Skip to content

Commit 4f823a2

Browse files
committed
added improved extra materials file
1 parent 99ac511 commit 4f823a2

File tree

1 file changed

+129
-0
lines changed

1 file changed

+129
-0
lines changed

extra_materials.md

Lines changed: 129 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,129 @@
1+
# Extra materials for ml-mipt course
2+
3+
## Prerequisites
4+
5+
1. [en] Stanford lectures on Probability Theory:
6+
[link](https://web.stanford.edu/~montanar/TEACHING/Stat310A/lnotes.pdf)
7+
1. [en] Matrix calculus notes from Stanford:
8+
[link](http://cs231n.stanford.edu/vecDerivs.pdf)
9+
1. [en] Derivatives notes from Stanford:
10+
[link](http://cs231n.stanford.edu/handouts/derivatives.pdf)
11+
12+
## Basic Machine Learning
13+
14+
1. [en] The Hundred-page Machine Learning book: [link](http://themlbook.com)
15+
(available online, e.g. on the
16+
[github](https://github.com/ZakiaSalod/The-Hundred-Page-Machine-Learning-Book))
17+
1. [ru] Отличные лекции Жени Соколова. Читать pdf, лучше всего наиболее
18+
актуальный год: [link](https://github.com/esokolov/ml-course-hse)
19+
1. [en] Naive Bayesian classifier explained:
20+
[link](https://machinelearningmastery.com/classification-as-conditional-probability-and-the-naive-bayes-algorithm/)
21+
1. [en] Stanford notes on linear models:
22+
[link](http://cs229.stanford.edu/notes/cs229-notes1.pdf)
23+
1. [ru] “Рукописный учебник” от студентов нашего курса на ФИВТе:
24+
[link](https://github.com/ml-mipt/ml-mipt/blob/master/ML_informal_notes.pdf)
25+
1. [ru] Методичка Воронцова,
26+
[link](http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf)
27+
1. [ru] Замечательная книжка В.Г. Спокойного про линейные оценки:
28+
[link](http://strlearn.ru/wp-content/uploads/2017/01/script2018-5.pdf)
29+
30+
## Bootstrap and bias-variance decomposition
31+
32+
1. [en] Detailed description of bootstrap procedure:
33+
[link](http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/notes/notebootstrap.pdf)
34+
1. [en] Bias-variance tradeoff in more general case: A Unified Bias-Variance
35+
Decomposition and its Applications
36+
[link](https://homes.cs.washington.edu/~pedrod/papers/mlc00a.pdf)
37+
38+
## Gradient Boosting and Feature importances
39+
40+
1. [en] Great interactive blogpost by Alex Rogozhnikov on Gradient Boosting:
41+
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
42+
1. [en] And great gradient boosted trees playground by Alex Rogozhnikov:
43+
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
44+
1. [en] Shap values repo and explanation: https://github.com/slundberg/shap
45+
1. [en] Kaggle tutorial on feature importances:
46+
https://www.kaggle.com/learn/machine-learning-explainability
47+
48+
## Deep Learning
49+
50+
1. [en] Deep Learning book.\
51+
Classical. Delivers comprehensive overview of almost all vital themes in ML and
52+
DL. Available online at https://www.deeplearningbook.org
53+
1. [en] Notes on vector and matrix derivatives:
54+
http://cs231n.stanford.edu/vecDerivs.pdf
55+
1. [en] More notes on matrix derivatives from Stanford:
56+
[link](http://cs231n.stanford.edu/handouts/derivatives.pdf)
57+
1. [en] Stanford notes on backpropagation:
58+
http://cs231n.github.io/optimization-2/
59+
1. [en] Stanford notes on different activation functions (and just intuition):
60+
http://cs231n.github.io/neural-networks-1/
61+
1. [en] Great post on Medium by Andrej Karpathy:
62+
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
63+
1. [en] CS231n notes on data preparation (batch normalization over there):
64+
http://cs231n.github.io/neural-networks-2/
65+
1. [en] CS231n notes on gradient methods:
66+
http://cs231n.github.io/neural-networks-3/
67+
1. [en] Original paper introducing Batch Normalization:
