-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
526 lines (423 loc) · 21.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import parser
from fastai.losses import LabelSmoothingCrossEntropy
from fastai.vision import *
import re
import argparse
import os
import shutil
import time
import math
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler
import torchvision.datasets
from mean_teacher import architectures, datasets, data, losses, ramps, cli
from mean_teacher.run_context import RunContext
from mean_teacher.data import NO_LABEL
from mean_teacher.utils import *
from mean_teacher.losses import SmoothLabelCritierion
LOG = logging.getLogger('main')
args = None
best_prec1 = 0
global_step = 0
best_pred =0
def reduce_loss(loss,
reduction='mean'): return loss.mean() if reduction == 'mean' else loss.sum() if reduction == 'sum' else loss
def linear_combination(x, y, epsilon): return epsilon * x + (1 - epsilon) * y
class LSRO(nn.Module):
def __init__(self, epsilon: float = 0.1, reduction='mean'):
super().__init__()
self.epsilon = epsilon
self.reduction = reduction
def forward(self, preds, target):
n = preds.size()[-1]
log_preds = F.log_softmax(preds, dim=-1)
loss = reduce_loss(-log_preds.sum(dim=-1), self.reduction)
nll = F.nll_loss(F.log_softmax(log_preds, 1), target, ignore_index=-1, reduction=self.reduction)
return linear_combination(loss / n, nll, self.epsilon)
def main(context):
global global_step
global best_prec1
global best_pred
checkpoint_path = context.transient_dir
training_log = context.create_train_log("training")
validation_log = context.create_train_log("validation")
ema_validation_log = context.create_train_log("ema_validation")
dataset_config = datasets.__dict__[args.dataset]()
num_classes = dataset_config.pop('num_classes')
train_loader, eval_loader, train_loader_gan = create_data_loaders(**dataset_config, args=args)
def create_model(ema=False):
LOG.info("=> creating {pretrained}{ema}model '{arch}'".format(
pretrained='pre-trained ' if args.pretrained else '',
ema='EMA ' if ema else '',
arch=args.arch))
model_factory = architectures.__dict__[args.arch]
model_params = dict(pretrained=args.pretrained, num_classes=num_classes)
model = model_factory(**model_params)
model = nn.DataParallel(model).cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
LOG.info(parameters_string(model))
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
# optionally resume from a checkpoint
if args.resume:
assert os.path.isfile(args.resume), "=> no checkpoint found at '{}'".format(args.resume)
LOG.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
global_step = checkpoint['global_step']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
ema_model.load_state_dict(checkpoint['ema_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
LOG.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
cudnn.benchmark = True
if args.evaluate:
LOG.info("Evaluating the primary model:")
validate(eval_loader, model, validation_log, global_step, args.start_epoch)
LOG.info("Evaluating the EMA model:")
validate(eval_loader, ema_model, ema_validation_log, global_step, args.start_epoch)
return
for epoch in range(args.start_epoch, args.epochs):
start_time = time.time()
# train for one epoch
train(train_loader, train_loader_gan, model, ema_model, optimizer, epoch, training_log)
# train(train_loader, eval_loader, model, ema_model, optimizer, epoch, training_log)
LOG.info("--- training epoch in %s seconds ---" % (time.time() - start_time))
if args.evaluation_epochs and (epoch + 1) % args.evaluation_epochs == 0:
start_time = time.time()
LOG.info("Evaluating the primary model:")
prec1,_,_ = validate(eval_loader, model, validation_log, global_step, epoch + 1)
LOG.info("Evaluating the EMA model:")
ema_prec1, pred, target = validate(eval_loader, ema_model, ema_validation_log, global_step, epoch + 1)
LOG.info("--- validation in %s seconds ---" % (time.time() - start_time))
is_best = ema_prec1 > best_prec1
if is_best:
best_prec1 = max(ema_prec1, best_prec1)
best_pred = pred
else:
is_best = False
if args.checkpoint_epochs and (epoch + 1) % args.checkpoint_epochs == 0:
save_checkpoint({
'epoch': epoch + 1,
'global_step': global_step,
'arch': args.arch,
'state_dict': model.state_dict(),
