|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + int trapRainWater(vector<vector<int>>& heightMap) { |
| 4 | + if (heightMap.empty() || heightMap[0].empty()) return 0; |
| 5 | + |
| 6 | + int rows = heightMap.size(), cols = heightMap[0].size(); |
| 7 | + vector<vector<int>> graph(rows * cols + 1); |
| 8 | + int virtualStart = rows * cols; |
| 9 | + |
| 10 | + // Direction vectors for moving in 4 directions |
| 11 | + vector<int> dx = {0, 0, 1, -1}; |
| 12 | + vector<int> dy = {1, -1, 0, 0}; |
| 13 | + |
| 14 | + // Build the graph |
| 15 | + for (int i = 0; i < rows; i++) { |
| 16 | + for (int j = 0; j < cols; j++) { |
| 17 | + int currentCell = i * cols + j; |
| 18 | + |
| 19 | + // Connect boundary cells to virtual start node |
| 20 | + if (i == 0 || i == rows - 1 || j == 0 || j == cols - 1) { |
| 21 | + graph[virtualStart].push_back(currentCell); |
| 22 | + } |
| 23 | + |
| 24 | + // Connect current cell to its neighbors |
| 25 | + for (int k = 0; k < 4; k++) { |
| 26 | + int x = i + dx[k], y = j + dy[k]; |
| 27 | + if (x >= 0 && x < rows && y >= 0 && y < cols) { |
| 28 | + graph[currentCell].push_back(x * cols + y); |
| 29 | + } |
| 30 | + } |
| 31 | + } |
| 32 | + } |
| 33 | + |
| 34 | + // Dijkstra-like BFS to calculate distances |
| 35 | + auto calculateDistances = [&](int start) { |
| 36 | + vector<int> dist(graph.size(), INT_MAX / 2); |
| 37 | + dist[start] = 0; |
| 38 | + |
| 39 | + // Min-heap to prioritize cells with smaller heights |
| 40 | + set<pair<int, int>> pq; // {distance, node} |
| 41 | + pq.insert({0, start}); |
| 42 | + |
| 43 | + while (!pq.empty()) { |
| 44 | + auto [currentDist, currentNode] = *pq.begin(); |
| 45 | + pq.erase(pq.begin()); |
| 46 | + |
| 47 | + for (int neighbor : graph[currentNode]) { |
| 48 | + int weight = heightMap[neighbor / cols][neighbor % cols]; |
| 49 | + if (max(currentDist, weight) < dist[neighbor]) { |
| 50 | + pq.erase({dist[neighbor], neighbor}); |
| 51 | + dist[neighbor] = max(currentDist, weight); |
| 52 | + pq.insert({dist[neighbor], neighbor}); |
| 53 | + } |
| 54 | + } |
| 55 | + } |
| 56 | + |
| 57 | + return dist; |
| 58 | + }; |
| 59 | + |
| 60 | + vector<int> dist = calculateDistances(virtualStart); |
| 61 | + |
| 62 | + // Calculate trapped water |
| 63 | + int trappedWater = 0; |
| 64 | + for (int i = 0; i < rows; i++) { |
| 65 | + for (int j = 0; j < cols; j++) { |
| 66 | + int cell = i * cols + j; |
| 67 | + int boundaryHeight = dist[cell]; |
| 68 | + if (boundaryHeight > heightMap[i][j]) { |
| 69 | + trappedWater += boundaryHeight - heightMap[i][j]; |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + return trappedWater; |
| 75 | + } |
| 76 | +}; |
0 commit comments