68+
https://arxiv.org/pdf/1502.03167.pdf
69+
1. [en] What Every Computer Scientist Should Know About Floating-Point
70+
Arithmetic: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
71+
1. [en] The Unreasonable Effectiveness of Recurrent Neural Networks blog post by
72+
Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
73+
1. [en] Understanding LSTM Networks:
74+
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
75+
1. [en] CS231n notes on data preparation:
76+
http://cs231n.github.io/neural-networks-2/
77+
1. [en] Convolutional Neural Networks: Architectures, Convolution / Pooling
78+
Layers: http://cs231n.github.io/convolutional-networks/
79+
1. [en] Understanding and Visualizing Convolutional Neural Networks:
80+
http://cs231n.github.io/understanding-cnn/
81+
1. [en] LR warm-up and useful tricks -
82+
[article](https://arxiv.org/abs/1812.01187)
83+
84+
## Natural Language Processing
85+
86+
1. [en] Great resource by Lena Voita (direct link to Word Embeddings
87+
explanation): https://lena-voita.github.io/nlp_course/word_embeddings.html
88+
1. [en] Word2vec tutorial:
89+
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
90+
1. [en] Beautiful post by Jay Alammar on word2vec:
91+
http://jalammar.github.io/illustrated-word2vec/
92+
1. [en] Blog post about text classification with RNNs and CNNs blogpost:
93+
https://medium.com/jatana/report-on-text-classification-using-cnn-rnn-han-f0e887214d5f
94+
1. [en] Convolutional Neural Networks for Sentence Classification:
95+
https://arxiv.org/abs/1408.5882
96+
1. [en] Great blog post by Jay Alammar on Transformer:
97+
https://jalammar.github.io/illustrated-transformer/
98+
1. Notebook on positional encoding:
99+
[link](https://github.com/ml-mipt/ml-mipt/blob/advanced/week04_Transformer/week04_positional_encoding_carriers.ipynb)
100+
1. [en] Great Annotated Transformer article with code and comments by Harvard
101+
NLP group: https://nlp.seas.harvard.edu/2018/04/03/attention.html
102+
1. [en] Harvard NLP
103+
[full Transformer implementation in PyTorch](http://nlp.seas.harvard.edu/2018/04/03/attention.html)
104+
1. [en] OpenAI blog post
105+
[Better Language Models and Their Implications (GPT-2)](https://openai.com/blog/better-language-models/)
106+
1. [en] Paper describing positional encoding
107+
["Convolutional Sequence to Sequence Learning"](https://arxiv.org/pdf/1705.03122)
108+
1. [en] Paper presenting [Layer Normalization](https://arxiv.org/abs/1607.06450)
109+
1. [en] The Illustrated BERT
110+
[blog post](http://jalammar.github.io/illustrated-bert/)
111+
1. [en] DistillBERT overview (distillation will be covered later in our course)
112+
[blog post](https://medium.com/huggingface/distilbert-8cf3380435b5)
113+
1. [en] Google AI Blog
114+
[post about open sourcing BERT](https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html)
115+
1. [en] OpenAI blog post
116+
[Better Language Models and Their Implications (GPT-2)](https://openai.com/blog/better-language-models/)
117+
1. [en] One more
118+
[blog post explaining BERT](https://yashuseth.blog/2019/06/12/bert-explained-faqs-understand-bert-working/)
119+
1. [en]
120+
[Post about GPT-2 in OpenAI blog (by 04.10.2019)](https://openai.com/blog/fine-tuning-gpt-2/)
121+
122+
## Graph Neural Networks
123+
124+
1. [en]
125+
[Introduction to Graph Neural Networks](https://www.morganclaypool.com/doi/10.2200/S00980ED1V01Y202001AIM045)
126+
1. [en] Grear [repo](https://github.com/thunlp/GNNPapers) with must-read papers
127+
on GNN
128+
1. [en] Reinforcement Learning: An introduction by Richard S. Sutton and Andrew
129+
G. Barto: [link](http://incompleteideas.net/book/the-book-2nd.html)

0 commit comments

Comments
 (0)