@@ -26,19 +26,35 @@ Read the nuclear repulsion energy from the [enuc.dat](./input/h2o/STO-3G/enuc.da
26
26
27
27
Read the AO-basis [ overlap] ( ./input/h2o/STO-3G/s.dat )
28
28
29
- <img src =" ./figures/overlap.png " height =" 50 " >
29
+ <picture >
30
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/overlap.png " >
31
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/overlap.png " >
32
+ <img src =" ./figures/overlap.png " height =" 50 " >
33
+ </picture >
30
34
31
35
[ kinetic-energy] ( ./input/h2o/STO-3G/t.dat )
32
36
33
- <img src =" ./figures/kinetic-energy.png " height =" 50 " >
37
+ <picture >
38
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/kinetic-energy.png " >
39
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/kinetic-energy.png " >
40
+ <img src =" ./figures/kinetic-energy.png " height =" 50 " >
41
+ </picture >
34
42
35
43
[ nuclear-attraction integrals] ( ./input/h2o/STO-3G/v.dat )
36
44
37
- <img src =" ./figures/nuclear-attraction.png " height =" 55 " >
45
+ <picture >
46
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/nuclear-attraction.png " >
47
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/nuclear-attraction.png " >
48
+ <img src =" ./figures/nuclear-attraction.png " height =" 55 " >
49
+ </picture >
38
50
39
51
and store them in appropriately constructed matrices. Then form the "core Hamiltonian":
40
52
41
- <img src =" ./figures/core-hamiltonian.png " height =" 25 " >
53
+ <picture >
54
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/core-hamiltonian.png " >
55
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/core-hamiltonian.png " >
56
+ <img src =" ./figures/core-hamiltonian.png " height =" 25 " >
57
+ </picture >
42
58
43
59
Note that the one-electron integrals provided include only the * permutationally unique* integrals, but you should store the full matrices for convenience.
44
60
Note also that the AO indices on the integrals in the files start with "1" rather than "0".
@@ -52,24 +68,44 @@ Read the two-electron repulsion integrals from the
52
68
file.
53
69
The integrals in this file are provided in Mulliken notation over real AO basis functions:
54
70
55
- <img src =" ./figures/eri.png " height =" 45 " >
71
+ <picture >
72
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/eri.png " >
73
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/eri.png " >
74
+ <img src =" ./figures/eri.png " height =" 45 " >
75
+ </picture >
56
76
57
77
Hence, the integrals obey the eight-fold permutational symmetry relationships:
58
78
59
- <img src =" ./figures/permutational-symmetry.png " height =" 20 " >
79
+ <picture >
80
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/permutational-symmetry.png " >
81
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/permutational-symmetry.png " >
82
+ <img src =" ./figures/permutational-symmetry.png " height =" 20 " >
83
+ </picture >
60
84
61
85
and only the permutationally unique integrals are provided in the file, with the restriction that, for each integral, the following relationships hold:
62
86
63
- <img src =" ./figures/index-restrictions.png " height =" 20 " >
87
+ <picture >
88
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/index-restrictions.png " >
89
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/index-restrictions.png " >
90
+ <img src =" ./figures/index-restrictions.png " height =" 20 " >
91
+ </picture >
64
92
65
93
where
66
94
67
- <img src =" ./figures/compound-index-restrictions.png " height =" 20 " >
95
+ <picture >
96
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/compound-index-restrictions.png " >
97
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/compound-index-restrictions.png " >
98
+ <img src =" ./figures/compound-index-restrictions.png " height =" 20 " >
99
+ </picture >
68
100
69
101
Note that the two-electron integrals may be stored efficiently in a one-dimensional array and the above relationship used to map between given
70
102
&mu ; , &nu ; , &lambda ; , and &sigma ; indices and a "compound index" defined as:
71
103
72
- <img src =" ./figures/compound-index-restrictions2.png " height =" 20 " >
104
+ <picture >
105
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/compound-index-restrictions2.png " >
106
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/compound-index-restrictions2.png " >
107
+ <img src =" ./figures/compound-index-restrictions2.png " height =" 20 " >
108
+ </picture >
73
109
74
110
* [ Hint 1] ( ./hints/hint3-1.md ) : Compound indices
75
111
* [ Hint 2] ( ./hints/hint3-2.md ) : Pre-Computed Lookup Arrays
@@ -80,13 +116,21 @@ Note that the two-electron integrals may be stored efficiently in a one-dimensio
80
116
81
117
Diagonalize the overlap matrix:
82
118
83
- <img src =" ./figures/diag-mw-hessian.png " height =" 20 " >
119
+ <picture >
120
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/diag-mw-hessian.png " >
121
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/diag-mw-hessian.png " >
122
+ <img src =" ./figures/diag-mw-hessian.png " height =" 20 " >
123
+ </picture >
84
124
85
125
where L<sub >S</sub > is the matrix of eigenvectors (columns) and &Lambda ; <sub >S</sub > is the diagonal matrix of corresponding eigenvalues.
