Skip to content

Performance on ImageNet validation set

Luigi edited this page Oct 4, 2018 · 16 revisions

Accuracy on validation set (single model)

Results were obtained using (center cropped) images of the same size.

Model Version Acc@1 Acc@5
NASNet-A-Large Tensorflow 82.69 96.16
NASNet-A-Large Our porting 82.50 95.45
SENet154 Caffe 81.32 95.53
SENet154 Our porting 81.32 95.45
InceptionResNetV2 Tensorflow 80.40 95.30
InceptionV4 Tensorflow 80.20 95.30
SE-ResNeXt101_32x4d Our porting 80.236 95.028
SE-ResNeXt101_32x4d Caffe 80.19 95.04
InceptionResNetV2 Our porting 80.170 95.234
InceptionV4 Our porting 80.062 94.926
DualPathNet107_5k Our porting 79.746 94.684
ResNeXt101_64x4d Torch7 79.6 94.7
DualPathNet131 Our porting 79.432 94.574
DualPathNet92_5k Our porting 79.400 94.620
DualPathNet98 Our porting 79.224 94.488
SE-ResNeXt50_32x4d Our porting 79.076 94.434
SE-ResNeXt50_32x4d Caffe 79.03 94.46
Xception Keras 79.000 94.500
ResNeXt101_64x4d Our porting 78.956 94.252
Xception Our porting 78.888 94.292
ResNeXt101_32x4d Torch7 78.8 94.4
SE-ResNet152 Caffe 78.66 94.46
SE-ResNet152 Our porting 78.658 94.374
ResNet152 Pytorch 78.428 94.110
SE-ResNet101 Our porting 78.396 94.258
SE-ResNet101 Caffe 78.25 94.28
ResNeXt101_32x4d Our porting 78.188 93.886
FBResNet152 Torch7 77.84 93.84
SE-ResNet50 Caffe 77.63 93.64
SE-ResNet50 Our porting 77.636 93.752
DenseNet161 Pytorch 77.560 93.798
ResNet101 Pytorch 77.438 93.672
FBResNet152 Our porting 77.386 93.594
InceptionV3 Pytorch 77.294 93.454
DenseNet201 Pytorch 77.152 93.548
DualPathNet68b_5k Our porting 77.034 93.590
CaffeResnet101 Caffe 76.40 92.90
CaffeResnet101 Our porting 76.11 92.70
ResNet50 Pytorch 76.01 92.93
DualPathNet68 Our porting 75.95 92.78
DenseNet169 Pytorch 75.63 92.81
DenseNet121 Pytorch 74.47 91.97
VGG19_BN Pytorch 74.22 91.85
NASNet-A-Mobile Tensorflow 74.00 91.60
NASNet-A-Mobile Our porting 74.10 91.78
BNInception Our porting 73.48 91.55
VGG16_BN Pytorch 73.48 91.54
ResNet34 Pytorch 73.27 91.43
VGG19 Pytorch 72.36 90.85
MobileNet-v2 Our porting 71.81 90.41
VGG16 Pytorch 71.63 90.37
VGG13_BN Pytorch 71.62 90.36
VGG11_BN Pytorch 70.41 89.72
VGG13 Pytorch 69.98 89.31
ResNet18 Pytorch 69.64 88.98
MobileNet-v1 Our porting 69.52 88.98
VGG11 Pytorch 68.87 88.66
GoogLeNet Our porting 66.45 87.52
SqueezeNet1_1 Pytorch 58.18 80.51
SqueezeNet1_0 Pytorch 58.00 80.49
Alexnet Pytorch 56.62 79.06
Clone this wiki locally