'ema_state_dict': ema_model.state_dict(),
'best_prec1': best_prec1,
'best_pred': best_pred,
'target': target,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint_path, epoch + 1)
def parse_dict_args(**kwargs):
global args
def to_cmdline_kwarg(key, value):
if len(key) == 1:
key = "-{}".format(key)
else:
key = "--{}".format(re.sub(r"_", "-", key))
value = str(value)
return key, value
kwargs_pairs = (to_cmdline_kwarg(key, value)
for key, value in kwargs.items())
cmdline_args = list(sum(kwargs_pairs, ()))
args = parser.parse_args(cmdline_args)
def create_data_loaders(train_transformation,
eval_transformation,
datadir,
args):
traindir = os.path.join(datadir, args.train_subdir)
# traindir = 'E:/Pang/mean-teacher/pytorch/data-local/images/ourData/ourData200x30/by-image/leave_user2\\train'
evaldir = os.path.join(datadir, args.eval_subdir)
# traindir_gan = 'E:/Pang/mean-teacher/pytorch/data-local/images/ourData/ourData200x30/by-image/leave_user2/train_gan'
traindir_gan = os.path.join(datadir, 'train_gan')
assert_exactly_one([args.exclude_unlabeled, args.labeled_batch_size])
dataset = torchvision.datasets.ImageFolder(traindir, train_transformation) # 实现数据导入
dataset_gan = torchvision.datasets.ImageFolder(traindir_gan, train_transformation)
if args.labels:
with open(args.labels) as f:
labels = dict(line.split(' ') for line in f.read().splitlines())
labeled_idxs, unlabeled_idxs = data.relabel_dataset(dataset, labels)
if args.labels:
with open(args.labels) as f:
labels = dict(line.split(' ') for line in f.read().splitlines())
labeled_idxs_gan, unlabeled_idxs_gan = data.relabel_dataset(dataset_gan, labels)
batch_sampler = data.TwoStreamBatchSampler(
unlabeled_idxs, labeled_idxs, args.batch_size, args.labeled_batch_size)
args.labeled_batch_size_gan = 99
batch_sampler_gan = data.TwoStreamBatchSampler(
unlabeled_idxs_gan, labeled_idxs_gan, args.batch_size, args.labeled_batch_size_gan)
train_loader = torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=0,
pin_memory=True)
train_loader_gan = torch.utils.data.DataLoader(dataset_gan,
batch_sampler=batch_sampler_gan,
num_workers=0,
pin_memory=True)
eval_loader = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(evaldir, eval_transformation),
batch_size=250,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False)
return train_loader, eval_loader, train_loader_gan
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def train(train_loader, train_loader_gan, model, ema_model, optimizer, epoch, log):
global global_step
class_criterion = SmoothLabelCritierion(label_smoothing=0).cuda()
class_criterion_unlabel = SmoothLabelCritierion(label_smoothing=1).cuda()
if args.consistency_type == 'mse':
consistency_criterion = losses.softmax_mse_loss
elif args.consistency_type == 'kl':
consistency_criterion = losses.softmax_kl_loss
else:
assert False, args.consistency_type
residual_logit_criterion = losses.symmetric_mse_loss
meters = AverageMeterSet()
# switch to train mode
model.train()
ema_model.train()
end = time.time()
for i, ((input, ema_input), target) in enumerate(train_loader):
dataiter = iter(train_loader_gan)
(input_gan, ema_input_gan), target_gan = dataiter.next()
# for j, ((input_gan, ema_input_gan), target_gan) in enumerate(train_loader_gan):
# measure data loading time
meters.update('data_time', time.time() - end)
adjust_learning_rate(optimizer, epoch, i, len(train_loader))
meters.update('lr', optimizer.param_groups[0]['lr'])
# adjust_learning_rate(optimizer, epoch, i, len(train_loader_gan))
# meters.update('lr', optimizer.param_groups[0]['lr'])
input_var = torch.autograd.Variable(input,
volatile=True)
ema_input_var = torch.autograd.Variable(ema_input, volatile=True)
# ema_input_var = torch.autograd.Variable(ema_input)
target_var = torch.autograd.Variable(target.cuda())
input_var_gan = torch.autograd.Variable(input_gan,
volatile=True)
ema_input_var_gan = torch.autograd.Variable(ema_input_gan, volatile=True)
# ema_input_var = torch.autograd.Variable(ema_input)
target_var_gan = torch.autograd.Variable(target_gan.cuda())
minibatch_size = len(target_var)
minibatch_size_gan = len(target_var_gan)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
labeled_minibatch_size_gan = target_var_gan.data.ne(NO_LABEL).sum()