86
126
87
127
Build the symmetric orthogonalization matrix using:
88
128
89
- <img src =" ./figures/symm-orthog-matrix.png " height =" 25 " >
129
+ <picture >
130
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/symm-orthog-matrix.png " >
131
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/symm-orthog-matrix.png " >
132
+ <img src =" ./figures/symm-orthog-matrix.png " height =" 25 " >
133
+ </picture >
90
134
91
135
where the tilde denotes the matrix transpose.
92
136
@@ -97,21 +141,37 @@ where the tilde denotes the matrix transpose.
97
141
98
142
Form an initial (guess) Fock matrix in the orthonormal AO basis using the core Hamiltonian as a guess:
99
143
100
- <img src =" ./figures/initial-fock.png " height =" 25 " >
144
+ <picture >
145
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/initial-fock.png " >
146
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/initial-fock.png " >
147
+ <img src =" ./figures/initial-fock.png " height =" 25 " >
148
+ </picture >
101
149
102
150
Diagonalize the Fock matrix:
103
151
104
- <img src =" ./figures/diag-fock.png " height =" 20 " >
152
+ <picture >
153
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/diag-fock.png " >
154
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/diag-fock.png " >
155
+ <img src =" ./figures/diag-fock.png " height =" 20 " >
156
+ </picture >
105
157
106
158
Note that the &epsilon ; <sub >0</sub > matrix contains the initial orbital energies.
107
159
108
160
Transform the eigenvectors into the original (non-orthogonal) AO basis:
109
161
110
- <img src =" ./figures/transform-coeff.png " height =" 25 " >
162
+ <picture >
163
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/transform-coeff.png " >
164
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/transform-coeff.png " >
165
+ <img src =" ./figures/transform-coeff.png " height =" 25 " >
166
+ </picture >
111
167
112
168
Build the density matrix using the occupied MOs:
113
169
114
- <img src =" ./figures/density-matrix.png " height =" 55 " >
170
+ <picture >
171
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/density-matrix.png " >
172
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/density-matrix.png " >
173
+ <img src =" ./figures/density-matrix.png " height =" 55 " >
174
+ </picture >
115
175
116
176
where * m* indexes the columns of the coefficient matrices, and the summation includes only the occupied spatial MOs.
117
177
@@ -123,11 +183,19 @@ where *m* indexes the columns of the coefficient matrices, and the summation inc
123
183
124
184
The SCF electronic energy may be computed using the density matrix as:
125
185
126
- <img src =" ./figures/initial-scf-energy.png " height =" 60 " >
186
+ <picture >
187
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/initial-scf-energy.png " >
188
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/initial-scf-energy.png " >
189
+ <img src =" ./figures/initial-scf-energy.png " height =" 60 " >
190
+ </picture >
127
191
128
192
The total energy is the sum of the electronic energy and the nuclear repulsion energy:
129
193
130
- <img src =" ./figures/initial-total-energy.png " height =" 25 " >
194
+ <picture >
195
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/initial-total-energy.png " >
196
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/initial-total-energy.png " >
197
+ <img src =" ./figures/initial-total-energy.png " height =" 25 " >
198
+ </picture >
131
199
132
200
where * 0* denotes the initial SCF energy.
133
201
@@ -137,7 +205,11 @@ where *0* denotes the initial SCF energy.
137
205
138
206
Start the SCF iterative procedure by building a new Fock matrix using the previous iteration's density as:
139
207
140
- <img src =" ./figures/new-fock.png " height =" 60 " >
208
+ <picture >
209
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/new-fock.png " >
210
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/new-fock.png " >
211
+ <img src =" ./figures/new-fock.png " height =" 60 " >
212
+ </picture >
141
213
142
214
where the double-summation runs over all the AOs and * i-1* denotes the density for the last iteration.
143
215
@@ -150,34 +222,58 @@ Form the new density matrix following the same procedure as in Step #5 above:
150
222
151
223
Orthogonalize:
152
224
153
- <img src =" ./figures/orthog-fock.png " height =" 20 " >
225
+ <picture >
226
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/orthog-fock.png " >
227
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/orthog-fock.png " >
228
+ <img src =" ./figures/orthog-fock.png " height =" 20 " >
229
+ </picture >
154
230
155
231
Diagonalize:
156
232
157
- <img src =" ./figures/diag-new-fock.png " height =" 15 " >
233
+ <picture >
234
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/diag-new-fock.png " >
235
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/diag-new-fock.png " >
236
+ <img src =" ./figures/diag-new-fock.png " height =" 15 " >
237
+ </picture >
158
238
159
239
Back-transform:
160
240
161
- <img src =" ./figures/back-transform-coeff.png " height =" 20 " >
241
+ <picture >
242
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/back-transform-coeff.png " >
243
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/back-transform-coeff.png " >
244
+ <img src =" ./figures/back-transform-coeff.png " height =" 20 " >
245
+ </picture >
162
246
163
247
Compute the density:
164
248
165
- <img src =" ./figures/compute-density.png " height =" 55 " >
249
+ <picture >
250
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/compute-density.png " >
251
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/compute-density.png " >
252
+ <img src =" ./figures/compute-density.png " height =" 55 " >
253
+ </picture >
166
254
167
255
where * i* denotes the current iteration density.
