-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot_main.py
52 lines (41 loc) · 1.84 KB
/
chatbot_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Define a function to simulate the chatbot responses
import os
import dotenv
import openai
from webscraper import call_nhs_search
dotenv.load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
def chatbot_response(user_input):
# In a real chatbot, you would implement the logic to generate responses here.
# For this example, let's just echo the user's input.
return f"You said: {user_input}"
def initial_chatbot_response(user_input):
# completion = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# temperature=0.3,
# messages=[
# {"role": "system", "content": "You are a consultant at a hospital. You are talking to a patient about their diagnosis. Analyse the patient's diagnosis and suggest treatments."},
# {"role": "user", "content": user_input},
# ]
# )
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0,
max_tokens=10,
messages=[
{"role": "system",
"content": "Return a 4 word search query to find treatments from inputted diagnosis."},
{"role": "user", "content": user_input},
]
)
print(completion)
print(completion["choices"][0]["message"]["content"])
# search nhs database for treatments of user diagnosis
extracted_treatment_pages = call_nhs_search(completion["choices"][0]["message"]["content"])
print(extracted_treatment_pages)
# take returned list of urls and scrape them for relevant information
# return relevant information to user
# TODO: Prepend "Information has been gathered by an automated AI model, please consider consulting a doctor for more information."
# TODO: Append "Would you like to know more about this treatment?"
return completion["choices"][0]["message"]["content"]
# lung cancer treatnebt options