-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
326 lines (289 loc) · 12.8 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding: utf-8 -*-
# @Time : 2021/01/24
# @Author : Cong Wang
# @Github :https://github.com/CongWang98
import os
import math
import torch
import rmsd
import argparse
import numpy as np
from tqdm import tqdm
from model import FCAE, AEparameter
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sklearn.preprocessing as preprocessing
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from preprocessing import LoadLmpsFile, LoadAngDihFile, LoadLatentFile, CalAngle, CalDihedral, get_dis, get_abs, get_ang, SampleData, findCA
def args_parse():
ap = argparse.ArgumentParser()
ap.add_argument('-ds', '--dataset', default='example')
ap.add_argument('-mt', '--modelname_time', default=None)
ap.add_argument('-cc', '--clusters_count', default=10, type=int)
ap.add_argument('-sr', '--samplerate', default=0.1, type=float)
#ap.add_argument('-ld', '--latentdim', default=10, type=int)
#ap.add_argument('-ids', '--inter_dims', nargs='+', type=int, default=[1000, 1000, 1000])
return ap.parse_args()
def GetCoor(a, b, c, angle, dihedral, bondlength):
"""
The sequance is a-b-c-d. Give a angle(0-1, unit:pi), a dihedral(0-1, unit:2*pi) and the coordinate(unit: A) of a, b, c,
return the coordinate of d.
"""
ang = angle * math.pi
dih = dihedral * 2 * math.pi
ba = np.array(a) - np.array(b)
bc = np.array(c) - np.array(b)
n1 = np.cross(ba, bc)
cb_yan = bc / get_abs(bc) * (get_abs(ba) * math.cos(get_ang(a, b, c) * math.pi))
ha = ba - cb_yan
bc_yan = - bc / get_abs(bc) * (bondlength * math.cos(ang))
hd = n1 / get_abs(n1) * (bondlength * math.sin(ang) * math.sin(dih))
hh = ha / get_abs(ha) * (bondlength * math.sin(ang) * math.cos(dih))
return c + bc_yan + hh + hd
def CalBondLength(coor_frame):
"""
Give a frame of CGed trajectory, return the 'bond' length.
"""
atom_lis = coor_frame.reshape(-1, 3)
length_lis = []
for i in range(len(atom_lis) - 1):
atom1 = atom_lis[i]
atom2 = atom_lis[i + 1]
bond_length = (((atom2 - atom1) ** 2).sum()) ** (1 / 2)
length_lis.append(bond_length)
return np.array(length_lis)
def CalAveBondLength(coorlis):
"""
Give a coorlis, return the average bond length list.
"""
bond_lis_lis = np.array([CalBondLength(i) for i in coorlis])
return bond_lis_lis.mean(0)
def AngdihToCoor(angdihlis, bondlength_lis):
"""
Convert to a angdihlis to coordination list.
"""
atom_num = int((len(angdihlis) + 5) / 2)
if atom_num != len(bondlength_lis) + 1:
raise ValueError('Inconsistant atom number')
coor_lis = []
angle = angdihlis[0]
a = [0, 0, 0]
b = [0, 0, bondlength_lis[0]]
c = [0, bondlength_lis[1] * math.sin(angle * math.pi), bondlength_lis[0] - bondlength_lis[1] * math.cos(angle * math.pi)]
coor_lis = np.array(coor_lis + a + b + c)
for i in range(atom_num - 3):
dihedral, angle = angdihlis[2 * i + 1], angdihlis[2 * i + 2]
a, b, c = coor_lis[3 * i: 3 * i + 3], coor_lis[3 * i + 3: 3 * i + 6], coor_lis[3 * i + 6: 3 * i + 9]
bondlength = bondlength_lis[i + 2]
d = GetCoor(a, b, c, angle, dihedral, bondlength)
coor_lis = np.concatenate((coor_lis, d), axis=0)
return np.array(coor_lis)
def GenePdbString(coor_frame, CAlis=None):
"""
Give a coor_frame , return pdb file string.
"""
pdbs = 'CRYST1 60.000 60.000 60.000 90.00 90.00 90.00 P 1 1\n'
atomlis = coor_frame.reshape(-1, 3)
if not CAlis:
CAlis = ['ALA'] * len(atomlis)
elif len(CAlis) != len(atomlis):
raise IndexError('Length of CA list not equal to length of CA index lis')
for i in range(len(atomlis)):
pdbs += 'ATOM {:>3d} CA {} A {:>2d} {:7.3f} {:7.3f} {:7.3f} 1.00 0.00 C\n'.format(i + 1, CAlis[i], i + 1, atomlis[i][0], atomlis[i][1], atomlis[i][2])
pdbs += 'END\n'
return pdbs
def CoorlisToLmpstrj(coorlis, outfilepath, boxlength=60):
"""
Generate lammps trajectory based on the given coorlis.
