-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
438 lines (387 loc) · 20.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import argparse
import glob
import json
import logging
import os
import random
import math
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
import pathlib
from transformers import (BertConfig, BertModel, BertForMultipleChoice, BertTokenizer, RobertaConfig, RobertaModel,
RobertaForMultipleChoice, RobertaTokenizer)
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup as WarmupLinearSchedule
Connective_dict = {'Precedence': 'before', 'Succession': 'after', 'Synchronous': 'simultaneously', 'Reason': 'because',
'Result': 'so', 'Condition': 'if', 'Contrast': 'but', 'Concession': 'although',
'Conjunction': 'and', 'Instantiation': 'for example', 'Restatement': 'in other words',
'Alternative': 'or', 'ChosenAlternative': 'instead', 'Exception': 'except', 'Co_Occurrence': 'and',
'HasFirstSubevent': 'has first subevent', 'ReceivesAction': 'receives action',
'NotCapableOf': 'not capable of', 'CapableOf': 'capable of',
'EtymologicallyRelatedTo': 'etymologically related to', 'NotHasProperty': 'not has property',
'SimilarTo': 'similar to', 'MotivatedByGoal': 'motivated by', 'cause': 'so', 'Causes': 'so',
'UsedFor': 'used for', 'AtLocation': 'at', 'DefinedAs': 'defined as', 'RelatedTo': 'related to',
'HasSubevent': 'has subevent', 'HasLastSubevent': 'has last subevent',
'CausesDesire': 'causes desire', 'HasProperty': 'has property', 'IsA': 'is a', 'Antonym': 'antonym',
'dbpedia': 'dbpedia', 'DerivedFrom': 'derived from', 'FormOf': 'in the form of', 'HasA': 'has a',
'Synonym': 'synonym', 'HasPrerequisite': 'has prerequisite', 'NotDesires': 'not desires'}
class K2G(torch.nn.Module):
def __init__(self, config, encoder_model, args):
super(K2G, self).__init__()
self.encoder = encoder_model
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.kagnet_classifier = nn.Linear(config.hidden_size + 200, 1)
self.GBR_classifier = nn.Linear(config.hidden_size + 200, 1)
self.MHKA_classifier = nn.Linear(config.hidden_size*2, 1)
self.embs = nn.Embedding(30000, 200)
self.lstm = nn.LSTM(200, 200)
self.config = config
self.args = args
def get_baseline_logit(self, question_id, question_mask, cand_id, cand_mask):
input_ids = torch.cat([question_id, cand_id], dim=1)
input_mask = torch.cat([question_mask, cand_mask], dim=1)
context_outputs = self.encoder(input_ids, attention_mask=input_mask)
pooled_context_output = context_outputs[0]
pooled_context_output = self.dropout(pooled_context_output)
representation = pooled_context_output[:, 0, :]
baseline_logit = self.classifier(representation)
return baseline_logit
def get_JointI_logit(self, question_id, question_mask, cand_id, cand_mask, knowledge_ids, knowledge_mask,
batch_size, num_knowledge):
input_ids = torch.cat([question_id, cand_id], dim=1).unsqueeze(1).repeat(1, num_knowledge, 1)
input_mask = torch.cat([question_mask, cand_mask], dim=1).unsqueeze(1).repeat(1, num_knowledge, 1)
input_ids = torch.cat([knowledge_ids, input_ids], dim=2).view(num_knowledge * batch_size, -1)
input_mask = torch.cat([knowledge_mask, input_mask], dim=2).view(num_knowledge * batch_size, -1)
context_outputs = self.encoder(input_ids,
attention_mask=input_mask)
pooled_context_output = context_outputs[0]
pooled_context_output = self.dropout(
pooled_context_output)
representation = pooled_context_output[:, 0, :]
JointI_logit = self.classifier(representation)
JointI_logit = JointI_logit.view(batch_size, -1)
JointI_logit = torch.mean(JointI_logit, 1).unsqueeze(1)
return JointI_logit
def forward(
self,
question_ids,
question_mask,
cand1_ids,
cand1_mask,
cand2_ids,
cand2_mask,
knowledge_ids,
knowledge_mask,
cand1_path_ids,
cand1_path_mask,
cand2_path_ids,
cand2_path_mask,
topological_path_ids,
topological_path_mask,
labels
):
batch_size = question_ids.shape[0]
num_knowledge = knowledge_ids.shape[1]
if self.args.model == 'baseline':
