-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (140 loc) · 6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# --------------------------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------HANDWRITING RECOGNITION MODEL-----------------------------------------------------
# --------------------------------------------------------------------------------------------------------------------------------------
# LOADING AND VISUALISING DATASET
# from keras.datasets import mnist
# import numpy as np
# import cv2
# import matplotlib.pyplot as plt
# (x_train, y_train), (x_test, y_test) = mnist.load_data()
# print(x_train.shape)
# for i in range(0, 6):
# random_number = np.random.randint(0, len(x_train))
# cv2.imshow(str(i), x_train[random_number])
# cv2.waitKey()
# cv2.destroyAllWindows()
#
# plt.subplot(331)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.subplot(332)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.subplot(333)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.subplot(334)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.subplot(335)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.subplot(336)
# random_number = np.random.randint(0, len(x_train))
# plt.imshow(x_train[random_number], cmap=plt.get_cmap('gray'))
# plt.show()
# GETTING DATA IN SHAPE TO TRAIN THE MODEL IN KERAS I.E. (NO OF SAMPLES, ROWS, COLS, DEPTH) FOR EG-> (6000, 28, 28, 1)
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
img_rows = x_train[0].shape[0]
img_cols = x_train[0].shape[1]
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
image_shape = (img_rows, img_cols, 1)
x_test = x_test.astype('float32')
x_train = x_train.astype('float32')
x_train /= 255
x_test /= 255
print(x_test.shape)
print(x_train.shape)
print(x_test)
# HOT ONE ENCODING THE LABELS (OF OUR Y LABELS)
# (1,2,9,5,7)
# |--------------------------------------------|
# |\ /->|0 1 2 3 4 5 6 7 8 9 |
# |-----|--------------------------------------|
# |1 |0 1 0 0 0 0 0 0 0 0 |
# |2 |0 0 1 0 0 0 0 0 0 0 |
# |3 |0 0 0 0 0 0 0 0 0 1 |
# |4 |0 0 0 0 0 1 0 0 0 0 |
# |5 |0 0 0 0 0 0 0 1 0 0 |
# |. | |
# |. | |
# |. | |
# |--------------------------------------------|
from keras.utils import np_utils
y_test = np_utils.to_categorical(y_test)
y_train = np_utils.to_categorical(y_train)
# print(y_test)
num_classes = y_test.shape[1]
num_pixels = x_train.shape[1] * x_train.shape[2]
print(str(num_pixels) + "<-pixels----classes->" + str(num_classes))
#BUILDING AND COMPILING THE MODEL
# import keras
# from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
# from keras import backend as K
from keras.optimizers import SGD
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=image_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=SGD(0.01), metrics=['accuracy'])
print(model.summary())
# TRAINING THE MODEL
batch_size = 32
epochs = 1
history = model.fit(x_train,y_train,batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print("test loss: " + str(score[0]))
print("test accuracy: " + str(score[1]))
# SAVING YOUR MODEL AT CUSTOM LOCATION
model.save('./HANDWRITINGRECOGNITION.h5') #<====LOCATION FOR FILE TO BE SAVED
print("MODEL SAVED")
# LOADING YOUR MODEL FROM CUSTOM LOCATION
# from keras.models import load_model
# model1 = load_model('./HANDWRITINGRECOGNITION.h5')
# PLOTING LOSS AND ACCURACY CHARTS
#<==========DOES NOT WORK=================================>
import matplotlib.pyplot as plt
# history_dict = history.history
# loss_val = history_dict['loss']
# val_loss_values = history_dict['val_loss']
# epochs = range(1, len(loss_val)+1)
# line1 = plt.plot(epochs, val_loss_values, label='Validation/Text Loss')
# line2 = plt.plot(epochs, loss_val, label='Training Loss')
# plt.setp(line1, linewidth=2.0, marker='.', markersize=10.0)
# plt.setp(line2, linewidth=2.0, marker='v', markersize=10.0)
# plt.xlabel('Epochs')
# plt.ylabel('Loss')
# plt.grid(True)
# plt.legend()
# plt.show()
#
# acc_val = history_dict['acc']
# val_acc_values = history_dict['val_acc']
# epochs = range(1, len(acc_val)+1)
# line3 = plt.plot(epochs, val_acc_values, label='Validation/Text Accuracy')
# line4 = plt.plot(epochs, acc_val, label='Training Accuracy')
# plt.setp(line3, linewidth=2.0, marker='.', markersize=10.0)
# plt.setp(line4, linewidth=2.0, marker='v', markersize=10.0)
# plt.xlabel('Epochs')
# plt.ylabel('Accuracy')
# plt.grid(True)
# plt.legend()
# plt.show()
#<========================================================================>
# SAVING VISUAL REPRESENTATION OF OUT MODEL ( THIS TOOOOOO DOOES NOOOT WOOOORK FUCKKKK!!!!)
# from keras.utils.vis_utils import plot_model
# destination = './../../Desktop/'
# plot_model(model, to_file=destination + 'HANDWRITINGRECOGNITION.png', show_shapes=True, show_layer_names=True)
# img = mpimg.imread('./../../Desktop/HANDWRITINGRECOGNITION.png')
# plt.figure(figsize=(30, 15))
# imgplot = plt.imshow(img)
# cv2.imshow('HANDWRITING RECOGNITION', './../../Desktop/HANDWRITINGRECOGNITION.png')