-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
386 lines (340 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# -*- coding: utf-8 -*-
# @Time : 2021/01/24
# @Author : Cong Wang
# @Github :https://github.com/CongWang98
import matplotlib
matplotlib.use('agg')
import os
import re
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, TensorDataset
from torch.utils.data.sampler import SubsetRandomSampler
from tensorboardX import SummaryWriter
from sklearn import preprocessing
from model import FCAE, AEparameter
from preprocessing import LoadAngDihFile, SampleData, DivideAdlis
import matplotlib.pyplot as plt
import argparse
import time
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
time_now = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
modelname = 'FCAE'
random_seed = 114514
def split_indices(n, val_pct):
# Determine size of validation set
n_val = int(val_pct*n)
# Create random permutation of 0 to n-1
np.random.seed(random_seed)
idxs = np.random.permutation(n)
# Pick first n_val indices for validation set
return idxs[n_val:], idxs[:n_val]
def get_device():
"""Pick GPU if available, else CPU"""
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list, tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
class DeviceDataLoader():
"""Wrap a dataloader to move data to a device"""
def __init__(self, dl, device):
self.dl = dl
self.device = device
def __iter__(self):
"""Yield a batch of data after moving it to device"""
for b in self.dl:
yield to_device(b[0], self.device) # Modified dataloadder
def __len__(self):
"""Number of batches"""
return len(self.dl)
def PreprocessedDataToLoader(data, batchsize, device, val_pct=0.2, verbose=1):
x_dataset = TensorDataset(torch.from_numpy(data))
train_indices, val_indices = split_indices(len(x_dataset), val_pct=0.2)
train_sampler = SubsetRandomSampler(train_indices)
train_dl = DataLoader(x_dataset, batchsize, sampler=train_sampler)
train_dl_for_val = DataLoader(x_dataset, 5000, sampler=train_sampler)
valid_sampler = SubsetRandomSampler(val_indices)
valid_dl = DataLoader(x_dataset, 5000, sampler=valid_sampler)
train_dl = DeviceDataLoader(train_dl, device)
train_dl_for_val = DeviceDataLoader(train_dl_for_val, device)
valid_dl = DeviceDataLoader(valid_dl, device)
if verbose:
print('[INFO] Dataset divded. Train set: {} frames, val set: {} frames.'.format(len(train_indices), len(val_indices)))
return train_dl, valid_dl, train_dl_for_val
def loss_batch(model, xb, opt=None, useOriginData=False, mean=0, scale=1, lossf=nn.L1Loss()):
""" Calculate loss on a batch"""
# Generate predictions
if useOriginData:
xb = (xb - mean) / scale
preds = model(xb)
if useOriginData:
xb = mean + xb * scale
preds = mean + preds * scale
# Calculate loss
loss = lossf(xb, preds)
if opt is not None:
# Compute gradients
loss.backward()
# Update parameters
opt.step()
# Reset gradients
opt.zero_grad()
return loss.item(), len(xb)
def evaluate(model, valid_dl, useOriginData=False, mean=0, scale=1, lossf=nn.L1Loss()):
with torch.no_grad():
# Pass each batch through the model
results = [loss_batch(model, xb, useOriginData=useOriginData, mean=mean, scale=scale, lossf=lossf)
for xb in valid_dl]
# Separate losses, counts and metrics
losses, nums = zip(*results)
# Total size of the dataset
total = np.sum(nums)
# Avg. loss across batches
avg_loss = np.sum(np.multiply(losses, nums)) / total