cand1_logit = self.get_baseline_logit(question_ids, question_mask, cand1_ids, cand1_mask)
cand2_logit = self.get_baseline_logit(question_ids, question_mask, cand2_ids, cand2_mask)
logits = torch.cat([cand1_logit, cand2_logit], dim=1)
elif self.args.model == 'JointI':
cand1_logit = self.get_JointI_logit(question_ids, question_mask, cand1_ids, cand1_mask, knowledge_ids,
knowledge_mask, batch_size, num_knowledge)
cand2_logit = self.get_JointI_logit(question_ids, question_mask, cand2_ids, cand2_mask, knowledge_ids,
knowledge_mask, batch_size, num_knowledge)
logits = torch.cat([cand1_logit, cand2_logit], dim=1)
else:
raise NotImplementedError
outputs = (logits,)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
outputs = (loss,) + outputs
return outputs
class CKBQAExample(object):
def __init__(self, qid, question, cand1, cand2, IDK, knowledge, label, helpful, q_type):
self.qid = qid
self.question = question
self.cand1 = cand1
self.cand2 = cand2
self.IDK = IDK
self.knowledge = knowledge
self.label = label
self.helpful = helpful
self.q_type = q_type
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, qid, question_ids, question_mask, cand1_ids, cand1_mask, cand2_ids, cand2_mask, knowledge_ids,
knowledge_mask, cand1_path_ids, cand1_path_mask, cand2_path_ids, cand2_path_mask, topological_path_ids,
topological_path_mask, label_id, useful_label_id):
self.qid = qid
self.question_ids = question_ids
self.question_mask = question_mask
self.cand1_ids = cand1_ids
self.cand1_mask = cand1_mask
self.cand2_ids = cand2_ids
self.cand2_mask = cand2_mask
self.knowledge_ids = knowledge_ids
self.knowledge_mask = knowledge_mask
self.cand1_path_ids = cand1_path_ids
self.cand1_path_mask = cand1_path_mask
self.cand2_path_ids = cand2_path_ids
self.cand2_path_mask = cand2_path_mask
self.topological_path_ids = topological_path_ids
self.topological_path_mask = topological_path_mask
self.label_id = label_id
self.useful_label_id = useful_label_id
class CKBQADataLoader:
def __init__(self, args, data_folder, tokenizer):
self.args = args
self.tokenizer = tokenizer
self.train_data = self.get_examples(data_folder + '/train.json', args.train_type, args.helpful_only,
args.train_number)
self.dev_data = self.get_examples(data_folder + '/dev.json', args.test_type, args.helpful_only)
self.test_data = self.get_examples(data_folder + '/test.json', args.test_type, args.helpful_only)
self.train_features = convert_examples_to_features(args, self.train_data, args.max_seq_length, tokenizer)
self.dev_features = convert_examples_to_features(args, self.dev_data, args.max_seq_length, tokenizer)
self.test_features = convert_examples_to_features(args, self.test_data, args.max_seq_length, tokenizer)
self.train_set = self.get_dataset(self.train_features)
self.dev_set = self.get_dataset(self.dev_features)
self.test_set = self.get_dataset(self.test_features)
def get_examples(self, file_path, type_requirement, helpful_only, example_lim=100000):
with open(file_path, 'r') as f:
records = json.load(f)
random.shuffle(records)
examples = list()
for i, record in enumerate(records):
if record['label'] == 2:
helpful_state = False
else:
helpful_state = True
tmp_example = CKBQAExample(
qid=record['idx'],
question=record['question'],
cand1=record['answers'][0],
cand2=record['answers'][1],
IDK=record['answers'][2],
knowledge=record['knowledge'],
label=record['sourcelabel'],
helpful=helpful_state,
q_type=record['source']
)
if helpful_only:
if record['label'] == 2:
continue
if type_requirement == 'All':
examples.append(tmp_example)
else:
if record['source'] == type_requirement:
examples.append(tmp_example)
random.shuffle(examples)
return examples[:example_lim]
def get_dataset(self, tensorized_dataset):
all_question_ids = torch.tensor([f.question_ids for f in tensorized_dataset], dtype=torch.long)
all_question_mask = torch.tensor([f.question_mask for f in tensorized_dataset], dtype=torch.long)
all_cand1_ids = torch.tensor([f.cand1_ids for f in tensorized_dataset], dtype=torch.long)
