-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
278 lines (243 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import csv
import glob
import json
import os
import numpy as np
import pandas as pd
from features import (
LABEL, NUMERICAL_AGG_AVG, NUMERICAL_AGG_MIN, NUMERICAL_AGG_MAX,
NUMERICAL_AGG_STDDEV, NUMERICAL_AGG_SUM, NUMERICAL_NON_ULOG, USER_CATEGORICAL,
)
MEMBERS_CSV_PATH = './data/members_v3.csv'
MEMBERS_DF_PICKLE = './data/members_df.pkl'
TRAIN_CSV_PATH = './data/train_v2.csv'
TRAIN_DF_PICKLE = './data/train_df.pkl'
TRAIN_DF_PICKLE_VW = './data/train_df_vw.pkl'
TRAIN_ULOG_PATH = './data/train_ulog_features.csv'
VALIDATION_CSV_PATH = './data/sample_submission_v2.csv'
VALIDATION_DF_PICKLE = './data/validation_df.pkl'
VALIDATION_DF_PICKLE_VW = './data/validation_df_vw.pkl'
VALIDATION_ULOG_PATH = './data/validation_ulog_features.csv'
TRANSACTIONS_CSV_PATH = './data/transactions.csv'
STATISTICS_DF_PICKLE = './data/statistics_df.pkl'
def compile_csv_parts_to_larger_csv(csv_parts_path, to_write_path):
glob_path = os.path.join(csv_parts_path, '*.csv')
# TODO: clean this up somehow
fieldnames = [
'avg(num_100)', 'sum(total_secs)', 'sum(num_50)', 'min(num_75)', 'avg(num_50)',
'avg(num_985)', 'min(total_secs)', 'min(num_985)', 'sum(num_25)', 'min(num_unq)',
'sum(num_100)', 'max(num_985)', 'min(num_50)', 'min(num_100)', 'min(num_25)',
'is_churn', 'sum(num_75)', 'avg(total_secs)', 'avg(num_25)', 'max(num_100)',
'max(num_75)', 'avg(num_unq)', 'max(total_secs)', 'msno', 'sum(num_985)',
'max(num_25)', 'avg(num_75)', 'sum(num_unq)', 'max(num_unq)', 'max(num_50)',
'stddev(num_25)', 'stddev(num_unq)', 'stddev(num_100)', 'stddev(num_50)',
'stddev(total_secs)', 'stddev(num_75)', 'stddev(num_985)',
]
with open(to_write_path, 'w') as csv_to_write:
writer = csv.DictWriter(csv_to_write, fieldnames=fieldnames)
writer.writeheader()
for fname in glob.glob(glob_path):
print("Now processing file name {}...".format(fname))
with open(fname, 'r') as csv_file:
reader = csv.DictReader(csv_file)
for line in reader:
writer.writerow(line)
print("Finished writing to {}!".format(to_write_path))
def return_column_as_category(uncategorized_column, null_category_val=np.nan):
"""Return a pandas DataFrame column as a categorical Series.
Let's say you have a pandas Series of 'city' values ranging from 1 to 21. This method converts
that Series to a categorical Series, which is better to work with.
Args:
uncategorized_column - The DataFrame column (of type Series) you want to categorize.
null_category_val - The category value you want to use for null category values. By default,
the category val for null values is np.nan. This arg can be used to
specify a more sensible, human-readable null value
(e.g., 'not_specified' for a column with gender information).
Returns:
A Categorical pandas Series.
"""
categories = set(uncategorized_column.get_values())
if null_category_val != np.nan:
if np.nan in categories:
categories.remove(np.nan)
categories.add(null_category_val)
categorized_column = uncategorized_column.astype(
'category',
categories=categories,
).fillna(
null_category_val,
)
return categorized_column
def get_or_build_members_df(force_build=False):
if os.path.isfile(MEMBERS_DF_PICKLE) and not force_build:
return pd.read_pickle(MEMBERS_DF_PICKLE)
print("Getting members_df...")
members_df = pd.read_csv(MEMBERS_CSV_PATH)
members_df.gender = return_column_as_category(members_df.gender, 'not_specified')
members_df.city = return_column_as_category(members_df.city, 0)
members_df.registered_via = return_column_as_category(members_df.registered_via, 0)
print("Done getting members_df")
members_df.to_pickle(MEMBERS_DF_PICKLE)
return members_df
def get_or_build_statistics_df(left_df, force_build=False):
"""Builds valuable statistics from 'transactions.csv' to use as features
"""
if os.path.isfile(STATISTICS_DF_PICKLE) and not force_build:
return pd.read_pickle(STATISTICS_DF_PICKLE)
print("Reading and grouping transactions_df...")
df_transactions = pd.read_csv(TRANSACTIONS_CSV_PATH)
# Join here to get rid of those rows in df_transactions that do not appear in 'left_df'.
df_transactions = pd.merge(left_df, df_transactions, how='left', on='msno')
# Add some new features to df_transactions
df_transactions['discount'] = (
df_transactions['plan_list_price'] - df_transactions['actual_amount_paid']
)
df_transactions['is_discount'] = df_transactions.discount.apply(lambda x: 1 if x > 0 else 0)
df_transactions['amt_per_day'] = (
df_transactions['actual_amount_paid'] / df_transactions['payment_plan_days']
)
date_cols = ['transaction_date', 'membership_expire_date']
for col in date_cols:
df_transactions[col] = pd.to_datetime(df_transactions[col], format='%Y%m%d')
df_transactions['membership_duration'] = (
df_transactions.membership_expire_date - df_transactions.transaction_date
)
df_transactions['membership_duration'] = (
df_transactions['membership_duration'] / np.timedelta64(1, 'D')
)
df_transactions['membership_duration'] = df_transactions['membership_duration'].astype(int)
grouped_transactions = df_transactions.groupby('msno')
print("Finished reading and grouping df_transactions")
print("Preparing statistics DataFrame from df_transactions...")
