diff --git a/README.md b/README.md index 33adc11..3716451 100644 --- a/README.md +++ b/README.md @@ -1109,6 +1109,7 @@ also, some papers and links collected from: - Qiang Meng, Xiaqing Xu, Xiaobo Wang, Yang Qian, Yunxiao Qin, Zezheng Wang, Chenxu Zhao, Feng Zhou, Zhen Lei .[PoseFace: Pose-Invariant Features and Pose-Adaptive Loss for Face Recognition](https://arxiv.org/pdf/2107.11721) [J]. arXiv preprint arXiv:2107.11721. - Fadi Boutros, Naser Damer, Meiling Fang, Florian Kirchbuchner, Arjan Kuijper .[MixFaceNets: Extremely Efficient Face Recognition Networks](https://arxiv.org/pdf/2107.13046) [J]. arXiv preprint arXiv:2107.13046. - Fariborz Taherkhani, Veeru Talreja, Jeremy Dawson, Matthew C. Valenti, Nasser M. Nasrabadi .[Profile to Frontal Face Recognition in the Wild Using Coupled Conditional GAN](https://arxiv.org/pdf/2107.13742) [J]. arXiv preprint arXiv:2107.13742. +- Martin Knoche, Stefan Hörmann, Gerhard Rigoll .[Image Resolution Susceptibility of Face Recognition Models](https://arxiv.org/pdf/2107.03769) [J]. arXiv preprint arXiv:2107.03769. --- @@ -2094,7 +2095,7 @@ also, some papers and links collected from: | **Oulu-NPU** | 55/3 | [Download](https://sites.google.com/site/oulunpudatabase/) | 2017 | **2 Print, 6 Replay** | 2017 | | **Siw** | 165/4 | [Download](http://cvlab.cse.msu.edu/spoof-in-the-wild-siw-face-anti-spoofing-database.html) | 2018 | **2 Print, 4 Replay** | 2018 | -#### cross age and cross pose +#### cross age, cross pose and cross quality | Datasets | Description | Links | Publish Time | | ------------ | :----------------------------------------------------------- | ------------------------------------------------------------ | ------------ | @@ -2103,6 +2104,7 @@ also, some papers and links collected from: | **MPRPH** | The MORPH database contains **55,000** images of more than **13,000** people within the age ranges of **16** to **77** | [Download](http://www.faceaginggroup.com/morph/) | 2016 | | **CPLFW** | we construct a Cross-Pose LFW (CPLFW) which deliberately searches and selects **3,000 positive face pairs** with **pose difference** to add pose variation to intra-class variance. | [Download](http://www.whdeng.cn/cplfw/index.html) | 2017 | | **CALFW** | Thereby we construct a Cross-Age LFW (CALFW) which deliberately searches and selects **3,000 positive face pairs** with **age gaps** to add aging process intra-class variance. | [Download](http://www.whdeng.cn/calfw/index.html) | 2017 | +| **XQLFW** | We construct a Cross-Quality LFW (XQLFW) evaluation protocol which contains of image pairs with a difference in image quality. This database can be used to measure robustness against image quality | [Download](https://martlgap.github.io/xqlfw/) | 2021 | ### 📌Face Detection