-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
77 lines (62 loc) · 2.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from sentence_transformers import SentenceTransformer
import pinecone
import openai
import streamlit as st
openai.api_key = ""
cache_folder = "path/to/your/cache/directory"
model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder=cache_folder)
pinecone.init(
api_key="0deabe30-31e5-4385-a193-bbeff060b252", # find at app.pinecone.io
environment="gcp-starter" # next to api key in console
)
index = pinecone.Index('langchain-chatbot')
def find_match(input):
input_em = model.encode(input).tolist()
result = index.query(input_em, top_k=2, includeMetadata=True)
return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text']
def query_refiner(conversation, query):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['text']
def get_conversation_string():
conversation_string = ""
for i in range(len(st.session_state['responses'])-1):
conversation_string += "Human: "+st.session_state['requests'][i] + "\n"
conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n"
return conversation_string
def find_match(input):
print(input)
input_em = model.encode(input).tolist()
result = index.query(input_em, top_k=1, includeMetadata=True)
print(result)
return result['matches'][0]['metadata']['text']
#return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text']
def query_refiner(conversation, query):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:",
temperature=0.7,
max_tokens=100,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['text']
def get_conversation_string():
conversation_string = ""
for i in range(len(st.session_state['responses'])-1):
conversation_string += "Human: "+st.session_state['requests'][i] + "\n"
conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n"
return conversation_string
def limit_words(text, max_words=300):
words = text.split()
if len(words) > max_words:
return " ".join(words[:max_words]) + "..."
return text