-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
213 lines (167 loc) · 7.92 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from transformers import CLIPModel, CLIPProcessor
from datasets import load_dataset
import torch
from torch.utils.data import DataLoader
from mpi4py import MPI
import math
import time
import argparse
import os
import queue
import torch.multiprocessing as mp
import matplotlib.pyplot as plt
from tqdm import tqdm
world_size = 10
def load_and_preprocess(
args,
tid,
database,
data_start_id,
prompt,
all_batches) -> None:
processor = CLIPProcessor.from_pretrained(args.model)
print(f"len of dataset = {len(database)} from rank {tid}")
# for i in range(1000000):
# a = 0
# for j in range(100000):
# a += 1
# calculate number of local batches
if args.num_samples:
if args.num_samples > len(database) or args.num_samples < 0:
raise ValueError(f"Invalid number of samples (received {args.num_samples}).")
pbar = math.ceil(args.num_samples / args.batch_size)
else:
pbar = math.ceil(len(database) / args.batch_size)
batch_start = 0
# start processing data to batch
print(f"Start processing in rank {tid}")
print(f"pbar is {pbar}, batch size is {args.batch_size}")
for batch in range(pbar):
# pbar.set_description(f"Progressing batch {batch} on rank {tid}")
batch_buffer_img = []
id_list = []
for offset in range(args.batch_size):
if args.num_samples:
if batch_start + offset < args.num_samples:
batch_buffer_img.append(database[batch_start + offset]["image"])
id_list.append(data_start_id + batch_start + offset)
elif batch_start + offset < len(database):
batch_buffer_img.append(database[batch_start + offset]["image"])
id_list.append(data_start_id + batch_start + offset)
else:
break
image_text_tensor = processor(text=prompt, images=batch_buffer_img, return_tensors="pt", padding=True)
# organize data fields
# transfer to tensor and move to device
image_text_tensor["input_ids"] = image_text_tensor["input_ids"]
image_text_tensor["attention_mask"] = image_text_tensor["attention_mask"]
image_text_tensor["pixel_values"] = image_text_tensor["pixel_values"]
# local_batches.append((image_text_tensor, id_list))
while True: # 600 for approximated safe pipe upper bound, for preventing deadlock
if all_batches.qsize() < 600:
all_batches.put((image_text_tensor, id_list), timeout=0.2)
break
batch_start += args.batch_size
# append local batches to all batches
# all_batches.extend(local_batches)
print(f"Finish processing in rank {tid}")
def search(
args,
total_batch,
all_batches) -> None:
# load model
print(f"Loading model...")
model = CLIPModel.from_pretrained(args.model)
model.to(args.device)
all_sim_score = []
inf_start_time = time.time()
pbar = tqdm(range(total_batch))
model.eval()
with torch.no_grad():
for i in pbar:
# if i >= 695: print(all_batches.empty(), all_batches.full(), all_batches.qsize())
# get batch from producer
batch = all_batches.get()
# move tensor to device
batch[0]["input_ids"] = batch[0]["input_ids"].to(args.device)
batch[0]["attention_mask"] = batch[0]["attention_mask"].to(args.device)
batch[0]["pixel_values"] = batch[0]["pixel_values"].to(args.device)
# forward
outputs = model(**batch[0])
# calculate result
sim = outputs.logits_per_image.squeeze(1).tolist()
for i in range(len(sim)):
all_sim_score.append(tuple((sim[i], batch[1][i])))
del batch
# summarize inference time
print("\n====================== Execution Status ======================")
print(f" The inference time is {time.time() - inf_start_time} sec.")
# sort all similarity scores
all_sim_score = sorted(all_sim_score, key=lambda element: element[0], reverse=True)
return all_sim_score[:9]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="The path of CLIP model to train.")
parser.add_argument("--dataset", type=str, default="", help="The directory path of the dataset to search.")
parser.add_argument("--batch-size", type=int, default=1, help="The batch size for calculation.")
parser.add_argument("--device", type=str, default="cpu", choices=["cpu", "cuda"], help="The device used for model inference. Available choices: cpu, cuda.")
parser.add_argument("--num-samples", type=int, help="Number of examples need to be searched. Used for testing only.")
args = parser.parse_args()
print(f"total size = {world_size}, threads per process = {os.environ['OMP_NUM_THREADS']}")
all_start_time = time.time()
# database, rank_data_size = load_data(args.dataset)
# database = load_dataset("catking-14/iNaturalist-2021-train-mini", split="train+validation")
# load dataset
print(f"Loading dataset...")
database = load_dataset(args.dataset, split="train+validation", num_proc=world_size)
# create processes for preprocessing
rank_data_size = math.ceil(len(database) / world_size)
worker = []
# calculate number of total batches
if args.num_samples:
if args.num_samples > len(database) or args.num_samples < 0:
raise ValueError(f"Invalid number of samples (received {args.num_samples}).")
total_batch = math.ceil(args.num_samples / args.batch_size) * world_size
else:
total_batch = math.ceil(rank_data_size / args.batch_size) * (world_size - 1)
total_batch += math.ceil((len(database) % rank_data_size) / args.batch_size) if len(database) % rank_data_size else math.ceil(rank_data_size / args.batch_size)
# inference variables
prompt = input("Type in what you want to search: ")
prompt = [prompt.lower()]
ctx = mp.get_context("spawn")
manager = ctx.Manager()
all_batches = manager.Queue()
top_nine = []
with ctx.Pool(processes=world_size) as pool:
proc_args = []
for tid in range(world_size):
if tid < world_size - 1:
proc_args.append((args, tid, database.select([tid * rank_data_size + i for i in range(rank_data_size)]), tid * rank_data_size, prompt, all_batches))
else:
proc_args.append((args, tid, database.select([i for i in range(tid * rank_data_size, len(database))]), tid * rank_data_size, prompt, all_batches))
# non-blocking start
pool.starmap_async(load_and_preprocess, proc_args)
# model inference
top_nine = search(args, total_batch, all_batches)
# plot results
for pics in range(9):
plt.subplot(3, 3, pics + 1)
plt.imshow(database[top_nine[pics][1]]["image"])
plt.show()
# # gather data for each rank
# for tid in range(world_size):
# if tid < world_size - 1:
# # database = database[tid * rank_data_size : (tid + 1) * rank_data_size]
# p = ctx.Process(target=load_and_preprocess, args=(args, tid, database.select([tid * rank_data_size + i for i in range(rank_data_size)]), tid * rank_data_size, prompt, all_batches))
# p.start()
# worker.append(p)
# else:
# # database = database[tid * rank_data_size :]
# p = ctx.Process(target=load_and_preprocess, args=(args, tid, database.select([i for i in range(tid * rank_data_size, len(database))]), tid * rank_data_size, prompt, all_batches))
# p.start()
# worker.append(p)
# # join all processes to main process
# for subproc in worker:
# subproc.join()
# subproc.close()
print(f" The total execution time is {time.time() - all_start_time} sec.")