all_cand1_mask = torch.tensor([f.cand1_mask for f in tensorized_dataset], dtype=torch.long)
all_cand2_ids = torch.tensor([f.cand2_ids for f in tensorized_dataset], dtype=torch.long)
all_cand2_mask = torch.tensor([f.cand2_mask for f in tensorized_dataset], dtype=torch.long)
all_knowledge_ids = torch.tensor([f.knowledge_ids for f in tensorized_dataset], dtype=torch.long)
all_knowledge_mask = torch.tensor([f.knowledge_mask for f in tensorized_dataset], dtype=torch.long)
all_cand1_path_ids = torch.tensor([f.cand1_path_ids for f in tensorized_dataset], dtype=torch.long)
all_cand1_path_mask = torch.tensor([f.cand1_path_mask for f in tensorized_dataset], dtype=torch.long)
all_cand2_path_ids = torch.tensor([f.cand2_path_ids for f in tensorized_dataset], dtype=torch.long)
all_cand2_path_mask = torch.tensor([f.cand2_path_mask for f in tensorized_dataset], dtype=torch.long)
all_topological_path_ids = torch.tensor([f.topological_path_ids for f in tensorized_dataset], dtype=torch.long)
all_topological_path_mask = torch.tensor([f.topological_path_mask for f in tensorized_dataset],
dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in tensorized_dataset], dtype=torch.long)
all_useful_label_ids = torch.tensor([f.useful_label_id for f in tensorized_dataset], dtype=torch.long)
return TensorDataset(all_question_ids, all_question_mask, all_cand1_ids, all_cand1_mask, all_cand2_ids,
all_cand2_mask, all_knowledge_ids, all_knowledge_mask, all_cand1_path_ids,
all_cand1_path_mask, all_cand2_path_ids, all_cand2_path_mask, all_topological_path_ids,
all_topological_path_mask, all_label_ids, all_useful_label_ids)
def tensorize_a_sentence(sentence, max_seq_length, tokenizer, cls_token='[CLS]', sep_token='[SEP]', pad_token=0):
input_ids = [tokenizer.convert_tokens_to_ids(cls_token)]
sentence_tokens = tokenizer.tokenize(sentence)
for t in sentence_tokens:
input_ids.append(tokenizer.convert_tokens_to_ids(t))
input_ids += [tokenizer.convert_tokens_to_ids(sep_token)]
if len(input_ids) > max_seq_length:
input_ids = input_ids[:max_seq_length]
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0] * padding_length)
return input_ids, input_mask
def get_path(knowledge, start_node, end_node):
cand_paths = list()
for tmp_edge in knowledge:
if tmp_edge[0].split('$$')[1] == start_node:
current_path = list()
current_path.append(tmp_edge)
last_edge = tmp_edge
for new_edge in knowledge:
if new_edge[0] == last_edge[1]:
current_path.append(new_edge)
if new_edge[1].split('$$')[1] == end_node:
break
last_edge = new_edge
if current_path[-1][1].split('$$')[1] == end_node:
cand_paths.append(current_path)
return cand_paths[:1]
def weighted_random_walk(knowledge, num_sample, length_limit):
head2tail = dict()
for tmp_edge in knowledge:
if tmp_edge[0] not in head2tail:
head2tail[tmp_edge[0]] = list()
if tmp_edge[1] not in head2tail:
head2tail[tmp_edge[1]] = list()
head2tail[tmp_edge[0]].append((tmp_edge[1], tmp_edge[2], tmp_edge[3]))
paths = list()
for i in range(num_sample):
current_node = random.choice(list(head2tail.keys()))
tmp_path = []
while True:
if len(tmp_path) >= length_limit:
break
if len(head2tail[current_node]) == 0:
break
tmp_weights = list()
for tmp_next_n in head2tail[current_node]:
tmp_weights.append(tmp_next_n[2])
next_n = random.choices(head2tail[current_node], weights=tmp_weights, k=1)[0]
# print(next_n)
tmp_path.append([current_node, next_n[0], next_n[1], next_n[2]])
current_node = next_n[0]
paths.append(tmp_path)
return paths
def topological_random_walk(knowledge, num_sample, length_limit):
head2tail = dict()
for tmp_edge in knowledge:
if tmp_edge[0] not in head2tail:
head2tail[tmp_edge[0]] = list()
if tmp_edge[1] not in head2tail:
head2tail[tmp_edge[1]] = list()
head2tail[tmp_edge[0]].append((tmp_edge[1], tmp_edge[2], tmp_edge[3]))
paths = list()
for i in range(num_sample):
current_node = random.choice(list(head2tail.keys()))
tmp_path = []
while True:
if len(tmp_path) >= length_limit:
