|
| 1 | +def max_product_subarray(numbers: list[int]) -> int: |
| 2 | + """ |
| 3 | + Returns the maximum product that can be obtained by multiplying a |
| 4 | + contiguous subarray of the given integer list `nums`. |
| 5 | +
|
| 6 | + Example: |
| 7 | + >>> max_product_subarray([2, 3, -2, 4]) |
| 8 | + 6 |
| 9 | + >>> max_product_subarray((-2, 0, -1)) |
| 10 | + 0 |
| 11 | + >>> max_product_subarray([2, 3, -2, 4, -1]) |
| 12 | + 48 |
| 13 | + >>> max_product_subarray([-1]) |
| 14 | + -1 |
| 15 | + >>> max_product_subarray([0]) |
| 16 | + 0 |
| 17 | + >>> max_product_subarray([]) |
| 18 | + 0 |
| 19 | + >>> max_product_subarray("") |
| 20 | + 0 |
| 21 | + >>> max_product_subarray(None) |
| 22 | + 0 |
| 23 | + >>> max_product_subarray([2, 3, -2, 4.5, -1]) |
| 24 | + Traceback (most recent call last): |
| 25 | + ... |
| 26 | + ValueError: numbers must be an iterable of integers |
| 27 | + >>> max_product_subarray("ABC") |
| 28 | + Traceback (most recent call last): |
| 29 | + ... |
| 30 | + ValueError: numbers must be an iterable of integers |
| 31 | + """ |
| 32 | + if not numbers: |
| 33 | + return 0 |
| 34 | + |
| 35 | + if not isinstance(numbers, (list, tuple)) or not all( |
| 36 | + isinstance(number, int) for number in numbers |
| 37 | + ): |
| 38 | + raise ValueError("numbers must be an iterable of integers") |
| 39 | + |
| 40 | + max_till_now = min_till_now = max_prod = numbers[0] |
| 41 | + |
| 42 | + for i in range(1, len(numbers)): |
| 43 | + # update the maximum and minimum subarray products |
| 44 | + number = numbers[i] |
| 45 | + if number < 0: |
| 46 | + max_till_now, min_till_now = min_till_now, max_till_now |
| 47 | + max_till_now = max(number, max_till_now * number) |
| 48 | + min_till_now = min(number, min_till_now * number) |
| 49 | + |
| 50 | + # update the maximum product found till now |
| 51 | + max_prod = max(max_prod, max_till_now) |
| 52 | + |
| 53 | + return max_prod |
0 commit comments