We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 22e32ad commit 5edcdc5Copy full SHA for 5edcdc5
动态规划/119. 杨辉三角 II-Easy.md
@@ -0,0 +1,33 @@
1
+# [Description](https://leetcode-cn.com/problems/pascals-triangle-ii/)
2
+给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。
3
+
4
+
5
6
+在杨辉三角中,每个数是它左上方和右上方的数的和。
7
8
+示例:
9
10
+输入: 3
11
+输出: [1,3,3,1]
12
+进阶:
13
14
+你可以优化你的算法到 O(k) 空间复杂度吗?
15
16
17
+# Solution
18
+- 时间复杂度:$O(n^2)$
19
+- 空间复杂度:$O(n)$
20
21
+```python
22
+class Solution:
23
+ def getRow(self, rowIndex: int) -> List[int]:
24
+ dp = [1]*(rowIndex+1)
25
26
+ for i in range(2, rowIndex+1):
27
+ tmp_dp = dp[:i]
28
+ for j in range(1, i):
29
+ dp[j] = tmp_dp[j-1] + tmp_dp[j]
30
31
+ return dp
32
+```
33
0 commit comments