return avg_loss, total
def fit(epochs, lr, model, data, batchsize, device, val_pct=0.2, opt_fn=torch.optim.Adam, lossf=nn.L1Loss(), output=0, verbose=1):
# Generate dataloader
train_dl, valid_dl, train_dl_for_val = PreprocessedDataToLoader(data, batchsize, device, val_pct=0.2, verbose=verbose)
losses = []
opt = opt_fn(model.parameters(), lr=lr)
step_batch = 0
train_len = len(data) - int(len(data) * val_pct)
batch_per_epoch = (train_len + batchsize - 1) // batchsize
for epoch in range(epochs):
# Training
if verbose:
pbar = tqdm(train_dl, leave=False, desc='[INFO] Epoch {}/{}'.format(epoch + 1, epochs))
else:
pbar = train_dl
# for xb in tqdm(train_dl, desc='[{}] Epoch {}/{}'.format(modelname, epoch + 1, epochs), leave=False):
for xb in pbar:
step_batch += 1
loss, _ = loss_batch(model, xb, opt, lossf=lossf)
if output and (step_batch - batch_per_epoch * epoch) % (batch_per_epoch / 10) == 0:
writer.add_scalar('batch_loss', loss, global_step=step_batch)
batch_train_result = evaluate(model, train_dl_for_val, lossf=lossf)
batch_train_loss, _ = batch_train_result
batch_val_result = evaluate(model, valid_dl, lossf=lossf)
batch_val_loss, _ = batch_val_result
writer.add_scalar('batch_train_loss', batch_train_loss, global_step=step_batch)
writer.add_scalar('batch_val_loss', batch_val_loss, global_step=step_batch)
# Evaluation
train_result = evaluate(model, train_dl_for_val, lossf=lossf)
train_loss, _ = train_result
val_result = evaluate(model, valid_dl, lossf=lossf)
val_loss, _ = val_result
if output:
writer.add_scalar('train_loss', train_loss, global_step=epoch + 1)
writer.add_scalar('val_loss', val_loss, global_step=epoch + 1)
# Record the loss & metric
losses.append(val_loss)
# Print progress
if verbose:
print('[INFO] Epoch {}/{}: train_loss: {:.4f}, val_loss: {:.4f}'
.format(epoch + 1, epochs, train_loss, val_loss))
if not os.path.exists('training_result/{}/{}_{}/checkpoint'.format(args.dataset, modelname, time_now)):
os.makedirs('training_result/{}/{}_{}/checkpoint'.format(args.dataset, modelname, time_now))
if output and (epoch + 1) % (epochs / 10) == 0:
torch.save(model.state_dict(), 'training_result/{}/{}_{}/checkpoint/e_{}_valloss_{:.4f}.pth'.format(args.dataset, modelname, time_now, epoch + 1, val_loss))
if output:
torch.save(model.state_dict(), 'training_result/{}/{}_{}/checkpoint/final_valloss_{:.4f}.pth'.format(args.dataset, modelname, time_now, val_loss))
return losses
def GenLatentFile(model, filepath, folderpath, dev, batchsize=1000):
'''
Generate a file contain latent space.
'''
_, _, adlis = LoadAngDihFile(filepath, verbose=0)
# print(adlis)
adstandlis = (adlis - stand_scaler.mean_)/stand_scaler.scale_
adset = TensorDataset(torch.tensor(adstandlis, dtype=torch.float32))
x_dl = DataLoader(adset, batchsize)
x_dl = DeviceDataLoader(x_dl, dev)
ifilename = re.split(r'[/\\]', filepath)[-1]
ofilename = re.split(r'[.]', ifilename)[0] + '.latent'
if not os.path.exists(folderpath):
os.makedirs(folderpath)
with open(folderpath + '/' + ofilename, 'w') as f:
for xb in tqdm(x_dl, desc='[INFO] {}'.format(ofilename), leave=False):
model(xb)
latentb = model.z_mean
for line in latentb:
f.write(' '.join([str(latent_ele.item()) for latent_ele in line]) + '\n')
def GenAllLatentFile(model, path, outfolder, dev):
'''
Generate latent file for all angdih files in a folder.
