Local path for dataset.')
parser.add_argument('--dataloader_num_workers', type=int, default=8, help='The number of threads used by dataloader.')
parser.add_argument('--dataloader_drop_last', type=str2bool, default=True, help='Whether drop the last batch sample.')
# training args
parser.add_argument('--device', type=str, default='gpu', choices=['gpu', 'cpu'],
help='Device for training, default to gpu.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--fix_pretrain', type=str2bool, default=False, help='Whether fix parameters of pretrained model.')
parser.add_argument('--disable_tqdm', type=str2bool, default=False, help='Disable tqdm display if true.')
parser.add_argument('--max_chunk_number', type=int, default=MAX_CHUNK_NUMBER,
help='Maximum chunk number for long sequences.')
parser.add_argument('--use_chunk', type=str2bool, default=True,
help='Whether use chunk strategy when classify long sequences.')
parser.add_argument('--train', type=str2bool, default=True, help='Whether train the model.')
parser.add_argument('--batch_size', type=int, default=50, help='The number of samples used per step & per device.')
parser.add_argument('--num_train_epochs', type=int, default=50, help='The number of epoch for training.')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='The learning rate of optimizer.')
parser.add_argument('--metrics',
type=str2list,
default="F1s,Precision,Recall,Accuracy,Mcc",
help='Use which metrics to evaluate model, could be concatenate by ",".')
# logging args
parser.add_argument('--logging_steps', type=int, default=100, help='Update visualdl logs every logging_steps.')
parser.add_argument('--output', type=str, default="./output_ft/seq_cls", help='Output directory.')
parser.add_argument('--visualdl_dir', type=str, default="visualdl", help='Visualdl logging directory.')
parser.add_argument('--save_max', type=str2bool, default=True, help='Save model with max metric.')
args = parser.parse_args()
if __name__ == "__main__":
# ========== post process
if ".txt" not in args.vocab_path:
args.vocab_path = osp.join(args.vocab_path,
"vocab_" + str(args.k_mer) + "MER.txt") # expected: "./data/vocab/vocab_6MER.txt"
if args.model_path.split(".")[-1] != "pdparams":
args.model_path = osp.join(args.model_path, "model_state.pdparams")
ct = default_logdir()
args.output = osp.join(osp.join(args.output, args.dataset), ct)
args.num_classes = NUM_CLASSES[args.dataset]
if args.max_seq_len == 0:
if args.use_chunk:
args.max_seq_len = MAX_SEQ_LEN[args.dataset]
else:
args.max_seq_len = MAX_MODEL_LEN
args.visualdl_dir = osp.join(args.output, args.visualdl_dir)
print_config(args, "RNA Sequence Classification")
# ========== Set random seeds
logger.debug("Set random seeds.")
set_seed(args.seed)
# ========== Set device
logger.debug("Set device.")
paddle.set_device(args.device)
# ========== Build tokenizer, model, criterion
logger.debug("Build tokenizer, model, criterion.")
# load tokenizer
logger.debug("Loading tokenization.")
tokenizer = NUCTokenizer(
k_mer=args.k_mer,
vocab_file=args.vocab_path,
)
assert tokenizer.vocab_size == args.vocab_size, "Vocab size of tokenizer must be equal to args.vocab_size."
# load pretrained model
logger.info("Loading pretrained model.")
if args.train:
# train from scratch
if args.dataset != "nRC" and args.use_chunk:
model = ErnieForLongSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=args.num_classes)
else:
model = ErnieForSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=args.num_classes)
else:
if args.dataset != "nRC" and args.use_chunk:
model = ErnieForLongSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=args.num_classes)
model.set_state_dict(paddle.load(args.model_path))
else:
model = ErnieForSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=args.num_classes)
model.set_state_dict(paddle.load(args.model_path))
indicator = IndicatorClassifier(model_name_or_path=args.model_name_or_path) if args.two_stage else None
ensemble = MajorityVoter() if args.two_stage else None
# load loss function
_loss_fn = SeqClsLoss()
# load model
logger.info("Loading model.")
# ========== Prepare data
logger.debug("Preparing data.")
# load datasets
trans_func = partial(convert_instance_to_cls, tokenizer=tokenizer, label2id=LABEL2ID[args.dataset])
# train
raw_dataset_train = SeqClsDataset(fasta_dir=args.dataset_dir, prefix=args.dataset, tokenizer=tokenizer)
m_dataset_train = MapDataset(raw_dataset_train)
m_dataset_train.map(trans_func)
# test
raw_dataset_test = SeqClsDataset(fasta_dir=args.dataset_dir, prefix=args.dataset, tokenizer=tokenizer, train=False)
m_dataset_test = MapDataset(raw_dataset_test)
m_dataset_test.map(trans_func)
# ========== Create the learning_rate scheduler (if need) and optimizer
logger.info("Creating learning rate scheduler and optimizer.")
# optimizer
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=args.learning_rate)
# ========== Create visualizer
if args.train:
_visualizer = Visualizer(log_dir=args.visualdl_dir, name="Sequence classification, " + args.dataset + ", " + ct)
else:
_visualizer = None
# ========== Training
logger.debug("Start training.")
if args.dataset != "nRC" and args.use_chunk:
_collate_fn = LongSeqClsCollator(max_seq_len=args.max_seq_len, tokenizer=tokenizer)
else:
_collate_fn = SeqClsCollator(max_seq_len=args.max_seq_len, tokenizer=tokenizer)
_metric = SeqClsMetrics(metrics=args.metrics)
# train model
seq_cls_trainer = SeqClsTrainer(
args=args,
tokenizer=tokenizer,
model=model,
indicator=indicator,
ensemble=ensemble,
train_dataset=m_dataset_train,
eval_dataset=m_dataset_test,
data_collator=_collate_fn,
loss_fn=_loss_fn,
optimizer=optimizer,
compute_metrics=_metric,
visual_writer=_visualizer
)
if args.train:
for i_epoch in range(args.num_train_epochs):
print("Epoch: {}".format(i_epoch))
seq_cls_trainer.train(i_epoch)
seq_cls_trainer.eval(i_epoch)
else:
# evaluate dataset only
seq_cls_trainer.eval(0)