-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparameters.py
621 lines (576 loc) · 22.5 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import argparse, os
#######################################
def basic_training_parameters(parser):
parser.add_argument('--dataset',
default='cub200',
type=str,
help='Dataset to use.')
parser.add_argument(
'--use_tv_split',
action='store_true',
help=
'Flag: split data into training/validation (by classes).'
)
parser.add_argument(
'--tv_split_by_samples',
action='store_true',
help=
'Flag: split data into training/validation (by sample count).'
)
parser.add_argument(
'--tv_split_perc',
default=0,
type=float,
help=
'Percentage with which the training dataset is split into training/validation.'
)
parser.add_argument(
'--checkpoint',
action='store_true',
help=
'Flag: Use checkpointing so training can be continued if interrupted (on a per-epoch-basis).'
)
parser.add_argument(
'--completed',
action='store_true',
help=
'Flag: Simply highlights if a training run is completed and can be skipped. Primarily used internally.'
)
parser.add_argument(
'--dont_train_eval',
action='store_true',
help=
'Flag: Dont evalute on training data.'
)
parser.add_argument(
'--no_train_metrics',
action='store_true',
help=
'Flag: Dont compute metrics on training data.'
)
### General Training Parameters
parser.add_argument('--lr',
default=0.00001,
type=float,
help='Learning Rate for network parameters.')
parser.add_argument('--fc_lr',
default=-1,
type=float,
help='Learning Rate for fully-connect, last layer parameters.')
parser.add_argument('--n_epochs',
default=150,
type=int,
help='Number of training epochs.')
parser.add_argument('--kernels',
default=6,
type=int,
help='Number of workers for pytorch dataloader.')
parser.add_argument('--bs',
default=112,
type=int,
help='Mini-Batchsize to use.')
parser.add_argument('--seed',
default=0,
type=int,
help='Random seed for reproducibility.')
parser.add_argument(
'--scheduler',
default='step',
type=str,
help='Type of learning rate scheduling. Currently: step & exp.')
parser.add_argument('--gamma',
default=0.3,
type=float,
help='Learning rate reduction after tau epochs.')
parser.add_argument('--decay',
default=0.0004,
type=float,
help='Weight decay for optimizer.')
parser.add_argument('--tau',
default=[10000],
nargs='+',
type=int,
help='Stepsize before reducing learning rate.')
parser.add_argument(
'--augmentation',
default='base',
type=str,
help='Type of data augmentation mode. Default used DML default.')
parser.add_argument(
'--warmup',
default=0,
type=int,
help=
'Number of warmup epochs where backbone is frozen and only the last layer is trained.'
)
parser.add_argument('--internal_split',
default=1,
type=float,
help='Internal split value used for minibatch-construction. Left to default.')
parser.add_argument(
'--evaluate_on_cpu',
action='store_true',
help=
'Flag: Evaluates metrics solely on CPU.'
)
parser.add_argument(
'--load_to_ram',
action='store_true',
help=
'Flag: If enough ram is available, load all data to RAM.'
)
##### Loss-specific Settings
parser.add_argument('--optim',
default='adam',
type=str,
help='Optimizer to use. Currently uses ADAM.')
parser.add_argument('--loss',
default='margin',
type=str,
help='DML training criterion to use. See "criteria/__init__.py" for options.')
parser.add_argument(
'--batch_mining',
default='distance',
type=str,
help=
'Batch-mining method to accompany the DML objective.'
)
#####
parser.add_argument(
'--embed_dim',
default=128,
type=int,
help=
'Embedding dimensionality of the network. Note: dim=128 or 64 is used in most papers.'
)
parser.add_argument(
'--arch',
default='resnet50_frozen_normalize',
type=str,
help='Underlying network architecture. Frozen denotes that exisiting pretrained batchnorm layers are frozen, and normalize denotes normalization of the output embedding.'