'''
files = os.listdir(path)
files.sort()
count = 0
for file in tqdm(files, desc='[INFO] {}'.format(path)):
if file.split('.')[-1] == 'angdih':
GenLatentFile(model, path + '/' + file, outfolder, dev)
count += 1
print('[INFO] {} latent files from {} generated'.format(count, path))
def log():
log_file = args.dataset + '.log'
with open(log_file, 'a') as f:
f.write('time: {}\tmodel: {}\tdataset: {}\t samplerate: {}\tbatchsize: {}\tepoch: {} \tlr: {}\topt: {}\ttime_cost: {:.2f} s\n'
.format(time_now, modelname, DATASET, SAMPLE_RATE, BATCH_SIZE, EPOCH, LR, OPT.__name__, tcost))
f.write('latent space dimension: {}\tinter_dims:{}\n'.format(LATENT_DIM, INTER_DIMS))
f.write('normalized_total_loss: {}\t, total_loss:{}\n'.format(adtotal_loss, total_loss))
print('[INFO]] Log file has been created.')
def args_parse():
ap = argparse.ArgumentParser()
ap.add_argument('-ds', '--dataset', default='example')
ap.add_argument('-bs', '--batchsize', default=1000, type=int)
ap.add_argument('-ep', '--epoch', default=100, type=int)
ap.add_argument('-opt', '--optimizefunction', default='Adam', type=str)
ap.add_argument('-lr', '--learningrate', default=0.001, type=float)
ap.add_argument('-no', '--no_output', action='store_false')
ap.add_argument('-sr', '--samplerate', default=0.1, type=float)
ap.add_argument('-ld', '--latentdim', default=10, type=int)
ap.add_argument('-ids', '--inter_dims', nargs='+', type=int, default=[1000, 1000, 1000])
return ap.parse_args()
if __name__ == "__main__":
args = args_parse()
DATASET = 'dataset/' + args.dataset
BATCH_SIZE = args.batchsize
EPOCH = args.epoch
LR = args.learningrate
if args.optimizefunction == 'Adam':
OPT = torch.optim.Adam
elif args.optimizefunction == 'SGD':
OPT = torch.optim.SGD
else:
raise ValueError('Optim function not supported now')
SAMPLE_RATE = args.samplerate
OUTPUT = args.no_output
LATENT_DIM = args.latentdim
INTER_DIMS = args.inter_dims
print('[INFO] batch size: {}, epoch: {}'.format(BATCH_SIZE, EPOCH))
print('[INFO] optim function: {}, learning rate: {}'.format(OPT.__name__, LR))
device = get_device()
print('[INFO] device: {}'.format(device))
# Extract dataset from a give folder
filelis = os.listdir(DATASET)
filelis.sort()
x_lis = []
atomset = set()
frametotal = 0
filecount = 0
for file in tqdm(filelis, desc='[INFO] Loading trajectory in {}'.format(DATASET), leave=False):
if file.split('.')[-1] != 'angdih':
continue
filecount += 1
frame, atom, tmp = LoadAngDihFile(DATASET + '/' + file, verbose=0)
frametotal += frame
atomset.add(atom)
# tmplis = SampleData(tmp, SAMPLE_RATE)
x_lis.append(tmp)
print('[INFO] {} trajectory loaded in {}'.format(filecount, DATASET))
xtotal = x_lis[0]
for i in range(len(x_lis) - 1):
xtotal = np.vstack((xtotal, x_lis[i + 1]))
# preprocess
stand_scaler = preprocessing.StandardScaler()
xtotal_stand = stand_scaler.fit_transform(xtotal)
xmean = to_device(torch.tensor(stand_scaler.mean_, dtype=torch.float32), device)
xscale = to_device(torch.tensor(stand_scaler.scale_, dtype=torch.float32), device)
#print('xmean:', xmean)
#print('xscale:', xscale)
x_stand = SampleData(xtotal_stand, SAMPLE_RATE)
if len(atomset) != 1:
raise ValueError('wrong atom number.')