stats_df = grouped_transactions.agg({
# How many times an individual 'msno' showed up in 'df_transactions'
'msno': {'num_transactions': 'count'},
'plan_list_price': {'plan_net_worth': 'sum'},
'actual_amount_paid': {
'mean_payment': 'mean',
'total_payments': 'sum',
},
'is_cancel': {
'times_canceled': lambda x: sum(x == 1)
},
'is_discount': {
'num_discounts': lambda x: sum(x == 1)
},
'discount': {
'total_discount': 'sum'
},
'membership_duration': {
'mean_membership_duration': 'mean',
'total_membership_duration': 'sum',
},
'amt_per_day': {
'mean_amt_per_day': 'mean',
'total_amt_per_day': 'sum',
},
})
stats_df.columns = stats_df.columns.droplevel(0)
stats_df.reset_index(inplace=True)
print("Finished preparing statistics DataFrame")
stats_df.to_pickle(STATISTICS_DF_PICKLE)
return stats_df
def get_or_build_training_or_validation_df(validation=False, force_build=False, for_vw=False):
if not validation:
csv_path = TRAIN_CSV_PATH
if not for_vw:
pickle_path = TRAIN_DF_PICKLE
else:
pickle_path = TRAIN_DF_PICKLE_VW
else:
csv_path = VALIDATION_CSV_PATH
if not for_vw:
pickle_path = VALIDATION_DF_PICKLE
else:
pickle_path = VALIDATION_DF_PICKLE_VW
if os.path.isfile(pickle_path) and not force_build:
return pd.read_pickle(pickle_path)
df = pd.read_csv(csv_path)
if validation:
df.drop('is_churn', axis=1, inplace=True)
members_df = get_or_build_members_df(force_build=force_build)
print("Merging with members_df...")
df = pd.merge(df, members_df, how='left', on='msno')
del members_df
df.gender.fillna('not_specified', inplace=True)
df.city.fillna(0, inplace=True)
df.registered_via.fillna(0, inplace=True)
df.bd = df.bd.clip(0, 100)
df.bd.fillna(0., inplace=True)
if not for_vw:
# If we *are* preparing a DataFrame for VowpalWabbit, we do not want to one-hot encode the
# categorical variables, as that happens in VowPalWabbit via the hashing trick.
df = pd.concat(
[df, pd.get_dummies(df.gender)],
axis=1,
).drop('gender', axis=1)
df = pd.concat(
[df, pd.get_dummies(df.city, prefix='city')],
axis=1,
).drop('city', axis=1)
df = pd.concat(
[df, pd.get_dummies(df.registered_via, prefix='registered_via')],
axis=1,
).drop('registered_via', axis=1)
print("Finished merging with members_df")
stats_df = get_or_build_statistics_df(df, force_build=force_build)
print("Merging with stats_df...")
df = pd.merge(df, stats_df, how='left', on='msno')
del stats_df
print("Finished merging with stats_df")
ulog_path = TRAIN_ULOG_PATH if not validation else VALIDATION_ULOG_PATH
ulog_df = pd.read_csv(ulog_path)
print("Merging with compiled user log data...")
df = pd.merge(df, ulog_df, how='left', on='msno')
df.drop(['registration_init_time'], axis=1, inplace=True)
na_cols = df.columns[df.isnull().any()].tolist()
df[na_cols] = df[na_cols].fillna(0.)
df.to_pickle(pickle_path)
return df
###
### UTILITIES FOR WORKING WITH VOWPAL WABBIT
###
def build_vw_json_obj_from_csv_dict(csv_dict):
json_obj = {
'user_categorical': {},
'numerical_non_ulog': {},
'avg_ulog': {},
'min_ulog': {},
# 1 prepended for namespace purposes
'1max_ulog': {},
'sum_ulog': {},
# 2 prepended for namespace purposes
'2stddev_ulog': {},
}
for key, value in csv_dict.items():
if key == LABEL:
json_obj['_label'] = -1 if value == 0 else 1
elif key in USER_CATEGORICAL:
json_obj['user_categorical'][key] = str(value)
elif key in NUMERICAL_NON_ULOG:
json_obj['numerical_non_ulog'][key] = float(value)
elif key in NUMERICAL_AGG_AVG:
json_obj['avg_ulog'][key] = float(value)
elif key in NUMERICAL_AGG_MIN:
json_obj['min_ulog'][key] = float(value)
elif key in NUMERICAL_AGG_MAX:
json_obj['1max_ulog'][key] = float(value)
elif key in NUMERICAL_AGG_SUM:
json_obj['sum_ulog'][key] = float(value)
elif key in NUMERICAL_AGG_STDDEV:
json_obj['2stddev_ulog'][key] = float(value)
return json_obj
def write_vw_json_lines(csv_file_to_read, json_file_to_write):
with open(json_file_to_write, 'w') as json_file:
with open(csv_file_to_read, 'r') as csv_file:
reader = csv.DictReader(csv_file)
for i, row in enumerate(reader):
if i % 4000 == 0:
print("Now processing line {} of {}...".format(i, csv_file_to_read))
json_obj = build_vw_json_obj_from_csv_dict(row)
json_file.write('{}\n'.format(json.dumps(json_obj)))
print("All done writing to {}!".format(json_file_to_write))
return