)
parser.add_argument('--not_pretrained', action='store_true')
parser.add_argument('--no_loss_schedules', action='store_true')
#####
parser.add_argument('--evaluation_metrics',
nargs='+',
default=[
'e_recall@1', 'e_recall@2', 'e_recall@4', 'nmi',
'f1', 'mAP_1000', 'mAP_c', 'dists@intra',
'dists@inter', 'dists@intra_over_inter',
'rho_spectrum@0', 'rho_spectrum@-1',
'rho_spectrum@1', 'rho_spectrum@2', 'rho_spectrum@10'
],
type=str,
help='Metrics to evaluate performance by.')
parser.add_argument(
'--evaltypes',
nargs='+',
default=['embeds'],
type=str,
help=
'The network may produce multiple embeddings (ModuleDict). If the key is listed here, the entry will be evaluated on the evaluation metrics.\
Note: One may use Combined_embed1_embed2_..._embedn-w1-w1-...-wn to compute evaluation metrics on weighted (normalized) combinations.'
)
parser.add_argument(
'--storage_metrics',
nargs='+',
default=['e_recall@1'],
type=str,
help=
'Improvement in these metrics on the test/valset trigger checkpointing.')
##### Setup Parameters
parser.add_argument('--gpu',
default=[0],
nargs='+',
type=int,
help='GPU-ID to use.')
parser.add_argument(
'--savename',
default='group_plus_seed',
type=str,
help=
'Save-folder naming string.'
)
parser.add_argument('--source_path',
default=os.getcwd() + '/../../Datasets',
type=str,
help='Path to training data.')
parser.add_argument('--save_path',
default=os.getcwd() + '/Training_Results',
type=str,
help='Where to save everything.')
return parser
#######################################
def s2sd_parameters(parser):
#Training Criteria
parser.add_argument('--loss_s2sd_source',
default='multisimilarity',
type=str,
help='DML criterion for the base embedding branch.')
parser.add_argument(
'--loss_s2sd_target',
default='multisimilarity',
type=str,
help='DML criterion for the target embedding branches.')
#Basic S2SD
parser.add_argument('--loss_s2sd_T',
default=1,
type=float,
help='Temperature for the KL-Divergence Distillation.')
parser.add_argument('--loss_s2sd_w',
default=50,
type=float,
help='Weight of the distillation loss.')
parser.add_argument(
'--loss_s2sd_pool_aggr',
action='store_true',
help=
'Flag. If set, uses both global max- and average pooling in the target branches.'
)
parser.add_argument(
'--loss_s2sd_target_dims',
default=[1024, 1536, 2048],
nargs='+',
type=int,
help='Defines number and dimensionality of used target branches.')
#Feature Space Distillation
parser.add_argument('--loss_s2sd_feat_distill',
action='store_true',
help='Flag. If set, feature distillation is used.')
parser.add_argument('--loss_s2sd_feat_w',
default=50,
type=float,
help='Weight of the feature space distillation loss.')
parser.add_argument(
'--loss_s2sd_feat_distill_delay',
default=1000,
type=int,
help=
'Defines the number of training iterations before feature distillation is activated.'
)
return parser
#######################################
def diva_parameters(parser):
##### Multifeature Parameters
parser.add_argument('--diva_ssl',
default='fast_moco',
type=str,
help='Self-supervised Objective to use.')
parser.add_argument('--diva_sharing',
default='random',
type=str,
help='Objective to use for shared feature mining.')
parser.add_argument('--diva_intra',
default='random',
type=str,
help='Objective to use for intraclass feature mining.')
parser.add_argument(
'--diva_features',
default=['discriminative', 'shared', 'selfsimilarity', 'intra'],
nargs='+',
type=str,
help='Types of features to mine in DiVA.')
parser.add_argument('--diva_decorrelations',
default=[
'selfsimilarity-discriminative',
'shared-discriminative', 'intra-discriminative'
],
nargs='+',
type=str,
help='Decorrelations to apply between DiVA branches and respective directions (from>to).')
parser.add_argument(
'--diva_rho_decorrelation',
default=[300, 300, 300],
nargs='+',
type=float,
help='Weights for adversarial Separation of embeddings.')
parser.add_argument('--diva_alpha_ssl',
default=0.3,
type=float,
help='Weighting for self-supervised adv. decorrelation loss.')
parser.add_argument('--diva_alpha_shared',
default=0.3,
type=float,
help='Weighting for shared adv. decorrelation loss.')
parser.add_argument('--diva_alpha_intra',
default=0.3,
type=float,
help='Weighting for intra adv. decorrelation loss.')