168
256
169
257
## Step #9 : Compute the New SCF Energy
170
258
171
259
Compute the new SCF energy as before:
172
260
173
- <img src =" ./figures/compute-new-scf-energy.png " height =" 125 " >
261
+ <picture >
262
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/compute-new-scf-energy.png " >
263
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/compute-new-scf-energy.png " >
264
+ <img src =" ./figures/compute-new-scf-energy.png " height =" 125 " >
265
+ </picture >
174
266
175
267
where * i* denotes the SCF energy for the * i* th iteration.
176
268
177
269
## Step #10 : Test for Convergence
178
270
Test both the energy and the density for convergence:
179
271
180
- <img src =" ./figures/convergence-test.png " height =" 125 " >
272
+ <picture >
273
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/convergence-test.png " >
274
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/convergence-test.png " >
275
+ <img src =" ./figures/convergence-test.png " height =" 125 " >
276
+ </picture >
181
277
182
278
If the difference in consecutive SCF energy and the root-mean-squared difference in consecutive densities do not fall below the prescribed thresholds, return to Step #7 and continue from there.
183
279
@@ -187,22 +283,38 @@ If the difference in consecutive SCF energy and the root-mean-squared difference
187
283
### The MO-Basis Fock Matrix
188
284
At convergence, the canonical Hartree-Fock MOs are, by definition, eigenfunctions of the Fock operator, viz.
189
285
190
- <img src =" ./figures/canonical-mos.png " height =" 25 " >
286
+ <picture >
287
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/canonical-mos.png " >
288
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/canonical-mos.png " >
289
+ <img src =" ./figures/canonical-mos.png " height =" 25 " >
290
+ </picture >
191
291
192
292
If we multiply on the left by an arbitrary MO and integrate, we obtain:
193
293
194
- <img src =" ./figures/mo-fock-matrix-element.png " height =" 30 " >
294
+ <picture >
295
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/mo-fock-matrix-element.png " >
296
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/mo-fock-matrix-element.png " >
297
+ <img src =" ./figures/mo-fock-matrix-element.png " height =" 30 " >
298
+ </picture >
195
299
196
300
In other words, the Fock matrix should be diagonal in the MO basis, with the orbital energies as its diagonal elements. We can demonstrate this explicitly using the AO-basis Fock matrix by first re-writing the above expression using the LCAO-MO coefficients:
197
301
198
- <img src =" ./figures/mo-fock-matrix.png " height =" 50 " >
302
+ <picture >
303
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/mo-fock-matrix.png " >
304
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/mo-fock-matrix.png " >
305
+ <img src =" ./figures/mo-fock-matrix.png " height =" 50 " >
306
+ </picture >
199
307
200
308
Use the above equation to transform the Fock matrix from the AO basis to the MO basis and demonstrate that it is indeed diagonal (to within the convergence limits of the SCF iterative procedure).
201
309
202
310
### One-Electron Properties
203
311
As discussed in detail in Ch. 3 of the text by Szabo and Ostlund, the calculation of one-electron properties requires density matrix and the relevant property integrals. The electronic contribution to the electric-dipole moment may be computed using,
204
312
205
- <img src =" ./figures/electric-dipole-moment.png " height =" 50 " >
313
+ <picture >
314
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/electric-dipole-moment.png " >
315
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/electric-dipole-moment.png " >
316
+ <img src =" ./figures/electric-dipole-moment.png " height =" 50 " >
317
+ </picture >
206
318
207
319
where the vector notation implies three sets of dipole-moment integrals -- one for each Cartesian component of the dipole operator.
208
320
@@ -215,7 +327,11 @@ The test cases provided below include the structural information dipole integral
215
327
### Population Analysis/Atomic Charges
216
328
A Mulliken population analysis (also described in Szabo & Ostlund, Ch. 3) requires the overlap integrals and the electron density, in addition to information about the number of basis functions centered on each atom. The charge on atom * A* may be computed as:
217
329
218
- <img src =" ./figures/atomic-charge.png " height =" 50 " >
330
+ <picture >
331
+ <source media =" (prefers-color-scheme: dark) " srcset =" ./figures/dark/atomic-charge.png " >
332
+ <source media =" (prefers-color-scheme: light) " srcset =" ./figures/atomic-charge.png " >
333
+ <img src =" ./figures/atomic-charge.png " height =" 50 " >
334
+ </picture >
219
335
220
336
where the summation is limited to only those basis functions centered on atom * A* .
221
337
0 commit comments