We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello you all!
I am having the error below on version 2.9.10 when trying to train a model following this https://auto-ml.readthedocs.io/en/latest/analytics.html:
**--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-106-c3c8faf1013e> in <module>() 1 ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) 2 ----> 3 ml_predictor.train(train_subset) 4 5 # Score the model on test data ~\Anaconda3\lib\site-packages\auto_ml\predictor.py in train(***failed resolving arguments***) 650 estimator_names = self._get_estimator_names() 651 --> 652 X_df = self.fit_transformation_pipeline(X_df, y, estimator_names) 653 else: 654 X_df = self.transformation_pipeline.transform(X_df) ~\Anaconda3\lib\site-packages\auto_ml\predictor.py in fit_transformation_pipeline(self, X_df, y, model_names) 901 902 # We are intentionally overwriting X_df here to try to save some memory space --> 903 X_df = ppl.fit_transform(X_df, y) 904 905 self.transformation_pipeline = self._consolidate_pipeline(ppl) ~\Anaconda3\lib\site-packages\sklearn\pipeline.py in fit_transform(self, X, y, **fit_params) 281 Xt, fit_params = self._fit(X, y, **fit_params) 282 if hasattr(last_step, 'fit_transform'): --> 283 return last_step.fit_transform(Xt, y, **fit_params) 284 elif last_step is None: 285 return Xt ~\Anaconda3\lib\site-packages\sklearn\base.py in fit_transform(self, X, y, **fit_params) 518 else: 519 # fit method of arity 2 (supervised transformation) --> 520 return self.fit(X, y, **fit_params).transform(X) 521 522 ~\Anaconda3\lib\site-packages\auto_ml\DataFrameVectorizer.py in transform(self, X, y) 269 270 def transform(self, X, y=None): --> 271 return self._transform(X) 272 273 def get_feature_names(self): ~\Anaconda3\lib\site-packages\auto_ml\DataFrameVectorizer.py in _transform(self, X) 177 X[col] = 0 178 --> 179 X.fillna(0, inplace=True) 180 181 for idx, col in enumerate(self.numerical_columns): ~\Anaconda3\lib\site-packages\pandas\core\frame.py in fillna(self, value, method, axis, inplace, limit, downcast, **kwargs) 3788 self).fillna(value=value, method=method, axis=axis, 3789 inplace=inplace, limit=limit, -> 3790 downcast=downcast, **kwargs) 3791 3792 @Appender(_shared_docs['replace'] % _shared_doc_kwargs) ~\Anaconda3\lib\site-packages\pandas\core\generic.py in fillna(self, value, method, axis, inplace, limit, downcast) 5425 new_data = self._data.fillna(value=value, limit=limit, 5426 inplace=inplace, -> 5427 downcast=downcast) 5428 elif isinstance(value, DataFrame) and self.ndim == 2: 5429 new_data = self.where(self.notna(), value) ~\Anaconda3\lib\site-packages\pandas\core\internals.py in fillna(self, **kwargs) 3706 3707 def fillna(self, **kwargs): -> 3708 return self.apply('fillna', **kwargs) 3709 3710 def downcast(self, **kwargs): ~\Anaconda3\lib\site-packages\pandas\core\internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs) 3579 3580 kwargs['mgr'] = self -> 3581 applied = getattr(b, f)(**kwargs) 3582 result_blocks = _extend_blocks(applied, result_blocks) 3583 ~\Anaconda3\lib\site-packages\pandas\core\internals.py in fillna(self, value, limit, inplace, downcast, mgr) 2004 mgr=None): 2005 values = self.values if inplace else self.values.copy() -> 2006 values = values.fillna(value=value, limit=limit) 2007 return [self.make_block_same_class(values=values, 2008 placement=self.mgr_locs, ~\Anaconda3\lib\site-packages\pandas\util\_decorators.py in wrapper(*args, **kwargs) 176 else: 177 kwargs[new_arg_name] = new_arg_value --> 178 return func(*args, **kwargs) 179 return wrapper 180 return _deprecate_kwarg ~\Anaconda3\lib\site-packages\pandas\core\arrays\categorical.py in fillna(self, value, method, limit) 1754 elif is_hashable(value): 1755 if not isna(value) and value not in self.categories: -> 1756 raise ValueError("fill value must be in categories") 1757 1758 mask = values == -1 ValueError: fill value must be in categories **
Am I missing any pre-processing step?
column_descriptions = { 'F11': 'output', 'F0': 'categorical', 'F2': 'categorical'}
Part of the dataset (no missing values) here:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hello you all!
I am having the error below on version 2.9.10 when trying to train a model following this https://auto-ml.readthedocs.io/en/latest/analytics.html:
Am I missing any pre-processing step?
column_descriptions = {
'F11': 'output',
'F0': 'categorical',
'F2': 'categorical'}
Part of the dataset (no missing values) here:
The text was updated successfully, but these errors were encountered: