-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_agiqa1k.py
163 lines (123 loc) · 4.26 KB
/
train_agiqa1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import shutil
from pathlib import Path
from tqdm import tqdm
import warnings
import argparse
from omegaconf import OmegaConf
import random
import numpy as np
import torch
import torch.distributed as dist
from ipiqa.common.dist_utils import (
init_distributed_mode,
main_process,
)
from trainer import Trainer
from ipiqa.processors import load_processor
from ipiqa.datasets.agiqa_datasets import AGIQA1k
from ipiqa.common.registry import registry
from ipiqa.common.logger import setup_logger
from ipiqa.tasks import setup_task
from ipiqa.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
ConstantLRScheduler,
) # add to the registry by import them
import pandas as pd
warnings.filterwarnings('ignore')
def now():
from datetime import datetime
return datetime.now().strftime("%Y%m%d%H%M")[:-1]
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def get_config(args):
cfg_path = Path(args.cfg_path)
assert cfg_path.suffix == '.yaml', 'config file must be .yaml file'
config = OmegaConf.load(cfg_path)
init_distributed_mode(config.run)
return config
def get_transforms(config) -> dict:
dataset_cfg = config.dataset
transforms = {}
transforms['train'] = load_processor(**dataset_cfg.transform_train)
transforms['val'] = load_processor(**dataset_cfg.transform_val)
return transforms
def get_datasets(config,transforms) -> dict:
def agiqa1k_split_fn(info):
train_rec, val_rec = set(), set()
train_info = []
val_info = []
for i in range(info.shape[0]):
image_name = info.iloc[i, 0][:-4]
image_name_split = image_name.split("_")
code1 = int(image_name_split[1])
code2 = int(image_name_split[2])
if image_name.startswith("dream"):
code1 = code1 + 1 if code1 > 5 else code1
code2 += 5
code = str(code1) + "_" + str(code2)
if code not in train_rec and code not in val_rec:
if random.random() < 0.8:
train_rec.add(code)
train_info.append(i)
else:
val_rec.add(code)
val_info.append(i)
elif code in train_rec:
train_info.append(i)
else:
val_info.append(i)
train_info = info.iloc[train_info]
val_info = info.iloc[val_info]
return train_info, val_info
dataset_cfg = config.dataset
datasets = {}
data_info = dataset_cfg.data_path
vis_root = dataset_cfg.vis_root
data_info = pd.read_excel(data_info)
train_info, val_info = agiqa1k_split_fn(data_info)
datasets["train"] = AGIQA1k(train_info,transforms['train'],vis_root)
datasets['val'] = AGIQA1k(val_info,transforms['val'],vis_root)
return datasets
def get_model(config):
model_cfg = config.model
print(registry.list_models())
model_cls = registry.get_model_class(model_cfg.arch)
return model_cls.from_config(model_cfg)
def main(config):
transforms = get_transforms(config)
datasets = get_datasets(config,transforms)
model = get_model(config)
task = setup_task(config)
job_id = now()
trainer = Trainer(config,model,datasets,task,job_id)
return trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg-path',type=str)
parser.add_argument('--seed',type=int,default=42)
parser.add_argument('--num_cv',type=int,default=1)
args = parser.parse_args()
seed_everything(args.seed)
config = get_config(args)
setup_logger()
metric_lst = []
results = {}
for i in range(args.num_cv):
metric_lst.append(main(config))
print(metric_lst)
key_lst = ["agg_metrics","PLCC","SROCC","KROCC","RMSE"]
value_lst = [0] * len(key_lst)
l = len(key_lst)
for i in range(l):
cur_key = key_lst[i]
value_lst[i] = sum([metric[cur_key] for metric in metric_lst])
results[cur_key] = value_lst[i] / args.num_cv
print(results)