### Adversarial Separation Loss
parser.add_argument('--diva_decorrnet_dim', default=512, type=int)
parser.add_argument('--diva_decorrnet_lr', default=0.00001, type=float)
### (Fast) Momentum Contrast Loss
parser.add_argument('--diva_moco_momentum', default=0.9, type=float)
parser.add_argument('--diva_moco_temperature', default=0.01, type=float)
parser.add_argument('--diva_moco_n_key_batches', default=30, type=int)
parser.add_argument('--diva_moco_lower_cutoff', default=0.5, type=float)
parser.add_argument('--diva_moco_upper_cutoff', default=1.4, type=float)
parser.add_argument('--diva_moco_temp_lr', default=0.0005, type=float)
parser.add_argument('--diva_moco_trainable_temp', action='store_true', help='')
return parser
#######################################
def maxentropy_parameters(parser):
parser.add_argument('--maxentropy_tau',
nargs='+',
default=[10000],
type=int)
parser.add_argument('--maxentropy_gamma', default=0.1, type=float)
parser.add_argument('--maxentropy_chunksize', default=128, type=int)
parser.add_argument('--maxentropy_iter', default=10, type=int)
parser.add_argument('--maxentropy_lrmulti', default=1, type=float)
parser.add_argument('--maxentropy_latent', default=100, type=int)
parser.add_argument('--maxentropy_w', default=0.1, type=float)
parser.add_argument('--with_entropy', action='store_true')
return parser
#######################################
def extension_parameters(parser):
parser.add_argument(
'--ext_svd_reg',
default=0,
type=float,
help='If set, regularizes the embedding space variance')
return parser
#######################################
def wandb_parameters(parser):
### Wandb Log Arguments
parser.add_argument('--log_online', action='store_true')
parser.add_argument('--online_backend',
default='wandb',
type=str,
help='Options are currently: wandb & comet')
parser.add_argument('--wandb_key',
default='<your_key_here>',
type=str,
help='Options are currently: wandb & comet')
parser.add_argument(
'--project',
default='Sample_Runs',
type=str,
help=
'W&B project folder name.'
)
parser.add_argument(
'--group',
default='Sample_Run',
type=str,
help=
'W&B group name > merges runs with multiple different seeds.'
)
return parser
#######################################
def loss_specific_parameters(parser):
### Contrastive Loss
parser.add_argument(
'--loss_contrastive_pos_margin',
default=0,
type=float,
help='positive and negative margins for contrastive pairs.')
parser.add_argument(
'--loss_contrastive_neg_margin',
default=1,
type=float,
help='positive and negative margins for contrastive pairs.')
### Triplet-based Losses
parser.add_argument('--loss_triplet_margin',
default=0.2,
type=float,
help='Margin for Triplet Loss')
### MarginLoss
parser.add_argument(
'--loss_margin_margin',
default=0.2,
type=float,
help='Learning Rate for class margin parameters in MarginLoss')
parser.add_argument(
'--loss_margin_beta_lr',
default=0.0005,
type=float,
help='Learning Rate for class margin parameters in MarginLoss')
parser.add_argument('--loss_margin_beta',
default=1.2,
type=float,
help='Initial Class Margin Parameter in Margin Loss')
parser.add_argument('--loss_margin_nu',
default=0,
type=float,
help='Regularisation value on betas in Margin Loss.')
parser.add_argument('--loss_margin_beta_constant', action='store_true')
### ProxyNCA
parser.add_argument('--loss_proxynca_lrmulti',
default=50,
type=float,
help='')
parser.add_argument('--loss_proxynca_sphereradius',
default=3,
type=float,
help='')
parser.add_argument('--loss_proxynca_temperature',
default=1,
type=float,
help='')
parser.add_argument('--loss_proxynca_convert_to_p',
action='store_true',
help='')
parser.add_argument('--loss_proxynca_cosine_dist', action='store_true')
parser.add_argument('--loss_proxynca_sq_dist', action='store_true')
#NOTE: The number of proxies is determined by the number of data classes.
