@@ -255,29 +255,19 @@ <h2 id="___sec49" class="anchor">AdaBoost Examples </h2>
255
255
algorithm< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> "SAMME.R"</ span > , learning_rate< span style ="color: #666666 "> =0.5</ span > , random_state< span style ="color: #666666 "> =42</ span > )
256
256
ada_clf< span style ="color: #666666 "> .</ span > fit(X_train, y_train)
257
257
258
- plot_decision_boundary(ada_clf, X, y)
259
-
260
- m < span style ="color: #666666 "> =</ span > < span style ="color: #008000 "> len</ span > (X_train)
261
-
262
- plt< span style ="color: #666666 "> .</ span > figure(figsize< span style ="color: #666666 "> =</ span > (< span style ="color: #666666 "> 11</ span > , < span style ="color: #666666 "> 4</ span > ))
263
- < span style ="color: #008000; font-weight: bold "> for</ span > subplot, learning_rate < span style ="color: #AA22FF; font-weight: bold "> in</ span > ((< span style ="color: #666666 "> 121</ span > , < span style ="color: #666666 "> 1</ span > ), (< span style ="color: #666666 "> 122</ span > , < span style ="color: #666666 "> 0.5</ span > )):
264
- sample_weights < span style ="color: #666666 "> =</ span > np< span style ="color: #666666 "> .</ span > ones(m)
265
- plt< span style ="color: #666666 "> .</ span > subplot(subplot)
266
- < span style ="color: #008000; font-weight: bold "> for</ span > i < span style ="color: #AA22FF; font-weight: bold "> in</ span > < span style ="color: #008000 "> range</ span > (< span style ="color: #666666 "> 5</ span > ):
267
- svm_clf < span style ="color: #666666 "> =</ span > SVC(kernel< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> "rbf"</ span > , C< span style ="color: #666666 "> =0.05</ span > , gamma< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> "auto"</ span > , random_state< span style ="color: #666666 "> =42</ span > )
268
- svm_clf< span style ="color: #666666 "> .</ span > fit(X_train, y_train, sample_weight< span style ="color: #666666 "> =</ span > sample_weights)
269
- y_pred < span style ="color: #666666 "> =</ span > svm_clf< span style ="color: #666666 "> .</ span > predict(X_train)
270
- sample_weights[y_pred < span style ="color: #666666 "> !=</ span > y_train] < span style ="color: #666666 "> *=</ span > (< span style ="color: #666666 "> 1</ span > < span style ="color: #666666 "> +</ span > learning_rate)
271
- plot_decision_boundary(svm_clf, X, y, alpha< span style ="color: #666666 "> =0.2</ span > )
272
- plt< span style ="color: #666666 "> .</ span > title(< span style ="color: #BA2121 "> "learning_rate = {}"</ span > < span style ="color: #666666 "> .</ span > format(learning_rate), fontsize< span style ="color: #666666 "> =16</ span > )
273
- < span style ="color: #008000; font-weight: bold "> if</ span > subplot < span style ="color: #666666 "> ==</ span > < span style ="color: #666666 "> 121</ span > :
274
- plt< span style ="color: #666666 "> .</ span > text(< span style ="color: #666666 "> -0.7</ span > , < span style ="color: #666666 "> -0.65</ span > , < span style ="color: #BA2121 "> "1"</ span > , fontsize< span style ="color: #666666 "> =14</ span > )
275
- plt< span style ="color: #666666 "> .</ span > text(< span style ="color: #666666 "> -0.6</ span > , < span style ="color: #666666 "> -0.10</ span > , < span style ="color: #BA2121 "> "2"</ span > , fontsize< span style ="color: #666666 "> =14</ span > )
276
- plt< span style ="color: #666666 "> .</ span > text(< span style ="color: #666666 "> -0.5</ span > , < span style ="color: #666666 "> 0.10</ span > , < span style ="color: #BA2121 "> "3"</ span > , fontsize< span style ="color: #666666 "> =14</ span > )
277
- plt< span style ="color: #666666 "> .</ span > text(< span style ="color: #666666 "> -0.4</ span > , < span style ="color: #666666 "> 0.55</ span > , < span style ="color: #BA2121 "> "4"</ span > , fontsize< span style ="color: #666666 "> =14</ span > )
278
- plt< span style ="color: #666666 "> .</ span > text(< span style ="color: #666666 "> -0.3</ span > , < span style ="color: #666666 "> 0.90</ span > , < span style ="color: #BA2121 "> "5"</ span > , fontsize< span style ="color: #666666 "> =14</ span > )
279
-
280
- save_fig(< span style ="color: #BA2121 "> "boosting_plot"</ span > )
258
+ < span style ="color: #008000; font-weight: bold "> from</ span > < span style ="color: #0000FF; font-weight: bold "> sklearn.ensemble</ span > < span style ="color: #008000; font-weight: bold "> import</ span > AdaBoostClassifier
259
+
260
+ ada_clf < span style ="color: #666666 "> =</ span > AdaBoostClassifier(
261
+ DecisionTreeClassifier(max_depth< span style ="color: #666666 "> =1</ span > ), n_estimators< span style ="color: #666666 "> =200</ span > ,
262
+ algorithm< span style ="color: #666666 "> =</ span > < span style ="color: #BA2121 "> "SAMME.R"</ span > , learning_rate< span style ="color: #666666 "> =0.5</ span > , random_state< span style ="color: #666666 "> =42</ span > )
263
+ ada_clf< span style ="color: #666666 "> .</ span > fit(X_train_scaled, y_train)
264
+ y_pred < span style ="color: #666666 "> =</ span > ada_clf< span style ="color: #666666 "> .</ span > predict(X_test_scaled)
265
+ skplt< span style ="color: #666666 "> .</ span > metrics< span style ="color: #666666 "> .</ span > plot_confusion_matrix(y_test, y_pred, normalize< span style ="color: #666666 "> =</ span > < span style ="color: #008000 "> True</ span > )
266
+ plt< span style ="color: #666666 "> .</ span > show()
267
+ y_probas < span style ="color: #666666 "> =</ span > ada_clf< span style ="color: #666666 "> .</ span > predict_proba(X_test_scaled)
268
+ skplt< span style ="color: #666666 "> .</ span > metrics< span style ="color: #666666 "> .</ span > plot_roc(y_test, y_probas)
269
+ plt< span style ="color: #666666 "> .</ span > show()
270
+ skplt< span style ="color: #666666 "> .</ span > metrics< span style ="color: #666666 "> .</ span > plot_cumulative_gain(y_test, y_probas)
281
271
plt< span style ="color: #666666 "> .</ span > show()
282
272
</ pre > </ div >
283
273
< p >
0 commit comments