break
if len(head2tail[current_node]) == 0:
break
next_n = random.choice(head2tail[current_node])
tmp_path.append([current_node, next_n[0], next_n[1], next_n[2]])
current_node = next_n[0]
paths.append(tmp_path)
return paths
def path_to_feature(tmp_path, max_seq_length, tokenizer, cls_token='[CLS]', sep_token='[SEP]',
pad_token=0):
tmp_knowledge_sentence = ''
for tmp_edge in tmp_path:
tmp_sentence = tmp_edge[0].split('$$')[0] + ', ' + Connective_dict[tmp_edge[2]] + tmp_edge[1].split('$$')[
0] + '. ' + str(
tmp_edge[3]) + sep_token
tmp_knowledge_sentence += tmp_sentence
tmp_knowledge_ids, tmp_knowledge_mask = tensorize_a_sentence(tmp_knowledge_sentence, max_seq_length, tokenizer,
cls_token,
sep_token, pad_token)
return tmp_knowledge_ids, tmp_knowledge_mask
def convert_examples_to_features(args, examples, max_seq_length, tokenizer, cls_token='[CLS]', sep_token='[SEP]',
pad_token=0):
features = []
for (ex_index, example) in enumerate(examples):
question_ids, question_mask = tensorize_a_sentence(example.question, max_seq_length, tokenizer, cls_token,
sep_token, pad_token)
cand1_ids, cand1_mask = tensorize_a_sentence(example.cand1, max_seq_length, tokenizer, cls_token,
sep_token, pad_token)
cand2_ids, cand2_mask = tensorize_a_sentence(example.cand2, max_seq_length, tokenizer, cls_token,
sep_token, pad_token)
cand1_paths = get_path(example.knowledge, 'question', 'CandidateA')
cand2_paths = get_path(example.knowledge, 'question', 'CandidateB')
random_walk_paths = weighted_random_walk(example.knowledge, args.num_walk, args.walk_length)
topological_walk_paths = topological_random_walk(example.knowledge, args.num_walk, args.walk_length)
knowledge_ids = list()
knowledge_mask = list()
for tmp_walk in random_walk_paths:
tmp_knowledge_ids, tmp_knowledge_mask = path_to_feature(tmp_walk, max_seq_length, tokenizer, cls_token,
sep_token, 0)
knowledge_ids.append(tmp_knowledge_ids)
knowledge_mask.append(tmp_knowledge_mask)
cand1_path_ids = list()
cand1_path_mask = list()
if len(cand1_paths) == 0:
tmp_knowledge_ids, tmp_knowledge_mask = tensorize_a_sentence('NA', max_seq_length, tokenizer,
cls_token,
sep_token, pad_token)
cand1_path_ids.append(tmp_knowledge_ids)
cand1_path_mask.append(tmp_knowledge_mask)
else:
for tmp_walk in cand1_paths:
tmp_knowledge_ids, tmp_knowledge_mask = path_to_feature(tmp_walk, max_seq_length, tokenizer, cls_token,
sep_token, 0)
cand1_path_ids.append(tmp_knowledge_ids)
cand1_path_mask.append(tmp_knowledge_mask)
cand2_path_ids = list()
cand2_path_mask = list()
if len(cand2_paths) == 0:
tmp_knowledge_ids, tmp_knowledge_mask = tensorize_a_sentence('NA', max_seq_length, tokenizer,
cls_token,
sep_token, pad_token)
cand2_path_ids.append(tmp_knowledge_ids)
cand2_path_mask.append(tmp_knowledge_mask)
else:
for tmp_walk in cand2_paths:
tmp_knowledge_ids, tmp_knowledge_mask = path_to_feature(tmp_walk, max_seq_length, tokenizer, cls_token,
sep_token, 0)
cand2_path_ids.append(tmp_knowledge_ids)
cand2_path_mask.append(tmp_knowledge_mask)
topological_path_ids = list()
topological_path_mask = list()
for tmp_walk in topological_walk_paths:
tmp_knowledge_ids, tmp_knowledge_mask = path_to_feature(tmp_walk, max_seq_length, tokenizer, cls_token,
sep_token, 0)
topological_path_ids.append(tmp_knowledge_ids)
topological_path_mask.append(tmp_knowledge_mask)
if example.helpful:
useful_id = 0
else:
useful_id = 1
features.append(
InputFeatures(
qid=example.qid,
question_ids=question_ids,
question_mask=question_mask,
cand1_ids=cand1_ids,
cand1_mask=cand1_mask,
cand2_ids=cand2_ids,
cand2_mask=cand2_mask,
knowledge_ids=knowledge_ids,
knowledge_mask=knowledge_mask,
cand1_path_ids=cand1_path_ids,
cand1_path_mask=cand1_path_mask,
cand2_path_ids=cand2_path_ids,
cand2_path_mask=cand2_path_mask,
topological_path_ids=topological_path_ids,
topological_path_mask=topological_path_mask,
label_id=example.label,
useful_label_id=useful_id
)
)
return features
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)