### ProxyAnchor
parser.add_argument('--loss_oproxy_lrmulti',
default=2000,
type=float,
help='')
parser.add_argument('--loss_oproxy_pos_alpha',
default=32,
type=float,
help='')
parser.add_argument('--loss_oproxy_neg_alpha',
default=32,
type=float,
help='')
parser.add_argument('--loss_oproxy_pos_delta',
default=0.1,
type=float,
help='')
parser.add_argument('--loss_oproxy_neg_delta',
default=-0.1,
type=float,
help='')
parser.add_argument('--loss_oproxy_mode',
default='anchor',
type=str,
help='')
parser.add_argument('--loss_oproxy_euclidean',
action='store_true',
help='')
parser.add_argument('--loss_oproxy_detach_proxies',
action='store_true',
help='')
parser.add_argument('--loss_oproxy_warmup_it',
default=0,
type=int,
help='')
### NPair L2 Penalty
parser.add_argument(
'--loss_npair_l2',
default=0.005,
type=float,
help=
'L2 weight in NPair. Note: Set to 0.02 in paper, but multiplied with 0.25 in the implementation as well.'
)
### Angular Loss
parser.add_argument('--loss_angular_alpha',
default=45,
type=float,
help='Angular margin in degrees.')
parser.add_argument(
'--loss_angular_npair_ang_weight',
default=2,
type=float,
help='relative weighting between angular and npair contribution.')
parser.add_argument(
'--loss_angular_npair_l2',
default=0.005,
type=float,
help='relative weighting between angular and npair contribution.')
### Multisimilary Loss
parser.add_argument('--loss_multisimilarity_pos_weight',
default=2,
type=float,
help='Weighting on positive similarities.')
parser.add_argument('--loss_multisimilarity_neg_weight',
default=40,
type=float,
help='Weighting on negative similarities.')
parser.add_argument(
'--loss_multisimilarity_margin',
default=0.1,
type=float,
help='Distance margin for both positive and negative similarities.')
parser.add_argument('--loss_multisimilarity_pos_thresh',
default=0.5,
type=float,
help='Exponential pos. thresholding.')
parser.add_argument('--loss_multisimilarity_neg_thresh',
default=0.5,
type=float,
help='Exponential neg. thresholding.')
parser.add_argument('--loss_multisimilarity_d_mode',
default='cosine',
type=str,
help='Type of distances to compute.')
### Quadruplet Loss
parser.add_argument('--loss_quadruplet_alpha1',
default=1,
type=float,
help='')
parser.add_argument('--loss_quadruplet_alpha2',
default=0.5,
type=float,
help='')
parser.add_argument('--loss_quadruplet_margin_alpha_1',
default=0.2,
type=float,
help='')
parser.add_argument('--loss_quadruplet_margin_alpha_2',
default=0.2,
type=float,
help='')
### Normalized Softmax Loss
parser.add_argument('--loss_arcface_lr',
default=0.0005,
type=float,
help='')
parser.add_argument('--loss_arcface_angular_margin',
default=0.5,
type=float,
help='')
parser.add_argument('--loss_arcface_feature_scale',
default=16,
type=float,
help='')
return parser
#######################################
def batchmining_specific_parameters(parser):
### Distance-based_Sampling
parser.add_argument('--miner_distance_lower_cutoff',
default=0.5,
type=float)
parser.add_argument('--miner_distance_upper_cutoff',
default=1.4,
type=float)
### Spectrum-Regularized Miner
parser.add_argument('--miner_rho_distance_lower_cutoff',
default=0.5,
type=float)
parser.add_argument('--miner_rho_distance_upper_cutoff',
default=1.4,
type=float)
parser.add_argument('--miner_rho_distance_cp', default=0.2, type=float)
return parser
#######################################
def batch_creation_parameters(parser):
parser.add_argument('--data_sampler',
default='class_random',
type=str,
help='How the batch is created.')
parser.add_argument('--data_ssl_set', action='store_true')
parser.add_argument(
'--samples_per_class',
default=2,
type=int,
help=
'Number of samples in one class drawn before choosing the next class. Set to >1 for losses other than ProxyNCA.'
)
return parser
#####################################
def opt_filter(opt):
vopt = vars(opt)
keys = list(vopt.keys())
for key in keys:
if 'loss_' + opt.loss not in key and 'loss_' in key:
del vopt[key]
if 'miner_' + opt.batch_mining not in key and 'miner_' in key:
del vopt[key]
if 'ext_' + opt.extension not in key and 'ext_' in key:
del vopt[key]