assert labeled_minibatch_size > 0
assert labeled_minibatch_size_gan > 0
unlabel_minibatch_size =minibatch_size-labeled_minibatch_size
unlabel_minibatch_size_gan =minibatch_size_gan-labeled_minibatch_size_gan
meters.update('labeled_minibatch_size', labeled_minibatch_size)
meters.update('labeled_minibatch_size_gan', labeled_minibatch_size_gan)
ema_model_out = ema_model(ema_input_var)
ema_model_out_gan = ema_model(ema_input_var_gan)
model_out = model(input_var)
model_out_gan = model(input_var_gan)
if isinstance(model_out, Variable):
assert args.logit_distance_cost < 0
logit1 = model_out
ema_logit = ema_model_out
else:
assert len(model_out) == 2
assert len(ema_model_out) == 2
logit1, logit2 = model_out
ema_logit, _ = ema_model_out
logit1_gan, logit2_gan = model_out_gan
ema_logit_gan, _ = ema_model_out_gan
ema_logit = Variable(ema_logit.detach().data, requires_grad=False)
ema_logit_gan = Variable(ema_logit_gan.detach().data, requires_grad=False)
if args.logit_distance_cost >= 0: # -1
class_logit, cons_logit = logit1, logit2
res_loss = args.logit_distance_cost * residual_logit_criterion(class_logit, cons_logit) / minibatch_size
meters.update('res_loss', res_loss.item())
else:
class_logit, cons_logit = logit1, logit1
res_loss = 0
if args.logit_distance_cost >= 0:
class_logit_gan, cons_logit_gan = logit1_gan, logit2_gan
res_loss_gan = args.logit_distance_cost * residual_logit_criterion(class_logit, cons_logit) / minibatch_size
meters.update('res_loss', res_loss.item())
else:
class_logit_gan, cons_logit_gan = logit1_gan, logit1_gan
res_loss_gan = 0
class_loss = class_criterion(class_logit, target_var) / labeled_minibatch_size
unlabel_class_logit = class_logit[:unlabel_minibatch_size]
unlabel_target_var = target_var[:unlabel_minibatch_size]
unlabel_class_loss = class_criterion_unlabel(unlabel_class_logit, unlabel_target_var) / unlabel_minibatch_size
unlabel_class_logit_gan = class_logit_gan[:minibatch_size - labeled_minibatch_size]
unlabel_target_var_gan = target_var_gan[:minibatch_size - labeled_minibatch_size]
unlabel_class_loss_gan = class_criterion_unlabel(unlabel_class_logit_gan, unlabel_target_var_gan) / unlabel_minibatch_size_gan
# meters.update('class_loss', class_loss.data[0])
meters.update('class_loss', class_loss.item())
ema_class_loss = class_criterion(ema_logit, target_var) / minibatch_size
ema_class_loss_gan = class_criterion_unlabel(ema_logit_gan, target_var_gan) / minibatch_size_gan
# meters.update('ema_class_loss', ema_class_loss.data[0])
meters.update('ema_class_loss', ema_class_loss.item())
meters.update('ema_class_loss_gan', ema_class_loss_gan.item())
if args.consistency:
consistency_weight = get_current_consistency_weight(epoch)
meters.update('cons_weight', consistency_weight)
consistency_loss = consistency_weight * consistency_criterion(cons_logit, ema_logit) / minibatch_size
meters.update('cons_loss', consistency_loss.item())
else:
consistency_loss = 0
meters.update('cons_loss', 0)
if args.consistency:
consistency_weight_gan = get_current_consistency_weight(epoch)
meters.update('cons_weight_gan', consistency_weight_gan)
consistency_loss_gan = consistency_weight_gan * consistency_criterion(cons_logit_gan,
ema_logit_gan) / minibatch_size
meters.update('cons_loss_gan', consistency_loss_gan.item())
else:
consistency_loss = 0
meters.update('cons_loss', 0)
class_loss_all = 0.98*class_loss + 0.01*unlabel_class_loss + 0.01*unlabel_class_loss_gan
consistency_loss_all = 0.99 * consistency_loss + 0.01 * consistency_loss_gan
# class_loss_all = class_loss
# consistency_loss_all = consistency_loss
loss = class_loss_all + consistency_loss_all + res_loss
assert not (np.isnan(loss.item()) or loss.item() > 1e5), 'Loss explosion: {}'.format(loss.item())
meters.update('loss', loss.item())
prec1, prec5 = accuracy(class_logit.data, target_var.data, topk=(1, 5))
meters.update('top1', prec1[0], labeled_minibatch_size)
meters.update('error1', 100. - prec1[0], labeled_minibatch_size)
meters.update('top5', prec5[0], labeled_minibatch_size)
meters.update('error5', 100. - prec5[0], labeled_minibatch_size)
ema_prec1, ema_prec5 = accuracy(ema_logit.data, target_var.data, topk=(1, 5))
meters.update('ema_top1', ema_prec1[0], labeled_minibatch_size)
