-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_schedule.py
241 lines (188 loc) · 8.7 KB
/
dynamic_schedule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from transformers import CLIPModel, CLIPProcessor
from datasets import load_dataset
import torch
from PIL import Image
import math
import time
import argparse
import os
import multiprocessing as mp
import matplotlib.pyplot as plt
from tqdm import tqdm
world_size = 10
# tasklock = mp.Lock()
def load_and_preprocess(
args,
tid,
database,
data_start_id,
prompt,
all_batches) -> None:
processor = CLIPProcessor.from_pretrained(args.model)
print(f"len of dataset = {len(database)} from rank {tid}")
# for i in range(1000000):
# a = 0
# for j in range(100000):
# a += 1
# calculate number of local batches
if args.num_samples:
if args.num_samples > len(database) or args.num_samples < 0:
raise ValueError(f"Invalid number of samples (received {args.num_samples}).")
pbar = math.ceil(args.num_samples / args.batch_size)
else:
pbar = math.ceil(len(database) / args.batch_size)
batch_start = 0
# start processing data to batch
print(f"Start processing in rank {tid}")
print(f"pbar is {pbar}, batch size is {args.batch_size}")
for batch in range(pbar):
# pbar.set_description(f"Progressing batch {batch} on rank {tid}")
batch_buffer_img = []
id_list = []
for offset in range(args.batch_size):
if args.num_samples:
if batch_start + offset < args.num_samples:
batch_buffer_img.append(database[batch_start + offset]["image"])
id_list.append(data_start_id + batch_start + offset)
elif batch_start + offset < len(database):
batch_buffer_img.append(database[batch_start + offset]["image"])
id_list.append(data_start_id + batch_start + offset)
else:
break
image_text_tensor = processor(text=prompt, images=batch_buffer_img, return_tensors="pt", padding=True)
# organize data fields
# transfer to tensor and move to device
image_text_tensor["input_ids"] = image_text_tensor["input_ids"]
image_text_tensor["attention_mask"] = image_text_tensor["attention_mask"]
image_text_tensor["pixel_values"] = image_text_tensor["pixel_values"]
# local_batches.append((image_text_tensor, id_list))
while True: # 600 for approximated safe pipe upper bound, for preventing deadlock
if all_batches.qsize() < 600:
all_batches.put((image_text_tensor, id_list), timeout=0.2)
break
batch_start += args.batch_size
# append local batches to all batches
# all_batches.extend(local_batches)
print(f"Finish processing in rank {tid}")
def search(
args,
total_batch,
all_batches,
finished_batches,
gpu_results,
device) -> None:
# load model
print(f"Loading model...")
model = CLIPModel.from_pretrained(args.model)
model.to(device)
all_sim_score = []
inf_start_time = time.time()
model.eval()
with torch.no_grad():
while True:
# aquire lock for atomic add
with finished_batches.get_lock():
if finished_batches.value >= total_batch:
break
finished_batches.value += 1
# get batch from producer
batch = all_batches.get()
# move tensor to device
batch[0]["input_ids"] = batch[0]["input_ids"].to(device)
batch[0]["attention_mask"] = batch[0]["attention_mask"].to(device)
batch[0]["pixel_values"] = batch[0]["pixel_values"].to(device)
# forward
outputs = model(**batch[0])
# calculate result
sim = outputs.logits_per_image.squeeze(1).tolist()
for i in range(len(sim)):
all_sim_score.append(tuple((sim[i], batch[1][i])))
del batch
# summarize inference time
print("\n====================== Execution Status ======================")
print(f" The inference time is {time.time() - inf_start_time} sec for {device} consumer.")
# sort all similarity scores
all_sim_score = sorted(all_sim_score, key=lambda element: element[0], reverse=True)
if device == "cpu":
return all_sim_score[:9]
else:
gpu_results.extend(all_sim_score[:9])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="The path of CLIP model to use.")
parser.add_argument("--dataset", type=str, default="", help="The directory path of the dataset to search.")
parser.add_argument("--batch-size", type=int, default=1, help="The batch size for calculation.")
parser.add_argument("--cpu-workers", type=int, default=0, help="The number of consumers for CPU inference. This number doesn't include the main process. If this argument is 0, the main process will do the inference.")
parser.add_argument("--gpu-workers", type=int, default=1, help="The number of consumers for GPU inference. If torch.cuda.is_available() is False, this argument will be ignored.")
parser.add_argument("--num-samples", type=int, help="Number of examples need to be searched. Used for testing only.")
args = parser.parse_args()
try:
print(f"total size = {world_size}, threads per process = {os.environ['OMP_NUM_THREADS']}")
except KeyError: # OMP_NUM_THREADS is not set
print(f"total size = {world_size}, threads per process = auto.")
all_start_time = time.time()
# database, rank_data_size = load_data(args.dataset)
# database = load_dataset("catking-14/iNaturalist-2021-train-mini", split="train+validation")
# load dataset
print(f"Loading dataset...")
database = load_dataset(args.dataset, split="train+validation", num_proc=world_size)
# create processes for preprocessing
rank_data_size = len(database) // world_size
# calculate number of total batches
if args.num_samples:
if args.num_samples > len(database) or args.num_samples < 0:
raise ValueError(f"Invalid number of samples (received {args.num_samples}).")
total_batch = math.ceil(args.num_samples / args.batch_size) * world_size
else:
total_batch = math.ceil(rank_data_size / args.batch_size) * (world_size - 1)
total_batch += math.ceil((len(database) % rank_data_size) / args.batch_size) if len(database) % rank_data_size else math.ceil(rank_data_size / args.batch_size)
# inference variables
prompt = input("Type in what you want to search: ")
prompt = [prompt.lower()]
ctx = mp.get_context("spawn")
manager = ctx.Manager()
all_batches = manager.Queue()
gpu_top_nines = manager.list()
cpu_top_nines = manager.list()
finished_batches = ctx.Value("i", 0)
# tasklock = manager.Lock()
gpu_workers = []
cpu_workers = []
top_nine = []
with ctx.Pool(processes=world_size) as pool:
proc_args = []
gpu_worker_args = []
for tid in range(world_size):
if tid < world_size - 1:
proc_args.append((args, tid, database.select([tid * rank_data_size + i for i in range(rank_data_size)]), tid * rank_data_size, prompt, all_batches))
else:
proc_args.append((args, tid, database.select([i for i in range(tid * rank_data_size, len(database))]), tid * rank_data_size, prompt, all_batches))
# gpu workers
for tid in range(args.gpu_workers):
p = ctx.Process(target=search, args=(args, total_batch, all_batches, finished_batches, gpu_top_nines, "cuda"))
p.start()
gpu_workers.append(p)
# cpu workers
for tid in range(args.cpu_workers):
p = ctx.Process(target=search, args=(args, total_batch, all_batches, finished_batches, cpu_top_nines, "cpu"))
p.start()
cpu_workers.append(p)
# non-blocking start
pool.starmap_async(load_and_preprocess, proc_args)
# model inference
top_nine = search(args, total_batch, all_batches, finished_batches, None, "cpu")
for i in range(args.gpu_workers):
gpu_workers[i].join()
for i in range(args.cpu_workers):
cpu_workers[i].join()
# total sort
top_nine.extend(gpu_top_nines)
top_nine.extend(cpu_top_nines)
top_nine = sorted(top_nine, key=lambda element: element[0], reverse=True)
top_nine = top_nine[:9]
# plot results
for pics in range(9):
plt.subplot(3, 3, pics + 1)
plt.imshow(database[top_nine[pics][1]]["image"])
plt.show()
print(f" The total execution time is {time.time() - all_start_time} sec.")