DATASET_SIZE = len(x_stand)
ATOM_NUM = atomset.pop()
print('[INFO] All files loaded. Frame in total: {}, atom: {}, frame sampled: {}'
.format(frametotal, ATOM_NUM, DATASET_SIZE))
# Construct the model
param = AEparameter(2 * ATOM_NUM - 5, INTER_DIMS, LATENT_DIM)
net = FCAE(param)
to_device(net, device)
if OUTPUT:
writer = SummaryWriter(logdir='training_result/{}/{}_{}/tensorboard'.format(args.dataset, modelname, time_now))
# Print model's state_dict
print("[INFO] Model's stucture:")
for param_tensor in net.state_dict():
print(param_tensor, '\t', net.state_dict()[param_tensor].size())
# Train the model
tbegin = time.time()
losses1 = fit(EPOCH, LR, net, x_stand, BATCH_SIZE, device, opt_fn=OPT, output=OUTPUT, verbose=1)
tend = time.time()
tcost = tend - tbegin
print('[INFO] time cost: {:.2f} s'.format(tcost))
# Convert np.array to torch Dataloader
xtotal_dataset = TensorDataset(torch.from_numpy(xtotal_stand))
adtotal_dataset = TensorDataset(torch.from_numpy(xtotal))
xtotal_dl = DataLoader(xtotal_dataset, 5000)
adtotal_dl = DataLoader(adtotal_dataset, 5000)
# Warp the dataloader to the given device.
xtotal_dl = DeviceDataLoader(xtotal_dl, device)
adtotal_dl = DeviceDataLoader(adtotal_dl, device)
# Print the performance on the whole dataset
total_loss, _ = evaluate(net, xtotal_dl, lossf=nn.L1Loss())
adtotal_loss, _ = evaluate(net, adtotal_dl, useOriginData=True,
mean=xmean, scale=xscale, lossf=nn.L1Loss())
print('[INFO] loss on whole set: {:.4f}, origin loss: {:.4f}'
.format(total_loss, adtotal_loss))
params = list(net.named_parameters())
#print(params.__len__())
#print(params[0])
#print(params[-1])
# Generate latent file
if OUTPUT:
latent_path = 'training_result/{}/{}_{}/latent'.format(args.dataset, modelname, time_now)
os.makedirs(latent_path)
GenAllLatentFile(net, DATASET, latent_path, device)
# Write the log file
if OUTPUT:
log()
# Output the comparison images
if OUTPUT:
pre_tmplist = []
for dl in tqdm(xtotal_dl, desc='[INFO] predicting...'):
tmp = net(dl)
pre_tmplist.append(np.array((tmp * xscale + xmean).cpu().detach()))
preadlis = pre_tmplist[0]
for i in range(len(pre_tmplist) - 1):
preadlis = np.vstack((preadlis, pre_tmplist[i + 1]))
addelis = DivideAdlis(xtotal)
preaddelis = DivideAdlis(preadlis)
outpath = 'training_result/{}/{}_{}/image'.format(args.dataset, modelname, time_now)
if not os.path.exists(outpath):
os.makedirs(outpath)
fig = plt.figure(figsize=(10, 5))
for n in tqdm(range(ATOM_NUM * 2 - 5), desc='[INFO] plotting...'):
if n % 2:
title = 'Distribution of dihedral {}'.format(1 + n // 2)
xlable = r'dihedral angle (unit: ${\rm 2\pi}$)'
outfile = 'dihedral_{}.png'.format(1 + n // 2)
else:
title = 'Distribution of angle {}'.format(1 + n // 2)
xlable = r'angle (unit: ${\rm \pi}$)'
outfile = 'angle_{}.png'.format(1 + n // 2)
ax1 = plt.subplot(1, 2, 1)
range_ = (min(addelis[n]), max(addelis[n]))
plt.hist(addelis[n], bins=100, range=range_)
plt.title('input')
plt.xlabel(xlable)
plt.ylabel('frequency')
# ax1.set_title('Input')
ax2 = plt.subplot(1, 2, 2)
plt.hist(preaddelis[n], bins=100, range=range_)
plt.title('prediction')
plt.xlabel(xlable)
plt.ylabel('frequency')
fig.tight_layout()
plt.suptitle(title)
plt.savefig(outpath + '/' + outfile)
plt.clf()
plt.close()
print('[INFO] {} images have been plotted.'.format(ATOM_NUM * 2 - 5))