-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForecast_Model.py
304 lines (175 loc) · 7.09 KB
/
Forecast_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
# coding: utf-8
# In[315]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
# In[316]:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.svm import LinearSVR, SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
import seaborn as sns
from sklearn. linear_model import Lasso
import joblib
import warnings
warnings.filterwarnings(action='ignore')
# In[ ]:
# In[317]:
import pandas as pd
data=pd.read_csv('https://raw.githubusercontent.com/Chitkara-University-Pb/Binary-Brains/main/ModifiedDatasetTomato.csv')
data.head()
# In[318]:
#encoding season column
data.replace({'Season':{'winter':1,'summer':2,'monsoon':3}},inplace=True)
data.replace({'Month':{
'march': 3,
'april': 4,
'may': 5,
'june': 6,
'july': 7,
'august': 8}},inplace=True)
data.head()
# In[319]:
#splitting dataset into X and y
y = data['avg price']
X = data.drop(['avg price','prod_name', 'order', 'prod_id', 'pack sold'], axis=1)
#for demand
z = data['order']
w = data.drop(['avg price', 'order', 'pack sold' , 'prod_id', 'prod_name'], axis =1)
# In[320]:
#splitting into testing and trainning
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.6,shuffle=True,random_state=1)
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.6,shuffle=True,random_state=1)
w_train,w_test,z_train,z_test=train_test_split(w,z,train_size=0.6,shuffle=True,random_state=1)
w_train,w_test,z_train,z_test=train_test_split(w,z,train_size=0.6,shuffle=True,random_state=1)
# In[321]:
models = {
" Linear Regression": LinearRegression(),
" Linear Regression (L2 Regularization)": Ridge(),
" Linear Regression (L1 Regularization)": Lasso(),
" K-Nearest Neighbors": KNeighborsRegressor(),
" Neural Network": MLPRegressor(),
"Support Vector Machine (Linear Kernel)": LinearSVR(),
" Support Vector Machine (RBF Kernel)": SVR(),
" Decision Tree": DecisionTreeRegressor(),
" Random Forest": RandomForestRegressor(),
" Gradient Boosting": GradientBoostingRegressor(),
" XGBoost": XGBRegressor(),
" LightGBM": LGBMRegressor(),
" CatBoost": CatBoostRegressor(verbose=0)
}
for name, model in models.items():
model.fit(X_train, y_train)
print(name + " trained.")
for name, model in models.items():
print(name + " R^2 Score: {:.5f}".format(model.score(X_test, y_test)))
# In[322]:
#model selection linear regression
price_reg_model= CatBoostRegressor(verbose=0)
price_reg_model.fit(X_train,y_train)
order_reg_model = CatBoostRegressor(verbose=0)
order_reg_model.fit(w_train,z_train)
# In[323]:
#Training data prediction
price_data_pred= price_reg_model.predict(X_train)
# In[324]:
order_data_pred= order_reg_model.predict(w_train)
# In[325]:
from sklearn import metrics
error_score_price = metrics.r2_score(y_train,price_data_pred )
print (error_score_price)
# In[326]:
error_score_order = metrics.r2_score(z_train,order_data_pred )
print (error_score_order)
# In[327]:
from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_train, price_data_pred))
print(mean_squared_error(z_train, order_data_pred))
# In[328]:
#visualize the actual prices and Predicted prices
from matplotlib import pyplot as plt
#plt.scatter(X_train,y_train, color = 'blue', label = 'Actual')
plt.scatter(y_train,price_data_pred)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price Vs Predicted Price")
plt.grid(True)
plt.show()
# In[329]:
plt.scatter(z_train,order_data_pred)
plt.xlabel("Actual Demand")
plt.ylabel("Predicted Demand")
plt.title("Actual Demand Vs Predicted Demand")
plt.grid(True)
plt.show()
# In[330]:
#Training data prediction
price_testing_data_pred= price_reg_model.predict(X_test)
# In[331]:
order_testing_data_pred= order_reg_model.predict(w_test)
# In[332]:
from sklearn import metrics
error_score_price_test = metrics.r2_score(y_test,price_testing_data_pred )
print (error_score_price_test)
error_score_order_test = metrics.r2_score(z_test,order_testing_data_pred )
print (error_score_order_test)
# In[333]:
from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_test, price_testing_data_pred))
print(mean_squared_error(z_test, order_testing_data_pred))
# In[334]:
#visualize the actual prices and Predicted prices
from matplotlib import pyplot as plt
#plt.scatter(X_train,y_train, color = 'blue', label = 'Actual')
plt.scatter(y_test,price_testing_data_pred)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price Vs Predicted Price")
plt.grid(True)
plt.show()
# In[335]:
plt.scatter(z_test,order_testing_data_pred)
plt.xlabel("Actual Demand")
plt.ylabel("Predicted Demand")
plt.title("Actual Demand Vs Predicted Demand")
plt.grid(True)
plt.show()
# In[336]:
input_data = pd.read_csv('https://raw.githubusercontent.com/Chitkara-University-Pb/Binary-Brains/main/input.csv')
# In[337]:
inputPred = input_data.drop([], axis =1)
# In[338]:
price_predict_input = price_reg_model.predict(inputPred) #date, season , month
order_predict_input = order_reg_model.predict(inputPred) #Avg Price, date, season , month
price_predict_input = pd.DataFrame(price_predict_input, columns=['predicted avg price']).to_csv('priceForecast.csv')
order_predict_input = pd.DataFrame(order_predict_input, columns=['predicted demand']).to_csv('orderForecast.csv')
# In[339]:
# Saving Machine Learning Model
import joblib
cb = CatBoostRegressor(verbose=0)
joblib.dump(cb,"PriceOrderForecast.pkl")
# In[340]:
model = joblib.load("PriceOrderForecast.pkl")
# In[ ]:
# In[ ]: