-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
437 lines (375 loc) · 22.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
""" Finetuning BERT/RoBERTa models on WinoGrande. """
from __future__ import absolute_import, division, print_function
from util import *
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, BertModel, BertTokenizer),
'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)
}
def train(args, train_dataset, dev_dataset, test_dataset, model, tokenizer, data_loader):
""" Train the model """
set_seed(args)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if args.warmup_pct is None:
scheduler = WarmupLinearSchedule(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
else:
scheduler = WarmupLinearSchedule(optimizer, num_warmup_steps=math.floor(args.warmup_pct * t_total),
num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0],
mininterval=1, ncols=100)
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'question_ids': batch[0],
'question_mask': batch[1],
'cand1_ids': batch[2],
'cand1_mask': batch[3],
'cand2_ids': batch[4],
'cand2_mask': batch[5],
'knowledge_ids': batch[6],
'knowledge_mask': batch[7],
'cand1_path_ids': batch[8],
'cand1_path_mask': batch[9],
'cand2_path_ids': batch[10],
'cand2_path_mask': batch[11],
'topological_path_ids': batch[12],
'topological_path_mask': batch[13],
'labels': batch[14]}
outputs = model(**inputs)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
if args.local_rank == -1 and args.evaluate_during_training:
evaluate_by_types(args, data_loader, tokenizer, 'data/test.json', model)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,
'module') else model
model_to_save.encoder.save_pretrained(output_dir)
torch.save(model_to_save.state_dict(), output_dir + '/state_dict')
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate_by_types(args, data_loader, tokenizer, data_file, model):
HardPCR_data = data_loader.get_examples(data_file, 'HardPCR', args.helpful_only)
HardPCR_features = convert_examples_to_features(args, HardPCR_data, args.max_seq_length, tokenizer)
HardPCR_set = data_loader.get_dataset(HardPCR_features)
HardPCR_correct, HardPCR_total = evaluate(args, HardPCR_set, model, 'HardPCR')
print('HarPCR number:', HardPCR_total)
CommonsenseQA_data = data_loader.get_examples(data_file, 'CommonsenseQA', args.helpful_only)
CommonsenseQA_features = convert_examples_to_features(args, CommonsenseQA_data, args.max_seq_length, tokenizer)
CommonsenseQA_set = data_loader.get_dataset(CommonsenseQA_features)
CommonsenseQA_correct, CommonsenseQA_total = evaluate(args, CommonsenseQA_set, model, 'CommonsenseQA')
print('CommonsenseQA number:', CommonsenseQA_total)
COPA_data = data_loader.get_examples(data_file, 'COPA', args.helpful_only)
COPA_features = convert_examples_to_features(args, COPA_data, args.max_seq_length, tokenizer)
COPA_set = data_loader.get_dataset(COPA_features)
COPA_correct, COPA_total = evaluate(args, COPA_set, model, 'COPA')
print('COPA number:', COPA_total)
ATOMIC_data = data_loader.get_examples(data_file, 'ATOMIC', args.helpful_only)
ATOMIC_features = convert_examples_to_features(args, ATOMIC_data, args.max_seq_length, tokenizer)
ATOMIC_set = data_loader.get_dataset(ATOMIC_features)
ATOMIC_correct, ATOMIC_total = evaluate(args, ATOMIC_set, model, 'ATOMIC')
print('ATOMIC number:', ATOMIC_total)
all_correct = HardPCR_correct+CommonsenseQA_correct+COPA_correct+ATOMIC_correct
all_total = HardPCR_total+CommonsenseQA_total+COPA_total+ATOMIC_total
print('overall accuracy:', all_correct, '/', all_total, all_correct/all_total)
def evaluate(args, data, model, eval_name='All'):
eval_dataset = data
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
score_list = []
results = dict()
for batch in tqdm(eval_dataloader, desc="Evaluating "+eval_name, mininterval=1, ncols=100):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'question_ids': batch[0],
'question_mask': batch[1],
'cand1_ids': batch[2],
'cand1_mask': batch[3],
'cand2_ids': batch[4],
'cand2_mask': batch[5],
'knowledge_ids': batch[6],
'knowledge_mask': batch[7],
'cand1_path_ids': batch[8],
'cand1_path_mask': batch[9],
'cand2_path_ids': batch[10],
'cand2_path_mask': batch[11],
'topological_path_ids': batch[12],
'topological_path_mask': batch[13],
'labels': batch[14]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
pair_ids = batch[6].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
pair_ids = np.append(pair_ids, batch[6].detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=1)
tmp_correctness = 0
for i in range(len(preds)):
if preds[i] == out_label_ids[i]:
tmp_correctness += 1
else:
tmp_correctness += 0
results[eval_name + '_accuracy'] = tmp_correctness / len(preds)
print(eval_name+' Accuracy:', tmp_correctness / len(preds))
return tmp_correctness, len(preds)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut names")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--train_type", default='All', type=str,
help="Training data type, out of ('All', 'HardPCR', 'CommonsenseQA', 'COPA', 'ATOMIC')")
parser.add_argument("--test_type", default='All', type=str,
help="Test data type")
parser.add_argument("--helpful_only", action='store_true',
help="whether only select the helpful cases or not.")
parser.add_argument("--use_knowledge", action='store_true',
help="whether to use knowledge or not.")
parser.add_argument("--no_question", action='store_true',
help="whether to use question or not.")
parser.add_argument("--train_number", default=100000, type=int,
help="The maximum training number")
parser.add_argument("--model", default='baseline', type=str,
help="What model you want to test")
parser.add_argument("--num_walk", default='5', type=int,
help="number of random walks")
parser.add_argument("--walk_length", default='5', type=int,
help="Length of the random walk")
parser.add_argument("--config_name", default=None, type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default=None, type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=80, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_prediction", action='store_true',
help="Whether to run prediction on the test set. (Training will not be executed.)")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--run_on_test', action='store_true')
parser.add_argument("--per_gpu_train_batch_size", default=16, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=16, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=1e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=100, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=10000, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--warmup_pct", default=0.1, type=float,
help="Linear warmup over warmup_pct*total_steps.")
parser.add_argument('--logging_steps', type=int, default=500,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=1000,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(
args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir))
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, do_lower_case=True)
config = config_class.from_pretrained(args.model_name_or_path, num_labels=1, finetuning_task="winogrande")
if args.model_name_or_path in ['bert-base-uncased', 'bert-large-uncased', 'roberta-base', 'roberta-large']:
encoder_model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config)
model = K2G(config, encoder_model, args)
else:
encoder_model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config)
model = K2G(config, encoder_model, args)
model.load_state_dict(torch.load(args.model_name_or_path + '/state_dict'))
if args.local_rank == 0:
torch.distributed.barrier()
model.to(args.device)
data_loader = CKBQADataLoader(args, 'data', tokenizer)
if args.local_rank == 0:
torch.distributed.barrier()
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
if args.do_prediction:
results = {}
logger.info("Prediction on the test set (note: Training will not be executed.) ")
evaluate(args, data_loader.test_set, model)
evaluate_by_types(args, data_loader, tokenizer, 'data/test.json', model)
logger.info("***** Experiment finished *****")
if args.do_train:
global_step, tr_loss = train(args, data_loader.train_set, data_loader.dev_set, data_loader.test_set, model, tokenizer, data_loader)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
model_to_save = model.module if hasattr(model,
'module') else model
model_to_save.encoder.save_pretrained(args.output_dir)
torch.save(model_to_save.state_dict(), args.output_dir + '/state_dict')
tokenizer.save_pretrained(args.output_dir)
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
encoder_model = model_class.from_pretrained(args.output_dir,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config)
model = JointI(config, encoder_model, args)
model.load_state_dict(torch.load(args.output_dir + '/state_dict'))
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
results = {}
checkpoints = [args.output_dir]
if args.do_eval and args.local_rank in [-1, 0]:
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in
sorted(glob.glob(args.output_dir + '/' + 'pytorch_model.bin', recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, data_loader.dev_set, model)
evaluate_by_types(args, data_loader, tokenizer, 'data/test.json', model)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
logger.info("***** Experiment finished *****")
return results
if __name__ == "__main__":
main()