-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
73 lines (60 loc) · 1.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
# @Time : 2021/01/24
# @Author : Cong Wang
# @Github :https://github.com/CongWang98
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def block(in_c, out_c):
layers = [
nn.Linear(in_c, out_c),
nn.ReLU(True)
]
return layers
class AEncoder(nn.Module):
def __init__(self, input_dim, inter_dims=[500, 500, 2000], hid_dim=10):
super().__init__()
layerlist = block(input_dim, inter_dims[0])
for i in range(len(inter_dims) - 1):
layerlist += block(inter_dims[i], inter_dims[i + 1])
self.encoder = nn.Sequential(*layerlist)
self.mu = nn.Linear(inter_dims[-1], hid_dim)
def forward(self, x):
e = self.encoder(x)
mu = self.mu(e)
return mu
class ADecoder(nn.Module):
def __init__(self, input_dim, inter_dims=[500, 500, 2000], hid_dim=10):
super().__init__()
layerlist = block(hid_dim, inter_dims[-1])
for i in range(len(inter_dims) - 1):
layerlist += block(inter_dims[- i - 1], inter_dims[- i - 2])
layerlist.append(nn.Linear(inter_dims[0], input_dim))
self.decoder = nn.Sequential(*layerlist)
def forward(self, z):
x_pred = self.decoder(z)
return x_pred
class FCAE(nn.Module):
def __init__(self, args):
super().__init__()
self.encoder = AEncoder(
args.input_dim,
args.inter_dims,
args.hid_dim
)
self.decoder = ADecoder(
args.input_dim,
args.inter_dims,
args.hid_dim
)
self.args = args
def forward(self, x):
mu = self.encoder(x)
self.z_mean = mu
return self.decoder(mu)
class AEparameter:
def __init__(self, input_dim, inter_dims, hid_dim):
self.input_dim = input_dim
self.inter_dims = inter_dims
self.hid_dim = hid_dim