-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
96 lines (96 loc) · 2.64 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
library(readr)
balloons <- read_csv("balloons.csv")
View(balloons)
balloons$inflated = as.factor(balloons$inflated)
set.seed(33)
boot1 = caret::createResample(y=balloons$inflated, times=1, list=F)
NovaAmostra1 = balloons[boot1,]
Out_of_bag = balloons[-boot1,]
set.seed(413)
sample(1:4, 2)
#calculando o indice gini para a variável tamanho
table(NovaAmostra1$size, NovaAmostra1$inflated)
View(balloons)
library(readr)
balloons <- read_csv("balloons.csv")
View(balloons)
library(readr)
ballons <- read_csv("C:/Users/dougu/Downloads/balloons/ballons.csv")
View(ballons)
rm(balloons)
library(readr)
balloons <- read_csv("C:/Users/dougu/Downloads/balloons/balloons.csv")
View(balloons)
x<-dplyr::filter(ballons, age==ADULT)
x<-dplyr::filter(balloons, age==ADULT)
x<-dplyr::filter(balloons, age=="ADULT")
table(x$inflated)
library(readr)
balloon <- read_csv("C:/Users/dougu/Downloads/balloons/balloon.csv")
View(balloon)
x<-dplyr::filter(balloon, age=="ADULT")
table(x$inflated)
y<-dplyr::filter(balloons, age=="ADULT")
table(y$inflated)
rm(x)
rm(y)
rm(balloon)
balloons$Inflated = as.factor(balloons$Inflated)
View(balloons)
balloons = readr::read_csv("balloons.csv")
balloons$Inflated = as.factor(balloons$Inflated)
str(balloons)
boot1 = caret::createResample(y=balloons$Inflated, times=1, list=F)
NovaAmostra1 = balloons[boot1,]
Out_of_bag = balloons[-boot1,]
set.seed(413)
sample(1:4, 2)
table(NovaAmostra1$Size, NovaAmostra1$Inflated)
set.seed(33)
boot1 = caret::createResample(y=balloons$Inflated, times=1, list=F)
NovaAmostra1 = balloons[boot1,]
Out_of_bag = balloons[-boot1,]
set.seed(413)
sample(1:4, 2)
table(NovaAmostra1$Size, NovaAmostra1$Inflated)
balloons = readr::read_csv("balloons.csv")
balloons$Inflated = as.factor(balloons$Inflated)
str(balloons)
set.seed(33)
boot1 = caret::createResample(y=balloons$Inflated, times=1, list=F)
NovaAmostra1 = balloons[boot1,]
Out_of_bag = balloons[-boot1,]
set.seed(413)
sample(1:4, 2)
table(NovaAmostra1$Size, NovaAmostra1$Inflated)
balloons = readr::read_csv("balloons.csv")
balloons = readr::read_csv("balloons.csv", sep=",")
?read_csv
balloons = readr::read_csv("balloons.csv", delim=",")
balloons = readr::read_csv("balloons.csv")
balloons$inflated = as.factor(balloons$inflated)
install.packages("scatterplot3d")
library(rpart)
library(rpart.plot)
library(readr)
library(dplyr)
library(caret)
# construindo floresta com 20 arvores
library(randomForest)
# chamando a base
library(kernlab)
```{r}
library(adabag)
library(rpart.plot)
# lendo a base de dados
library(ISLR)
library(gbm)
# lendo a base
library(mlbench)
# treinando o modelo
library(gbm)
library(xgboost)
library(DiagrammeR)
library(rpart.plot)
install.packages("FNN")
install.packages("KNN")