-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUI_new.py
258 lines (205 loc) · 9.81 KB
/
UI_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from urllib.parse import urljoin
import dotenv
import pinecone
import requests
import streamlit as st
from humanloop import Humanloop
from langchain.chains import ConversationChain
from langchain.chains import create_extraction_chain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
# from webscraper import call_nhs_search
from langchain.chat_models import ChatOpenAI
from langchain.prompts import (
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder
)
# from utils import *
from sentence_transformers import SentenceTransformer
dotenv.load_dotenv()
import openai
import urllib.parse
dotenv.load_dotenv()
import os
import asyncio
import dotenv
dotenv.load_dotenv()
if os.name == 'nt':
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
OPENAI_API = os.getenv("OPENAI_API_KEY")
openai.api_key = OPENAI_API
cache_folder = "path/to/your/cache/directory"
model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder=cache_folder)
pinecone.init(
api_key="0deabe30-31e5-4385-a193-bbeff060b252", # find at app.pinecone.io
environment="gcp-starter" # next to api key in console
)
index = pinecone.Index('chatbot')
if 'buffer_memory' not in st.session_state:
st.session_state.buffer_memory = ConversationBufferWindowMemory(k=3, return_messages=True)
# Constants
HUMAN_LOOP_API_KEY = os.getenv("HUMAN_LOOP_API_KEY")
PROJECT_ID = os.getenv("PROJECT_ID")
# # add project ID
# PROJECT_ID = 'pr_KhtlyvJhwaWe0AE53pFLe'
hl = Humanloop(api_key=HUMAN_LOOP_API_KEY)
template_text = """
- Your primary goal is to provide information and guidance about medical treatment options based on the user's questions. Below is an example question; please answer accordingly.Don't include words like i am not a doctor,i am ai bot
- Question: 'What are the treatment options for asthma?'
Example:
- Question: 'Can you explain the different treatment options for asthma?'
- Answer: 'Certainly! There are several treatment options for asthma, including:
1. Inhalers (e.g., bronchodilators and corticosteroid inhalers) to relieve symptoms and reduce inflammation.
2. Corticosteroids (oral or inhaled) to control inflammation in the airways.
3. Immunotherapy for individuals with severe allergic asthma.
Please note that the specific treatment plan for asthma can vary depending on the severity of the condition and individual patient needs. Med-Xplain is an assistive technology. Please consult your physician for further guidance and prescriptions.'
"""
system_msg_template = SystemMessagePromptTemplate.from_template(template=template_text)
human_msg_template = HumanMessagePromptTemplate.from_template(template="{input}")
prompt_template = ChatPromptTemplate.from_messages(
[system_msg_template, MessagesPlaceholder(variable_name="history"), human_msg_template])
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=OPENAI_API)
conversation = ConversationChain(memory=st.session_state.buffer_memory, prompt=prompt_template, llm=llm, verbose=True)
def search_papers(search_term, page=1):
base_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi'
url = f'{base_url}?db=pubmed&term={search_term}&retmode=json&retstart={((page - 1) * 3)}&retmax=3'
try:
response = requests.get(url)
data = response.json()
pubmed_ids = data['esearchresult']['idlist']
results = []
for pubmed_id in pubmed_ids:
summary_url = f'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id={pubmed_id}&retmode=json'
summary_response = requests.get(summary_url)
summary_data = summary_response.json()
article_title = summary_data['result'][pubmed_id]['title']
article_url = f'https://pubmed.ncbi.nlm.nih.gov/{pubmed_id}/'
authors = summary_data['result'][pubmed_id]['authors']
author_names = [author['name'] for author in authors]
final_response = f"<a href='{article_url}' target='_blank'>{article_title}</a> by {', '.join(author_names)}"
results.append(final_response)
for result in results:
print(result)
return results
except requests.exceptions.RequestException as e:
print(f"Error: {str(e)}")
def find_match(input):
input_em = model.encode(input).tolist()
result = index.query(input_em, top_k=2, includeMetadata=True)
# return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text']
return result['matches'][0]
def query_refiner(query):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Given the following user query, refine it to be most suitable for retrieving an answer from a knowledge base:\n\nQuery: {query}\n\nRefined Query:",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['text'].strip()
def extract(content: str, schema: dict):
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613",
openai_api_key=OPENAI_API)
return create_extraction_chain(schema=schema, llm=llm).run(content)
def call_nhs_search(query):
from langchain.document_loaders import AsyncChromiumLoader
# from langchain.document_transformers import BeautifulSoupTransformer
from bs4 import BeautifulSoup
# Load HTML
loader = AsyncChromiumLoader(
[f"https://www.nhs.uk/search/results?q={urllib.parse.quote(query)})"])
html = loader.load()
soup = BeautifulSoup(html[0].page_content, "html.parser")
link_tags = soup.find_all('a')
# Create a list of dictionaries with title and href as key-value pairs
links_with_titles = [
{"page_title": tag.get_text().strip("\n "), "page_url": "https://www.nhs.uk/" + tag.get('href'), } for
tag in link_tags[11:-10]]
return links_with_titles
def run_conversation(content):
# Step 1: send the conversation and available functions to GPT
messages = [{"role": "user", "content": content}]
response = hl.chat_deployed(
project_id=PROJECT_ID,
messages=messages,
)
response = response.body["data"][0] # first response
if response.get("output") != None:
# Step 2: call the function
tool_name = response["output"]
# TODO: pubMed needs to return search arguments
if tool_name.startswith('pubMed'):
pubmed_args = response["output"].split("-")[1:]
tool_result = search_papers(search_term=pubmed_args)
elif tool_name.startswith('nhs'):
print("selected nhs")
# tool_result = "query_wolfram_alpha(query=tool_args.get('query'))"
nhs_args = response["output"].split("-")[1:]
tool_result = (
"Highlight the following links for my treatment options from the nhs, and also note that they are not a substitute for a physician's advice\t" + str(
call_nhs_search(query=" ".join(nhs_args))))
# return tool_result,tool_name
elif tool_name.startswith('pdf'):
print("selected pdf")
conversation = ConversationChain(memory=st.session_state.buffer_memory, prompt=prompt_template, llm=llm,
verbose=True)
refined_query = query_refiner(response)
context = find_match(refined_query)
tool_result = conversation.predict(input=f"Query:\n{context}")
# tool_result = conversation.predict(input=f"Query:\n{response}")
# print(tool_result)
return tool_result
# tool_result = "query_wolfram_alpha(query=tool_args.get('query'))"
# response = conversation.predict(input=f"Query:\n{query}")
# response = limit_words(response)
else:
raise NotImplementedError("My code does not know about this tool!")
# Step 3: send the response back to the model
messages.append(
{
"role": "assistant",
# "name": tool_name,
"content": str(tool_result),
}
)
second_response = hl.chat_deployed(
project_id=PROJECT_ID,
messages=messages,
)
# print(second_response.body["data"])
return second_response.body["data"][0]["output"]
else:
return response
# Streamlit app - run if you want to use Streamlit
def run_app():
st.title("Med-Xplain")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("What can I help with?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Call your run_conversation function
response_data = run_conversation(prompt)
# if tool_name.startswith('nhs'):
# Extract the desired message from the response_data
# response_data = response_data["output"] if response_data else f"Error processing request: {prompt}"
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response_data)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response_data})
# Actually run the app
if __name__ == "__main__":
run_app()