"""
frame = len(coorlis)
if len(coorlis[0]) % 3 != 0:
raise ValueError('length of coorlis % 3 != 0')
atom = int(len(coorlis[0]) / 3)
f = open(outfilepath)
for i in range(frame):
coor_frame = coorlis[i]
minx = min([coor_frame[j] for j in range(0, len(coor_frame), 3)])
miny = min([coor_frame[j] for j in range(1, len(coor_frame), 3)])
minz = min([coor_frame[j] for j in range(0, len(coor_frame), 3)])
f.write('ITEM: TIMESTEP\n{}\n'.format(i))
f.write('ITEM: NUMBER OF ATOMS\n{}\n'.format(atom))
f.write('ITEM: BOX BOUNDS pp pp pp\n{} {}\n{} {}\n{} {}'.format(minx,
minx + boxlength, miny, miny + boxlength,
minz, minz + boxlength))
f.write('ITEM: ATOMS id type xu yu zu\n')
for j in range(atom):
x_, y_, z_ = coor_frame[3 * j], coor_frame[3 * j + 1], coor_frame[3 * j + 2]
f.write('{}\t{}\t{}\t{}\t{}\n'.format(j + 1, 1, x_, y_, z_))
f.close()
print('[INFO] Re-build a trj file {} from a coordinate list'.format(outfilepath))
def ConformationPlot(coor_frame):
"""
Give a frame of trajectory, plot it.
"""
x_lis = [coor_frame[j] for j in range(0, len(coor_frame), 3)]
y_lis = [coor_frame[j] for j in range(1, len(coor_frame), 3)]
z_lis = [coor_frame[j] for j in range(2, len(coor_frame), 3)]
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_lis, y_lis, z_lis, c='r', s=30)
ax.set_zlabel('z')
ax.set_ylabel('y')
ax.set_xlabel('x')
plt.show()
def CalRmsdFrame(coor_frame, ref_coor_frame):
"""
Calculate the rmsd between two frames.
"""
coor_tmp = coor_frame.reshape(-1, 3)
ref_tmp = ref_coor_frame.reshape(-1, 3)
coor_tmp -= rmsd.centroid(coor_tmp)
ref_tmp -= rmsd.centroid(ref_tmp)
return rmsd.kabsch_rmsd(coor_tmp, ref_tmp)
def GetRmsd(outangdihlis, coorlis):
"""
Reconstruct the coordination list from a angdih list, then calculate rmsd.
"""
ave_bond = CalAveBondLength(coorlis)
print('average bond length:\n', ave_bond)
out_coorlis = []
for frame in tqdm(outangdihlis, desc='[INFO] reconstructing'):
out_coorlis.append(AngdihToCoor(frame, ave_bond))
out_coorlis = np.array(out_coorlis)
rmsd_lis = []
for i in tqdm(range(len(coorlis))):
rmsd_lis.append(CalRmsdFrame(coorlis[i], out_coorlis[i]))
return np.array(rmsd_lis)
def LoadAll(dataset, modelname_time):
"""
Load coordination list, angdih list and latent list.
"""
coor_path = 'trajectory/{}/ca_lmptrj'.format(dataset)
angdih_path = 'dataset/{}'.format(dataset)
latent_path = 'training_result/{}/{}/latent'.format(dataset, modelname_time)
latentfiles = [i for i in os.listdir(latent_path) if i.split('.')[-1] == 'latent']
angfiles = [i for i in os.listdir(angdih_path) if i.split('.')[-1] == 'angdih']
lmpsfiles = [i for i in os.listdir(coor_path) if i.split('.')[-1] == 'lammpstrj']
angfiles.sort()
lmpsfiles.sort()
latentfiles.sort()
lmpslis, angdihlis, latentlis= [], [], []
for i in tqdm(range(len(lmpsfiles)), desc='[INFO] Loading trj, angdih and latent file...'):
if not angfiles[i].split('.')[0] == lmpsfiles[i].split('.')[0] == latentfiles[i].split('.')[0]:
print(lmpsfiles, angfiles, latentfiles)
raise TypeError('Wrong file name')
lmpslis.append(LoadLmpsFile(coor_path + '/' + lmpsfiles[i], verbose=0))
angdihlis.append(LoadAngDihFile(angdih_path + '/' + angfiles[i], verbose=0)[-1])
latentlis.append(LoadLatentFile(latent_path + '/' + latentfiles[i], verbose=0)[1])
lmpslis_t = lmpslis[0]
for i in range(len(lmpslis) - 1):
lmpslis_t = np.vstack((lmpslis_t, lmpslis[i + 1]))
angdihlis_t = angdihlis[0]
for i in range(len(angdihlis) - 1):
angdihlis_t = np.vstack((angdihlis_t, angdihlis[i + 1]))
latentlis_t = latentlis[0]
for i in range(len(latentlis) - 1):
latentlis_t = np.vstack((latentlis_t, latentlis[i + 1]))
return lmpslis_t, angdihlis_t, latentlis_t
if __name__ == "__main__":
# Load all the parameters
args = args_parse()
dataset = args.dataset
model_time = args.modelname_time
#latent_dim = args.latentdim
#inter_dims = args.inter_dims
samplerate = args.samplerate
n_clusters = args.clusters_count
# Extract all alpha-carbon
_, CAlis = findCA(dataset)
# Load all the files
coorlis, angdihlis, latentlis = LoadAll(dataset, model_time)
# Calculate the mean and scale of the angle-dihedral data
#stand_scaler = preprocessing.StandardScaler()
#xtotal_stand = stand_scaler.fit_transform(angdihlis)
#xmean = stand_scaler.mean_
#xscale = stand_scaler.scale_
#print('xmean:', xmean)
#print('xscale:', xscale)
# Load the trained model
#checkpoint_folder = 'training_result/{}/{}/checkpoint'.format(dataset, model_time)
#for file in os.listdir(checkpoint_folder):
# if file.split('_')[0] == 'final':
# checkpoint_path = checkpoint_folder + '/' + file
#para = AEparameter(len(angdihlis[0]),inter_dims, latent_dim)
#myae = FCAE(para)
#myae.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
# Sample data to decrease calculation complexity
latentlis_s = SampleData(latentlis, samplerate)
coorlis_s = SampleData(coorlis, samplerate)
# Tsne
myTsne = TSNE(n_components=2, verbose=0)
embedlis_s = myTsne.fit_transform(latentlis_s)
print('[INFO] t-SNE embedding completed.')