meters.update('ema_error1', 100. - ema_prec1[0], labeled_minibatch_size)
meters.update('ema_top5', ema_prec5[0], labeled_minibatch_size)
meters.update('ema_error5', 100. - ema_prec5[0], labeled_minibatch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
update_ema_variables(model, ema_model, args.ema_decay, global_step)
# measure elapsed time
meters.update('batch_time', time.time() - end)
end = time.time()
if i % args.print_freq == 0:
LOG.info(
'Epoch: [{0}][{1}/{2}]\t'
'Time {meters[batch_time]:.3f}\t'
'Data {meters[data_time]:.3f}\t'
'Class {meters[class_loss]:.4f}\t'
'Cons {meters[cons_loss]:.4f}\t'
'Prec@1 {meters[top1]:.3f}\t'
'Prec@5 {meters[top5]:.3f}'.format(
epoch, i, len(train_loader), meters=meters))
log.record(epoch + i / len(train_loader), {
'step': global_step,
**meters.values(),
**meters.averages(),
**meters.sums()
})
def validate(eval_loader, model, log, global_step, epoch):
class_criterion = nn.CrossEntropyLoss(size_average=False, ignore_index=NO_LABEL).cuda()
meters = AverageMeterSet()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(eval_loader):
meters.update('data_time', time.time() - end)
# input_var = torch.autograd.Variable(input, volatile=True)
# target_var = torch.autograd.Variable(target.cuda(async=True), volatile=True)
with torch.no_grad():
input_var = torch.autograd.Variable(input)
with torch.no_grad():
target_var = torch.autograd.Variable(target.cuda())
minibatch_size = len(target_var)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
assert labeled_minibatch_size > 0
meters.update('labeled_minibatch_size', labeled_minibatch_size)
# compute output
output1, output2 = model(input_var)
softmax1, softmax2 = F.softmax(output1, dim=1), F.softmax(output2, dim=1)
class_loss = class_criterion(output1, target_var) / minibatch_size
# measure accuracy and record loss
_, pred = output1.topk(1, 1, True, True)
prec1, prec5 = accuracy(output1.data, target_var.data, topk=(1, 5))
meters.update('class_loss', class_loss.item(), labeled_minibatch_size)
meters.update('top1', prec1[0], labeled_minibatch_size)
meters.update('error1', 100.0 - prec1[0], labeled_minibatch_size)
meters.update('top5', prec5[0], labeled_minibatch_size)
meters.update('error5', 100.0 - prec5[0], labeled_minibatch_size)
# measure elapsed time
meters.update('batch_time', time.time() - end)
end = time.time()
if i % args.print_freq == 0:
LOG.info(
'Test: [{0}/{1}]\t'
'Time {meters[batch_time]:.3f}\t'
'Data {meters[data_time]:.3f}\t'
'Class {meters[class_loss]:.4f}\t'
'Prec@1 {meters[top1]:.3f}\t'
'Prec@5 {meters[top5]:.3f}'.format(
i, len(eval_loader), meters=meters))
LOG.info(' * Prec@1 {top1.avg:.3f}\tPrec@5 {top5.avg:.3f}'
.format(top1=meters['top1'], top5=meters['top5']))
log.record(epoch, {
'step': global_step,
**meters.values(),
**meters.averages(),
**meters.sums()
})
return meters['top1'].avg, pred, target_var.data
def save_checkpoint(state, is_best, dirpath, epoch):
filename = 'checkpoint.{}.ckpt'.format(epoch)
checkpoint_path = os.path.join(dirpath, filename)
best_path = os.path.join(dirpath, 'best.ckpt')
torch.save(state, checkpoint_path)
LOG.info("--- checkpoint saved to %s ---" % checkpoint_path)
if is_best:
shutil.copyfile(checkpoint_path, best_path)
LOG.info("--- checkpoint copied to %s ---" % best_path)
def adjust_learning_rate(optimizer, epoch, step_in_epoch, total_steps_in_epoch):
lr = args.lr
epoch = epoch + step_in_epoch / total_steps_in_epoch
# LR warm-up to handle large minibatch sizes from https://arxiv.org/abs/1706.02677
lr = ramps.linear_rampup(epoch, args.lr_rampup) * (args.lr - args.initial_lr) + args.initial_lr
# Cosine LR rampdown from https://arxiv.org/abs/1608.03983 (but one cycle only)
if args.lr_rampdown_epochs:
assert args.lr_rampdown_epochs >= args.epochs
lr *= ramps.cosine_rampdown(epoch, args.lr_rampdown_epochs)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
labeled_minibatch_size = max(target.ne(NO_LABEL).sum(), 1e-8)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t() # 转置
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk: # k=1,k=5
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / labeled_minibatch_size))
return res
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
args = cli.parse_commandline_args()
main(RunContext(__file__, 0))