-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpg.py
177 lines (121 loc) · 5.53 KB
/
pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import gym
from helpers import json_helper
np.random.seed(1)
tf.set_random_seed(1)
class PolicyGradient(object):
def __init__(self, action_dim, state_dim, **options):
try:
self.learning_rate = options['learning_rate']
except KeyError:
self.learning_rate = 0.002
try:
self.gamma = options['gamma']
except KeyError:
self.gamma = 0.95
try:
self.session = options['session']
except KeyError:
self.session = tf.Session()
self.action_dim, self.state_dim = action_dim, state_dim
self.s_buffer, self.a_buffer, self.r_buffer = [], [], []
self.train_steps = 0
self._init_input()
self._init_nn()
self._init_op()
def _init_input(self):
with tf.variable_scope('input'):
self.state = tf.placeholder(tf.float32, [None, self.state_dim], name='state')
self.action = tf.placeholder(tf.int32, [None, ], name='action')
self.reward = tf.placeholder(tf.float32, [None, ], name='reward')
def _init_nn(self):
w_init, b_init = tf.random_normal_initializer(.0, .3), tf.constant_initializer(0.1)
with tf.variable_scope('nn'):
phi_state = tf.layers.dense(self.state,
10,
tf.nn.tanh,
kernel_initializer=w_init,
bias_initializer=b_init)
action_value_predict = tf.layers.dense(phi_state,
self.action_dim,
kernel_initializer=w_init,
bias_initializer=b_init)
self.action_value_predict = action_value_predict
self.action_prob = tf.nn.softmax(self.action_value_predict)
def _init_op(self):
with tf.variable_scope('loss'):
# To maximize: R(θ) = Sum(R(τ) * P(τ|θ)).
action_one_hot = tf.one_hot(self.action, self.action_dim)
negative_cross_entropy = -tf.reduce_sum(tf.log(self.action_prob) * action_one_hot, axis=1)
# negative_cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.action_value_predict,
# labels=self.action)
self.loss = tf.reduce_mean(negative_cross_entropy * self.reward)
# self.loss = tf.reduce_mean(negative_cross_entropy)
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
self.session.run(tf.global_variables_initializer())
def _get_normalized_rewards(self):
reward_normalized = np.zeros_like(self.r_buffer)
reward_delta = 0
for index in reversed(range(0, len(self.r_buffer))):
reward_delta = reward_delta * self.gamma + self.r_buffer[index]
reward_normalized[index] = reward_delta
reward_normalized -= np.mean(reward_normalized)
reward_normalized /= np.std(reward_normalized)
return reward_normalized
def get_next_action(self, state):
action_prob = self.session.run(self.action_prob, feed_dict={self.state: state[np.newaxis, :]})
return np.random.choice(range(action_prob.shape[1]), p=action_prob.ravel())
def save_transition(self, state, action, reward):
self.s_buffer.append(state)
self.a_buffer.append(action)
self.r_buffer.append(reward)
def train(self):
reward_normalized = self._get_normalized_rewards()
_, loss = self.session.run([self.train_op, self.loss], feed_dict={
self.state: np.vstack(self.s_buffer),
self.action: np.array(self.a_buffer),
self.reward: reward_normalized,
})
self.train_steps += 1
self.s_buffer, self.a_buffer, self.r_buffer = [], [], []
def run():
env = gym.make('CartPole-v0')
env.seed(1)
env = env.unwrapped
model = PolicyGradient(env.action_space.n, env.observation_space.shape[0])
running_reward_sum = None
running_reward_list = []
for episode in range(500):
state, reward_episode = env.reset(), 0
while True:
# if episode > 80:
# env.render()
action = model.get_next_action(state)
state_next, reward, done, info = env.step(action)
if done:
reward = -5
reward_episode += reward
model.save_transition(state, action, reward)
if done:
if running_reward_sum is None:
running_reward_sum = sum(model.r_buffer)
else:
running_reward_sum = running_reward_sum * 0.99 + sum(model.r_buffer) * 0.01
model.train()
running_reward_list.append(running_reward_sum)
if episode % 50 == 0:
print("Episode: {} | Reward is: {}".format(episode, reward_episode))
break
state = state_next
json_helper.save_json(running_reward_list, './data/rewards.json')
plt.plot(np.arange(len(running_reward_list)), running_reward_list)
plt.title('Actor Only on CartPole')
plt.xlabel('Step')
plt.ylabel('Total Reward')
plt.show()
if __name__ == '__main__':
run()