# K-means clustering
km = KMeans(n_clusters=n_clusters, verbose=0)
km.fit(latentlis_s)
labellis_s = km.labels_
center = km.cluster_centers_
print('[INFO] K-means clustering completed. {} clusters divided.'.format(n_clusters))
# Divide sample data to different clusters
clusters_coor = [[] for i in range(n_clusters)]
clusters_latent = [[] for i in range(n_clusters)]
clusters_embed = [[] for i in range(n_clusters)]
for i in range(len(labellis_s)):
clusters_coor[labellis_s[i]].append(coorlis_s[i])
clusters_latent[labellis_s[i]].append(latentlis_s[i])
clusters_embed[labellis_s[i]].append(embedlis_s[i])
print('[INFO] The number of frames of each cluster:')
for i in range(len(clusters_coor)):
print('cluster {}: {} frames'.format(i + 1, len(clusters_coor[i])))
# Find the center of each cluster and write pdb files
center_latent, center_coor, center_embed = [], [], []
rmsdlis = []
for i in tqdm(range(n_clusters), desc='[INFO] Generating pdb files of each cluster'):
centerpath = 'clustering_result/{}/{}/{}_clusters'.format(dataset, model_time, n_clusters)
if not os.path.exists(centerpath):
os.makedirs(centerpath)
clus = clusters_coor[i]
cluslatent = clusters_latent[i]
clusembed = clusters_embed[i]
for j in range(len(clus)):
if not os.path.exists(centerpath + '/cluster_{}'.format(i + 1)):
os.makedirs(centerpath + '/cluster_{}'.format(i + 1))
with open(centerpath + '/cluster_{}/{}.pdb'.format(i + 1, j + 1), 'w') as f:
f.write(GenePdbString(clus[j], CAlis))
center_latent_i = cluslatent[0]
center_coor_i = clus[0]
center_embed_i = clusembed[0]
indexi = 0
for j in range(len(cluslatent)):
if np.linalg.norm(center_latent_i - center[i]) > np.linalg.norm(center[i] - cluslatent[j]):
center_latent_i = cluslatent[j]
center_coor_i = clus[j]
center_embed_i = clusembed[j]
indexi = j
#print(center[i], center_latent_i)
center_latent.append(center_latent_i)
center_coor.append(center_coor_i)
center_embed.append(center_embed_i)
#rmsd_i = CalRmsdLis(np.array(groupcoor[i]), np.array(center_coor_i)).mean()
with open(centerpath + '/cluster_{}_center.pdb'.format(i + 1), 'w') as f:
f.write(GenePdbString(center_coor_i, CAlis))
print('[INFO] Center structure of each cluster saved.')
center_latent = np.array(center_latent)
center_coor = np.array(center_coor)
center_embed = np.array(center_embed)
#print(len(center_embed))
#print(center_embed)
# Plot tsne figure
plt.scatter(embedlis_s[:,0], embedlis_s[:,1],c=labellis_s, cmap=plt.cm.get_cmap('rainbow', n_clusters), alpha=0.8, s=2)
#plt.scatter(center_embed[:,0], center_embed[:,1],c=[i for i in range(n_clusters)], cmap=plt.cm.get_cmap('rainbow', n_clusters), marker='o', s=100)
cb=plt.colorbar()
cb.set_ticks([])
cb.set_label('clusters')
plt.xticks([])
plt.yticks([])
plt.title('Visualization of latent space using t-SNE')
plt.savefig(centerpath + '/tsne.png', dpi=150)
print('[INFO] t-SNE figure saved.')